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Preface

A gap i+ MySQL literature exists betwee v basic MySQL k vowledge ad adva vced
MySQL performa \ce. There are several books about the former, a \d o ve book about
the latter: High Performance MySQL, 4th Editio v, by Silvia Botros a \d Jeremy Ti \ley
(O’Reilly). This is the first book to bridge the gap.

The gap exists because MySQL is complex, ad it’s difficult to teach performa ce
without addressi vg that complexity—the proverbial elepha vt i+ the room. But e \gi-
veers usig (ot maagig) MySQL should vot veed to become MySQL experts to
achieve remarkable MySQL performa vce. To bridge the gap, this book is u vapologeti-
cally efficie vt—pay vo atte vtio v to the elepha vt; it’s frie \dly.

Efficient MySQL performa vce meas focus: learving avd applyivg only the best
practices a \d tech viques that directly affect remarkable MySQL performa vce. Focus
dramatically varrows the scope of MySQL complexity a \d allows me to show you
a much simpler a+d faster path through the vast axd complex field of MySQL
performa vce. The jour ey begi \s with the first se vte \ce of Chapter 1, “Performa vce
is query respo yse time” From there, we move fast through i+dexes, data, access
patter vs, a \d a lot more.

O v a scale of 0 ve to five—where o0 ve is a v i vtroductio v for a vyo e, a \d five is a deep
dive for aspiri vg experts—this book ra vges from three to four: deep, but far from the
bottom. I presume that youre a v experie vced e \gi veer who has basic k vowledge of
ad experie \ce with a relatio val database (MySQL or otherwise), so I do ‘ot explai v
SQL or database fu vdame vtals. I presume that youre a v accomplished programmer
who is respo vsible for o ‘e or more applicatio \s that use MySQL, so I co vti wally
refere \ce the application ad trust that you kow the details of your application. 1
also presume that youre familiar with computers i+ ge veral, so I talk freely about
hardware, software, vetworks, a \d so forth.

Sice this book focuses o1 MySQL performa ce for egieers usig MySQL, ‘ot
maagiyg it, a few refere \ces to MySQL co ‘figuratio \ are made whe v recessary
but ‘ot explaived. For help co ‘figurig MySQL, ask a DBA where you work. If




you do vt have a DBA, hire a MySQL co ‘sulta vt—there are ma vy great co ‘sulta \ts
with affordable co vtract optio vs. You ca v also lear v by readi vg the MySQL Reference
Manual. The MySQL ma wal is superb ad experts use it all the time, so youre i+
good compa vy.

Conventions Used in This Book

The followi vg typographical co we vtio s are used i+ this book:

Italic
I \dicates vew terms, URLs, email addresses, file vames, a \d file exte \sio vs.

Constant width
Used for program listigs, as well as withi\ paragraphs to refer to program
eleme vts such as variable or fu \ctio v vames, databases, data types, e wiro yme vt
variables, stateme 1ts, a vd keywords.

Constant width bold
Shows comma vds or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mi ved by co vtext.

This eleme 1t sig vifies a tip or suggestio .

This eleme 1t sig vifies a ge veral vote.

This eleme vt i vdicates a war vi \g or cautio .

N
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Using Code Examples

Suppleme vtal material (code examples, exercises, etc.) is available for dow \load at
https://github.com/efficient-mysql-performance.

If you have a tech vical questio v or a problem usi \g the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job dore. I geeral, if example code is
offered with this book, you may use it i\ your programs ad docume ‘tatio v. You
do ot veed to cotact us for permissio\ uless youre reproducivg a sig vifica vt
portio v of the code. For example, writi \g a program that uses several chu ks of code
from this book does ‘ot require permissio v. Selli vg or distributi vg examples from
O’Reilly books does require permissio . A vsweri\g a questio v by citi vg this book
ad quoti g example code does ‘ot require permissio \. I corporati g a sig vifica 1t
amou \t of example code from this book ivto your product’s docume vtatio v does
require permissio \.

We appreciate, but geerally do ‘ot require, attributior. A attributiov usu-
ally ivcludes the title, author, publisher, axd ISBN. For example: “Efficient
MySQL Performance by Daiel Nichter (O'Reilly). Copyright 2022 Da viel Nichter,
978-1-098-10509-9”

If you feel your use of code examples falls outside fair use or the permissio v give
above, feel free to co vtact us at permissions@oreilly.com.

0'Reilly Online Learning

R » For more tha v 40 years, O’Reilly Media has provided tech vol-
O RE I LLY ogy ad busivess traivivg, krowledge, axd ivsight to help

compa vies succeed.

Our uvique ‘etwork of experts ad i+ ovators share their k vowledge a \d expertise
through books, articles, a \d our o li ve lear vi vg platform. O’Reilly’s o \li ve lear vi g
platform gives you o-demad access to live traivivg courses, iv-depth learvivg
paths, iteractive codi g e wiro yme s, a \d a vast collectio v of text a \d video from
O'Reilly a vd 200+ other publishers. For more i \formatio v, visit http://oreilly.com.
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How to Contact Us

Please address comme vts a \d questio \s co vcer vi \g this book to the publisher:

O'Reilly Media, I \c.

1005 Grave \stei y Highway North

Sebastopol, CA 95472

800-998-9938 (i the U vited States or Ca vada)
707-829-0515 (i vter vatio val or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, a \d a vy additio val
iformatio . You ca v access this page at https://oreil ly/efficient-mysql-performance.

Email bookquestions@oreilly.com to comme vt or ask tech vical questio \s about this
book.

For vews a \d i \formatio v about our books a \d courses, visit http://oreilly.com.
Follow us o v Twitter: http://twitter.com/oreillymedia

Watch us o 1 YouTube: http://youtube.com/oreillymedia
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CHAPTER1
Query Response Time

Performa ce is query respo 1se time.

This book explores that idea from various agles with a siygle ivte vt: to help you
achieve remarkable MySQL performa vce. Efficient MySQL performa vce mea s focus-
ing o v the best practices a \d tech viques that directly affect MySQL performa vce— ‘o
superfluous details or deep i ter vals required by DBAs a \d experts. I presume that
youre a busy professio val who is usi g MySQL, ‘ot ma vagi ‘g it, a \d that you reed
the most results for the least effort. That’s ‘ot lazi vess, that’s efficie \cy. To that e \d,
this book is direct axd to the poit. Axd by the ed, you will be able to achieve
remarkable MySQL performa vce.

MySQL performa vce is a complex a \d multifaceted subject, but you do ‘ot ‘eed to
become a  expert to achieve remarkable performa \ce. I varrow the scope of MySQL
complexity by focusivg o the esse vtials. MySQL performa vce begis with query
respo se time.

Query response time is how lo\g it takes MySQL to execute a query. Sy ‘o yymous
terms are: response time, query time, execution time, a d (i vaccurately) query latency.!
Timi g starts whe v MySQL receives the query ad e \ds whe v it has se vt the result
set to the clie \t. Query respo \se time comprises ma vy stages (steps durisg query
executio v) a \d waits (lock waits, I/O waits, a \d so 0 1), but a complete a \d detailed
breakdow v is ‘either possible vor vecessary. As with ma vy systems, basic trouble-
shooti vg a \d a valysis reveal the majority of problems.

1 Late \cy is delay i vhere vt i v the system. Query respo se time is ‘ot a delay i vhere vt i v MySQL; it comprises
various late vcies: ‘etwork, storage, axd so o .




Performa vce i \creases as query respo \se time decreases. Improving
query respo \se time is sy vo yymous with reducing query respo \se
time.

This chapter is the fou \datio v. It expou \ds query respo \se time so that, i+ subse-
que vt chapters, you ca lear v how to improve it. There are seve \ major sectio 1s.
The first is a true story to motivate ad amuse. The seco \d discusses why query
respo vse time is the North Star of MySQL performa ce. The third outlives how
query metrics are tra vsformed i vto mea i vgful reports: query reporti vg. The fourth
addresses query avalysis: usi g query metrics a \d other i formatio v to u vdersta \d
query executio \. The fifth maps out the jour vey of improvi vg query respo \se time:
query optimizatio v. The sixth gives a1 ho vest a \d modest schedule for optimizi vg
queries. The seve \th discusses why MySQL cavvot simply go faster—why query
optimizatio \is vecessary.

A True Story of False Performance

I 2004, I was worki g the vight shift at a data ce \ter—2 p.m. to mid vight. It was
a great job for two reaso 1s. First, the o\ly employees i+ the data ce vter after 5 p.m.
were a ha dful of e \gi veers mo vitori g a \d ma vagi g thousa \ds of physical servers
for av udisclosed vumber of customers a \d websites—probably te \s of thousa \ds
of websites. It was a v e \gi veer’s dream. Seco \d, there were cou tless MySQL servers
that always had problems to fix. It was a gold mi ve of lear vi \g a \d opportu vity. But
at the time, there were few books, blogs, or tools about MySQL. (Though that same
year, O'Reilly published the first editio v of High Performance MySQL.) Co \seque vtly,
the state of the art for “fixi \g” MySQL performa vce problems was “sell the customer
more RAM. For sales a \d ma vageme t it always worked, but for MySQL the results
were i1co \siste \t.

Oe night I decided vot to sell the customer more RAM ad, i‘stead, to do a
tech vical deep dive to fid ad fix the true root cause of their MySQL performa ce
problem. Their database was poweri \g a bulleti v board which had slowed to a crawl
u vder the weight of its success—still a commo  problem today, almost 20 years later.
To make a log story short, I foud a sivgle query missig a critical ivdex. After
properly i \dexi \g the query, performa \ce improved dramatically a \d the website was
saved. It cost the customer zero dollars.

Not all performa vce problems a \d solutio vs are that straightforward a \d glamorous.
But just shy of 20 years™ experie \ce with MySQL has taught me (a d ma vy others)
that MySQL performa \ce problems are very ofte v solved by the best practices a \d
tech viques i v this book.
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North Star

I'm a MySQL DBA and a software e gieer, so I kow what it’s like worki vg with
MySQL as the latter. Especially whe v it comes to performa ce, we (software e \gi-
reers) just wat it (MySQL) to work. Betwee v shippi g features ad putti g out
fires, who has time for MySQL performa vce? Ad whe » MySQL performa ce is
poor—or worse: whe v it sudde \ly becomes poor—the way forward ca v be difficult
to see because there are ma vy co \sideratio vs: where do we begi \? Do we ‘eed more
RAM? Faster CPUs? More storage IOPS? Is the problem a rece 1t code cha vge? (Fact:
code chages deployed i\ the past cav cause performa yce problems i+ the future,
sometimes days i\ the future.) Is the problem a voisy ‘eighbor? Are the DBAs doi g
somethig to the database? Has the app has go e viral axd it’s the good kid of
problem to have?

As a engiveer whose expertise is the applicatio v, vot MySQL, that situatio \ ca \ be
overwhelmi vg. To move forward co ‘fide vtly, start by looki vg at query respo \se time
because it is meaningful ad actionable. These are powerful qualities that lead to real
solutio vs:

Meaningful
Query respo yse time is the o1ly metric a wyo ve truly cares about because, let’s
be ho vest, whe v the database is fast, vobody looks at it or asks questio \s. Why?
Because query respose time is the o\ly metric we experience. Whe v a query
takes 7.5 seco \ds to execute, we experie ce 7.5 seco \ds of impatie vce. That same
query might examie a millio v rows, but we do vt experie \ce a millio v rows
exami ved. Our time is precious.

Actionable

There’s so much you ca 1 do to improve query respo 1se time a \d make everyo ‘e
happy agai+ that youre holdig a book about it. (Do people still hold books
iv the future? I hope so.) Query respo se time is directly actio vable because
you ow \ the code, so you ca\ chage the queries. Eve v if you do vt ow v the
code (or have access to it), you ca v still i \directly optimize query respo se time.
“Improvi g Query Respo se Time” o+ page 27 addresses direct a~d i+direct
query optimizatio \.

Focus o v improvi g query respo \se time—the North Star of MySQL performa vce.
Do vot begi v by throwi vg hardware at the problem. Begi \ by usi \g query metrics to
determi ve what MySQL is doi g, the v a valyze a \d optimize slow queries to reduce
respo \se time, a \d repeat. Performa vce will improve.

NorthStar | 3



Query Reporting

Query metrics provide i waluable i \sights i vto query executio \: respo ‘se time, lock
time, rows examied, a\d so o . But query metrics, like all metrics, are raw values
that veed to be collected, aggregated, a \d reported i\ a way that’s mea vi vgful to (a\d
readable for) egieers. That’s what this sectio v outlives: how query metric tools
tra vsform query metrics i vto query reports. But query reporti g is o \ly a mea s to
avend, as discussed i v “Query A valysis” o \ page 11.

Looki g ahead, query a valysis is the real work: a valyzi \g query metrics (as reported)
ad other iformatio v with the goal of udersta \di \g query executio v. To improve
MySQL performa \ce, you must optimize queries. To optimize queries, you must
uvdersta \d how they execute. A \d to u \dersta\d that, you must a valyze them with
pertive vt i vformatio v, i vcludi vg query reports a \d metadata.

But first you reed to uderstayd query reportig, sice it represe vts the trove of
query metrics that provide i waluable isights ito query executio v. The vext three
sectio s teach you about the followi \g:

o Sources: query metrics origi vate from two sources a \d vary by MySQL distribu-
tio vad versio v

o Aggregatio v: query metric values are grouped a‘d aggregated by ‘ormalized
SQL stateme 1ts

o Reportivg: query reports are orgavized by a high-level profile axd a query-
specific report

The » you're ready for “Query A valysis” o \ page 11.

This is ‘ot a book about database admi vistratio v, so this sectio 1
does vot discuss the setup ad co ‘figuratio v of query metrics i+
MySQL. I presume this is already do e or will be do ve. If vot, do vt
worry: ask your DBA, hire a co sulta \t, or lear v how by readig
the MySQL ma wual.

Sources

Query metrics origiate from the slow query log or the Performace Schema. As
the vames i dicate, the former is a log file o v disk, a \d the latter is a database with
the same vame: performance_schema. Although completely differe vt i+ vature (log
file o disk as opposed to tables i+ a database), both provide query metrics. The
importa vt differe vce is how ma vy metrics they provide: apart from query respo \se
time, which both provide, the vumber of metrics ra vges from 3 to more tha v 20.

4 | Chapter 1:Query Response Time



The vame slow query log is historical. Lo g ago, MySQL logged
o0 ly queries that took greater tha N seconds to execute, ad the
mivimum value for N was 1. Old versio vs of MySQL would vot
log a query that took 900 milliseco \ds to execute because that
was “fast” The slow query log really ear ved its vame. Today, the
miimum value is zero with a resolutio v of microseco vds. Whe
set to zero, MySQL logs every query executed. Therefore, the vame
is a little misleadi g, but vow you k vow why.

All thigs co vsidered, the Performa vce Schema is the best source of query metrics
because it exists i\ every curre vt versio  a \d distributio v of MySQL, it works locally
avd i the cloud, it provides all vi e metrics covered i+ “Query Metrics” o\ page 11,
ad it’s the most co vsiste vt. Plus, the Performa ce Schema co vtai \s a wealth of other
data for deep MySQL avalysis, so its useful vess exte \ds far beyo \d query metrics.
The slow query log is a good source, too, but it varies co vsiderably:

MySQL
As of MySQL 8.0.14, e vable system variable log_slow_extra ad the slow query
log provides six of the i e metrics i+ “Query Metrics” o v page 11, lacki g o \y
Rows_affected, Select_scan, ad Select_full_join. It’s still a good source, but
use the Performa vce Schema if possible.

Before MySQL 8.0.14, which icludes MySQL 5.7, the slow query log is bare
bo ves, providi \g o ly Query_time, Lock_time, Rows_sent, a \d Rows_examined.
You can still avalyze queries with oly these four metrics, but the avalysis is
much less issightful. Co seque vtly, avoid the slow query log before MySQL
8.0.14 ad i \stead use the Performa vce Schema.

Percona Server

Percova Server provides a sighificatly greater umber of metrics iv the
slow query log whe system variable log_slow_verbosity is co \figured: all
vive metrics covered iv “Query Metrics” oy page 11 avd more. It also sup-
ports query samplivg (loggi\g a perce vtage of queries) whe v system variable
log_slow_rate_limit is co‘figured, which is helpful for busy servers. These
features make the Perco va Server slow query log a great source. See “Slow Query
Log” i the Perco va Server ma wual for details.

MariaDB Server
MariaDB Server 10.x uses the Perco va Server slow query log e vha \ceme vts, but
there are two votable differe \ces: system variable log_slow_verbosity is co \fig-
ured differetly i+ MariaDB, ad it does ‘ot provide metric Rows_affected.
Otherwise, it’s esse tially the same a \d a great source, too. See “Slow Query Log
Exte vded Statistics” i v the MariaDB k vowledge base for details.
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The slow query log is disabled by default, but you ca v e vable it dy vamically (without
restarti \g MySQL). The Performa ce Schema should be e vabled by default, though
some cloud providers disable it by default. Urlike the slow query log, the Perfor-
ma ce Schema ca 1 vot be e vabled dy vamically—you must restart MySQL to e vable it.

Make sure the best query metric source is used ad properly co \figured. Ask your
DBA, hire a co sulta t, or lear v how by readi \g the MySQL ma vual.

The slow query log ca + log all queries whe v long_query_time is set
to zero, but be careful: o v a busy server, this ca v i \crease disk I/O
a\d use a sig vifica \t amou t of disk space.

N

Aggregation

Query metrics are grouped ad aggregated by query. That souds obvious sice
theyre called query metrics, but some query metric tools ca+ group by user vame,
host vame, database, axd so o\. These alter vate groupi\gs are exceptio vally rare
avd yield a differe vt type of query avalysis, so I do vt address them i+ this book.
Sice query respo se time is the North Star of MySQL performa \ce, groupi \g query
metrics by query is the best way to see which queries have the slowest respo vse time,
which forms the basis of query reporti g a \d a valysis.

There’s o ve little problem: how do you u viquely ide \tify queries to determi ve the
groups to which they belo 1g? For example, system metrics (CPU, memory, storage,
ad so 01) are grouped by host vame because host vames are u vique a \d mea i vgful.
But queries do vt have a vy uiquely ide ‘tifyi vg properties like host vame. The solu-
tio v: a SHA-256 hash of the ‘ormalized SQL stateme \t. Example 1-1 shows how a
SQL stateme t is vormalized.

Example 1-1. SQL statement normalization

SELECT col FROM tbl WHERE id=1 @

SELECT ‘col' FROM ‘tbl' WHERE ‘id" = ? ©

£49d50dfablc364e622d1e1ff54bb12df436be5d44ca64ade25a1ebb80fc2f13 ©
@ SQL stateme vt (sample)
@ Digest text (vormalized SQL stateme 1t)

© Digest hash (SHA-256 of digest text)
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MySQL rormalizes SQL stateme vts to digest texts, the \ computes the SHA-256 hash
of the digest text to yield the digest hash. (Its ‘ot vecessary to uderstad the full
process of vormalizatio v; it’s sufficie vt to k vow that vormalizatio v replaces all values
with ? ad collapses multiple whitespaces to a sigle space.) Sice the digest text is
uique, the digest hash is also u vique (hash collisio \s votwithsta \di\g).

The MySQL ma wual uses the term digest equivocally to mea + either
digest text or digest hash. Sice the digest hash is computed from
the digest text, the equivocatio v is 0 \ly a la \guage ambiguity, ‘ot a
tech vical error. Please allow me to equivocate, too, a \d use digest to
mea \ either digest text or digest hash whe v the tech vical differe vce
does vt matter.

There is a v importa vt shift i v termi vology i+ the co vtext of query metrics: the term
query chages to be sy ‘o wymous with digest text. The shift i+ termivology alig s
with the shift i v focus: groupi vg metrics by query. To group by query, query must be
uvique, which is o0 \ly true of digests.

SQL stateme 1ts are also called query samples (or samples for short), a \d they may or
may ‘ot be reported. For security, most query metric tools discard samples by default
(because they co vtai v real values) ad report oly digest texts a vd hashes. Samples
are required for query a valysis because you ca v EXPLAIN them, which produces meta-
data ecessary for u dersta \di \g query executio \. Some query metric tools EXPLAIN
a sample, the v discard it, ad report the EXPLAIN pla~ (the output of EXPLAIN).
Others o ly report the sample, which is still very co we vie \t: copy-paste to EXPLAIN.
If you have reither, the v ma wually extract samples from the source or ma wually write
them whe v veeded.

Two more clarificatio \s about termi vology a \d the » I promise we'll move o \ to more
exciti \g material. First, termiology varies widely depedivg o the query metric
tool, as show i~ Table 1-1.

Table 1-1. Query metric terminology

Official (MySQL) Alternatives

SQL statement ~ Query

Sample Query
Digest text Class, family, fingerprint, query
Digest hash (lass ID, query ID, signature

Seco \d, a vother term that origi vated from Perco va is query abstract: a SQL stateme 1t
highly abstracted to its SQL comma~d ad table list. Example 1-2 is the query
abstract for SELECT col FROM tbl WHERE id=1.
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Example 1-2. Query abstract
SELECT tbl

Query abstracts are ‘ot uvique, but they are useful because they’re succi \ct. Usually,
developers o \ly veed to see a query abstract to k vow the full query that it represe 1ts.

Brevity is the soul of wit.

—William Shakespeare

It's importa vt to u \dersta \d that SQL stateme vts are ‘ormalized because the queries
you write are ‘ot the queries you see. Most of the time, this is ‘ot a problem because
digest texts closely resemble SQL stateme vts. But the process of ‘ormalizatio \ raises
aother importa 1t poit: do ‘ot dyvamically ge erate the same logical query with
differe 1t sy vtax, else it will vormalize to differe \t digests a \d be reported as differe 1t
queries. For example, i\ the case of a programmatically-ge verated query that cha ges
the WHERE clause based o v user i vput:

SELECT name FROM captains WHERE last_name = 'Picard'
SELECT name FROM captains WHERE last_name = 'Picard' AND first_name = 'Jean-Luc'

Those two queries may be logically the same to you ad the applicatio v, but they’re
differe vt queries with respect to reporti g because they vormalize to differe 1t digests.
To my k vowledge, ‘o query metric tool allows you to combi ve queries. A \d it’s tech-
vically correct to report those queries separately because every co \ditio \—especially
i+ the WHERE clause—affects query executio  a \d optimizatio .

O e poitt about query vormalizatio v: values are removed, so the followig two
queries ‘ormalize to the same digest:

-- SQL statements
SELECT “name’ FROM star_ships WHERE class IN ('galaxy')
SELECT ‘name’ FROM star_ships WHERE class IN ('galaxy', 'intrepid')

-- Digest text

SELECT ‘"name’ FROM “star_ships® WHERE ‘class’ IN (...)
Sivce the digest is the same for both queries, the metrics for both queries are grouped,
aggregated, a \d reported as o \e query.

E vough about termi vology a \d ‘ormalizatio \. Let’s talk about reporti \g.

Reporting

Reportig is a challe \ge a\d a v art form because a si \gle applicatio v ca v have hu +-
dreds of queries. Each query has ma vy metrics a \d each metric has several statistics:
mi \imum, maximum, average, perce itile, ad so forth. O top of that, each query
has metadata: samples, EXPLAIN pla s, table structures, o so o . It’s challe \gi g
to store, process, a \d prese 1t all this data. Almost every query metric tool prese ts
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the data i\ a two-level hierarchy: query profile a~d query report. Those terms vary by
query metric tool, but you will easily recog vize each whe \ you see them.

Query profile

A query profile shows slow queries. It is the top-level orga vizatio v for query report-
ivg, usually the first thi vg you see i v a query metric tool. It prese \ts query digests a \d
a limited subset of query metrics, which is why it’s called a profile.

Slow is relative to the sort metric: the aggregate value of a query metric by which
queries are ordered. The first ordered query is called the slowest, eve v if the sort
metric is ‘ot query time (or a vy time). For example, if the sort metric is average rows
se \t, the first ordered query is still called the slowest.

Although a vy query metric ca \ be the sort metric, query time is the u viversal default
sort metric. Whe 1 you reduce query executio v time, you free up time that allows
MySQL to do more work, or possibly do other work more quickly. Sorti vg queries by
query time shows you where to begi v: the slowest, most time-co \sumi \g queries.

Whats ot uiversal is how query time is aggregated. The most commo v aggregate
values are:

Total query time

Total query time is the sum of executio\ time (per query). This is the most
commo \ aggregate value because it a \swers a v importa ‘vt questio \: which query
does MySQL spend the most time executing? To a yswer that, a query metric tool
adds up all the time MySQL spe \ds executi g each query. The query with the
greatest total time is the slowest, most time-co \sumi \g query. Here’s a v example
of why this is importa \t. Suppose query A has a 1-seco \d respo ‘se time a \d exe-
cutes 10 times, while query B has a 0.1-seco \d respo se time a \d executes 1,000
times. Query A has a much slower respo \se time, but query B is 10 times more
time-co vsumi vg: 10 seco \ds i total versus 100 seco \ds i total, respectively. I +
a query profile sorted by total query time, query B is the slowest query. This is
importa 1t because you free up the most time for MySQL by optimizi \g query B.

Percentage execution time

Percentage execution time is total query time (per query) divided by grad total
executio v time (all queries). For example, if query C has a total query time of 321
ms ad query D has a total query time of 100 ms, the v gra \d total executio  time
is 421 ms. I \dividually, query Cis (321 ms / 421 ms) x 100 = 76.2% of gra \d total
executio \ time, a \d query D is (100 ms / 421 ms) x 100 = 23.8% of gra \d total
executio v time. I+ other words, MySQL spe 1t 421 ms executi vg queries, 76.2%
of which was spe t executig query C. I+ a query profile sorted by perce tage
executio \ time, query C is the slowest query. Perce vtage executio v time is used
by some query metric tools, but ‘ot all.
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Query load
Query load is total query time (per query) divided by clock time, where clock time
is the vumber of seco \ds i+ the time rage. If the time ra vge is 5 mi vutes, the v
clock time is 300 seco \ds. For example, if query E has a total query time 250.2
seco \ds, the v its load is 250.2 s / 300 s = 0.83; a\d if query F has a total query
time of 500.1 seco \ds, the v its load is 500.1 s / 300 s = 1.67. I\ a query profile
sorted by query load, query F is the slowest query because its load is the greatest.

Load is relative to time but also subtly i \dicative of concurrency: multiple i \sta \-
ces of a query executi g at the same time. Query load less tha ' 1.0 mea \s that,
0\ average, the query does 1ot execute co vcurre vtly. Query load greater tha v 1.0
ivdicates query co vcurre \cy. For example, a query load of 3.5 mea s that, avy
time you look, you're likely to see 3.5 i \sta vces of the query executi \g. (I v reality,
3 or 4 ivstayces of the query sice there cavot be 0.5 itstaces of a query.)
The higher the query load, the greater the possibility of co vte tio v if the query
accesses the same or ‘earby rows. Query load greater tha + 10 is high a \d likely to
be a slow query, but there are exceptio \s. As I write this, I'm looki g at a query
with a load of 5,962. How is that possible? I reveal the a yswer i v “Data Access” 0 1
page 97.

Whe  the sort metric uses a ‘o vtemporal query metric, like rows se t, a differe vt
aggregate value (average, maximum, a\d so o‘) might make sese depediyg o
what you're tryi g to diag vose. This is far less commo 1 tha v total query time, but it
occasio vally reveals i vteresti \g queries worth optimizi \g.

Query report

A query report shows you everythig there is to kow about oe query. It is the
seco vd-level orga vizatio v for query reporti g, usually accessed by selectig a slow
query i+ the query profile. It prese vts all query metrics a \d metadata. Whereas the
query profile tells you somethi vg just by looki \g at it (which queries are the slowest),
a query report is a orga vized iformatio v dump used for query avalysis. As such,
the more i vformatio v, the better because it helps you u vdersta \d query executio .

Query reports vary dramatically depe \dig o\ the query metric tool. A bare mi i-
mum report icludes all query metrics from the source ad the basic statistics for
those metrics: mivimum, maximum, average, perce vtile, a\d so forth. A thorough
report i \cludes metadata: query samples, EXPLAIN pla vs, table structures, a \d more.
(Samples may be disabled for security purposes because they co vtai \ real values.) A
few query metric tools go further by addi g additio val i vformatio \: metric graphs,
histograms (distributio \s), a vomaly detectio v, time shift compariso v (vow versus
last week), developer votes, SQL comme t key-value extractioy, axd so o .

Query aalysis o \ly requires query metrics i+ the report. Metadata ca\ be collected
ma wally. If the query metric tool you use reports o \ly query metrics, do vt worry:
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that’s a start, but you will veed to ma wally collect EXPLAIN pla s ad table struc-
tures, at the very least.

With a query report figuratively i v ha \d, youre equipped for query a valysis.

Query Analysis

The goal of query analysis is uderstadivg query executioy, ‘ot solvivg slow
respo vse time. That might surprise you, but solvig slow respo se time happe s
after query aalysis, duri \g query optimizatio v. First, you ‘eed to udersta \d what
you're tryi g to cha \ge: query executio \.

Query executio v is like a story with a begi v i \g, middle, a \d e \d: you read all three
to udersta \d the story. O \ce you u dersta d how MySQL executes a query, the
you will u vdersta \d how to optimize it. U dersta \di vg through a valysis, the v actio
through optimizatio .

I have helped ma vy egieers avalyze queries, a‘d the primary
difficulty is ‘ot u \dersta \di g the metrics but getti vg stuck i v the
aalysis: stari g deeply ito the vumbers, waiti vg for a revelatio .
Do vt get stuck. Carefully review all the metrics ad metadata—
read the whole story—the 1 tur \ your atte ‘tio \ to query optimiza-
tio v with the goal of improvi \g respo 1se time.

The followi \g sectio \s address key aspects to a v efficie 1t a \d i vsightful query a valy-
sis. Sometimes the cause of slow respo se time is so obvious that the a valysis reads
more like a tweet thay a story. But whe v it's vot—whe  the aalysis reads like a
graduate thesis o\ Fre \ch existe tialism—u vdersta \di \g these aspects will help you
fi \d the cause a \d determi e a solutio .

Query Metrics

From “Sources” o\ page 4, you krow that query metrics vary depedivg o+ the
source, MySQL distributio v, axd MySQL versio . All query metrics are importa vt
because they help you udersta \d query executio v, but the i e metrics detailed i
the followi g sectio \s are esse vtial to every query a valysis.

The Performa vce Schema provides all vi ve esse tial query metrics.

Query metric vames also vary by source. I+ the slow query log,
query time is Query_time; but i+ the Performace Schema, it’s
TIMER_WAIT. I do vt use either co we vtio \. I \stead, I use huma -
friendly vames like query time a~d rows sent. Query reporti\g
almost always uses huma 1-frie \dly vames, too.
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Query time

Query time is the most importa t metric—you k vew that already. What you may vot
k vow is that query time i vcludes a vother metric: lock time.

Lock time is av ivheret part of query time, so it's ‘ot surprisig that the latter
ivcludes the former. What's surprisi \g is that query time a\d lock time are the o\ly
two time-based query metrics, with o ve exceptio \: the Perco va Server slow query log
has metrics for Iv10DB read time, row lock wait time, a \d queue wait time. Lock
time is importa \t, but there’s a v u vfortu vate tech vical gotcha: it’s accurate o \ly i v the
slow query log. More o \ this later.

Usi vg the Performa vce Schema, you ca v see ma vy (but ‘ot all) parts of query execu-
tio v. This is off-topic a \d beyo \d the scope of this book, but it’s good aware vess so
you k vow where to look if you veed to dig deeper. MySQL i \strume 1ts a bewilderi vg
wumber of events that the ma vual defi ves as, “a vythi \g the server does that takes time
ad has bee v istrume vted so that timi vg i \formatio v ca v be collected” Eve vts are
orgavized i v a hierarchy:

transactions

L— statements

L— stages
L— waits

Transactions

Tra vsactio vs are the top-level eve 1t because every query executes i\ a tra vsactio v

(Chapter 8 covers tra sactio s).

Statements
Stateme 1ts are queries, to which query metrics apply.

Stages
Stages are “steps duri \g the stateme vt-executio v process, such as parsi g a state-
me \t, ope i \g a table, or performi g a filesort operatio v”

Waits
Waits are “eve vts that take time” (This defi vitio v amuses me. It’s tautological a \d
oddly satisfyi vg i v its simplicity.)

Example 1-3 shows the stages for a si \gle UPDATE stateme vt (as of MySQL 8.0.22).
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Example 1-3. Stages for a single UPDATE statement

R R e D +
| stage | source:line | time (ms) |
D B e D +
| stage/sql/starting | init_net_server_extension.cc:101 | 0.109 |
| stage/sql/Executing hook on trx | rpl_handler.cc:1120 | 0.001 |
| stage/sql/starting | rpl_handler.cc:1122 | 0.008 |
| stage/sql/checking permissions | sql_authorization.cc:2200 | 0.004 |
| stage/sql/Opening tables | sql_base.cc:5745 | 0.102 |
| stage/sql/init | sql_select.cc:703 [ 0.007 |
| stage/sql/System lock | lock.cc:332 | 0.072 |
| stage/sql/updating | sql_update.cc:781 | 10722.618 |
| stage/sql/end | sql_select.cc:736 | 0.003 |
| stage/sql/query end | sql_parse.cc:4474 | 0.002 |
| stage/sql/waiting handler commit | handler.cc:1591 | 0.034 |
| stage/sql/closing tables | sql_parse.cc:4525 | 0.015 |
| stage/sql/freeing items | sql_parse.cc:5007 | 0.061 |
| stage/sql/logging slow query | log.cc:1640 | 0.094 |
| stage/sql/cleaning up | sql_parse.cc:2192 | 0.002 |
e meeicmaceasiaaeesesaceaaaas S Hommmannaeas +

The real output is more complex; I simplified it for easy readi \g. The UPDATE state-
me t executed i 15 stages. The actual executio v of the UPDATE was the eighth stage:
stage/sql/updating. There were 42 waits, but I removed them from the output
because they’re too far off topic.

Performa vce Schema eve vts (tra vsactio s, stateme vts, stages, a \d waits) are the fie
details of query executio . Query metrics apply to stateme vts. If you reed to dig
deeper i va query, look i v the Performa vce Schema.

Efficie ¢y is our modus opera \di, so do vt get lost i v the Performa vce Schema u +til
you ‘eed to, which may be vever. Query time is sufficie ‘.

Lock time

Lock time is time spe 1t acquiri vg locks durig query executio \. Ideally, lock time is
a mi wscule perce vtage of query time, but values are relative (see “Relative Values”
o\ page 24). For example, o\ o1e extremely optimized database that I ma \age,
lock time is 40% to 50% of query time for the slowest query. Sou \ds terrible, right?
But it’s vot: the slowest query has a maximum query time of 160 microseco \ds a \d
a maximum lock time of 80 microseco \ds—a\d the database executes over 20,000
queries per seco \d (QPS).

Although values are relative, I ca v safely say that lock time greater tha \ 50% of query
time is a problem because MySQL should spe \d the vast majority of its time doi g
work, ‘ot waiti\g. A theoretically perfect query executio \ would have zero wait time,
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but that’s impossible due to shared resources, co vcurre cy, a\d late xcy ivheret i+
the system. Still, we ca \ dream.

MySQL Storage Engines and Data Locking

Before I explaiy more about lock time a“d locks iy geeral, let me clarify some
backgrou \d i \formatio .

MySQL has ma vy storage e \gi ves—a \d a history of storage e gi ves, but I wo vt bore
you with that. The default storage e \gi ‘e is I 1 voDB. Other storage e gi ves i clude:
MyISAM, MEMORY, TempTable, Aria with MariaDB, MyRocks with Perco va Server
ad MariaDB, XtraDB with Perco va Server, a\d more. (Fu fact: the Performa \ce
Schema is impleme vted as a storage e gie.) I this book, I v10DB is implied u ‘less
stated otherwise.

There are table locks a\d row locks. The server (MySQL) ma rages tables ad table
locks. Tables are created usig a storage e \gi e (I 1\0DB by default) but are storage
e \gi \e ag vostic, mea \i g you ca \ co wert a table from o \e storage e \gi \e to a vother.
Row-level lockig is maaged by the storage egite if supported. MyISAM does
ot support row-level locki g, so it ma vages data access with table locks. I1voDB
supports row-level locki \g, so it ma vages data access with row locks. Si vce I 110oDB is
the default storage e gi ve, row-level locki vg is implied u \less stated otherwise.

I110DB also has table locks called intention locks, but they’re
‘ot importa vt for this discussio .

There are metadata locks maaged by the server that cotrol access to schemas,
tables, stored programs, a \d more. Whereas table locks a 1d row locks co vtrol access
to table data, metadata locks co ‘trol access to table structures (colum vs, i \dexes, a \d
$0 01) to preve \t cha ges while queries are accessi \g the tables. Every query acquires
a metadata lock o v every table that it accesses. Metadata locks are released at the e \d
of the tra vsactio v, ‘ot the query.

Remember: I1voDB ad row-level locki vg are implied u \less
stated otherwise.
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Remember the u vfortu vate tech vical gotcha me ‘tio ved earlier? Here it is: lock time
from the Performace Schema does not ivclude row lock waits, o+ly table ad
metadata lock waits. Row lock waits are the most importa vt part of lock time, which
makes lock time from the Performa vce Schema early useless. By co vtrast, lock time
from the slow query log i cludes all lock waits: metadata, table, a \d row. Lock time
from either source does ‘ot idicate which type of lock wait. From the Performa ce
Schema, it’s certai \ly metadata lock wait; a \d from the slow query log, it'’s probably
row lock wait, but metadata lock wait is a possibility, too.

Lock time from the Performa vce Schema does ‘ot i \clude row lock
waits.

N

Locks are primarily used for writes (INSERT, UPDATE, DELETE, REPLACE) because rows
must be locked before they ca+ be writte \. Respo 1se time for writes depe \ds, i+
part, o lock time. The amou vt of time ‘eeded to acquire row locks depe \ds o+
cocurre \cy: how ma vy queries are accessivg the same (or ‘earby) rows at the
same time. If a row has zero co \curre \cy (accessed by o1ly o e query at a time),
the v lock time is va vishi vgly small. But if a row is hot—jargo \ for very frequently
accessed—the  lock time could accou t for a sig vifica vt perce vtage of respo ‘se time.
Co vcurre \cy is o ve of several data access patter vs (see “Data Access Patter vs” i
Chapter 4).

For reads (SELECT), there are vo“lockig ad locki g reads. The disti \ctio v is easy
because there are oly two locki g reads: SELECT...FOR UPDATE ad SELECT...FOR
SHARE. If ‘ot 0 e of those two, the Y SELECT is vo ‘locki \vg, which is the vormal case.

Although SELECT...FOR UPDATE ad SELECT...FOR SHARE are the o \ly locki \g reads,
do vt forget about writes with a v optio val SELECT. I+ the followi vg SQL stateme 1ts,
the SELECT acquires shared row locks o 1 table s:

INSERT...SELECT FROM s

o REPLACE...SELECT FROM s
o UPDATE...WHERE...(SELECT FROM s)
o CREATE TABLE...SELECT FROM s
Strictly speaki g, those SQL stateme vts are writes, ‘ot reads, but the optio val SELECT

acquires shared row locks o\ table s. See “Locks Set by Differe vt SQL Stateme ts i+
Iv10oDB” i the MySQL ma vual for details.

Query Analysis | 15



Locki vg reads should be avoided, especially SELECT...FOR UPDATE, because they do vt
scale, they ted to cause problems, ad there is usually a vo“locki g solutio v to
achieve the same result. With respect to lock time, a locki g read is like a write:
it depeds o co vcurre \cy. Be careful with SELECT...FOR SHARE: shared locks are
compatible with other shared locks, but theyre i vcompatible with exclusive locks,
which mea s shared locks block writes o 1 the same (or earby) rows.

For vo \locki \g reads, eve v though row locks are ‘ot acquired, lock time will ot be
zero because metadata ad table locks are acquired. But acquiri vg these two should
be very fast: less tha v 1 milliseco \d. For example, a vother database I ma vage executes
over 34,000 QPS but the slowest query is a o \locki vg SELECT that does a full table
scay, readivg six millioy rows every executioy, with very high co \curre \cy: 168
query load. Despite these large values, its maximum lock time is 220 microseco \ds,
ad average lock time is 80 microseco \ds.

No vlocki vg read does not mea v o v-blocki vg. SELECT queries must acquire shared
metadata locks (MDL) o all tables accessed. As usual with locks, shared MDL
are compatible with other shared MDL, but o ‘e exclusive MDL blocks all other
MDL. ALTER TABLE is the commo  operatio \ that acquires a v exclusive MDL. Eve
usig ALTER TABLE...ALGORITHM=INPLACE, LOCK=NONE or third-party o 1live schema
chage tools like pt-o \li ve-schema-cha vge a\d gh-ost, a exclusive MDL must be
acquired at the ed to swap the old table structure for the ‘ew oe. Although the
table swap is very quick, it ca v cause a ‘oticeable disruptio » whe * MySQL is heavily
loaded because all table access is blocked while the exclusive MDL is held. This
problem shows up as a blip i v lock time, especially for SELECT stateme ts.

SELECT ca v block waiti vg for metadata locks.

N

Locki vg might be the most complex ad wua vced aspect of MySQL. To avoid goi g
dow \ the proverbial rabbit hole, let me state five poivts but defer expla vatio v for
row. Merely bei \g aware of these poi \ts greatly i \creases your MySQL prowess:

o Lock time ca v be sigifica wtly greater tha v innodb_lock_wait_timeout because
this system variable applies to each row lock.

o Locki g ad tra vsactio v isolatio v levels are related.

o I110DB locks every row it accesses including rows it does not write.
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+ Locks are released o trasactioy commit or rollback, ad sometimes duri g
query executio \.

« I110DB has differe 1t types of locks: record, gap, ext-key, a \d more.

“Row Lockivg” o page 260 goes ivto detail. For vow, let’s put it all together ad
visualize how query time icludes lock time. Figure 1-1 shows locks acquired ad
released duri vg query executio .

MDL | Lock Lock
table | table row Ur%(me
(shared)| (IX) 1
1 2 3

Figure 1-1. Lock time during query execution

Query execution

Lock
Update . Release
oW Irow3 S Plocks

7 8 9 10

Labels 1 to 10 mark eve vts a \d details with respect to locki \g:

Acquire shared metadata lock o » table
. Acquire i vte vtio  exclusive (IX) table lock
. Acquire row lock 1

. Update (write) row 1

1.

2

3

4

5. Acquire row lock 2
6. Release row lock 2

7. Acquire row lock 3
8. Update (write) row 3
9. Commit tra vsactio
10. Release all locks

Two poi \ts of i vterest:

o Lock time from the Performa ce Schema i \cludes o \ly labels 1 a \d 2. From the
slow query log it i \cludes labels 1, 2, 3, 5,ad 7.

o Although row 2 is locked (label 5), it'’s vot writte v a \d its lock is released (label
6) before the tra vsactio v commits (label 9). This ca\ happe v, but ‘ot always. It
depe ds o \ the query a \d tra vsactio v isolatio v level.

That was a lot of iformatio v about lock time ad lockig, but vow you are well-
equipped to u \dersta \d lock time i v your query a valysis.
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Rows examined

Rows examined is the vumber of rows that MySQL accessed to fi \d matchi \g rows.
It i vdicates the selectivity of the query a\d the idexes. The more selective both are,
the less time MySQL wastes exami i \g ‘o v-matchi g rows. This applies to reads a \d
writes, except INSERT u \less it’s a ¥ INSERT...SELECT stateme t.

To u vdersta \d rows exami ved, let’s look at two examples. First, let’s use the followi \g
table, t1, a \d three rows:

CREATE TABLE “t1° (
“id® int NOT NULL,
‘c’ char(1) NOT NULL,
PRIMARY KEY ("id")

) ENGINE=InnoDB;

+
j
:
.

+ —_—— — +
5
:
+

Colum v 1d is the primary key, a \d colum + c is ot i \dexed.

The query SELECT c FROM t1 WHERE c = 'b' matches o e row but exami ves three
rows because there is ‘o uvique ivdex o+ colum v c. Therefore, MySQL has o idea
how ma vy rows match the WHERE clause. We ca see that o\ly o‘e row matches,
but MySQL does vt have eyes, it has i \dexes. By co vtrast, the query SELECT c FROM
tl WHERE id = 2 matches ad examies o1ly o e row because there is a uique
ivdex o colum  id (the primary key) a \d the table co \ditio v uses the e vtire i vdex.
Now MySQL ca  figuratively see that o \ly o ve row matches, so that’s all it exami ves.
Chapter 2 teaches ivdexes ad ivdexi\g, which explai table co\ditio s axd a lot
more.

For the seco \d example, let’s use the followi g table, t2, a \d seve \ rows:

CREATE TABLE 't2° (
*id® int NOT NULL,
‘¢’ char(1) NOT NULL,
*d’ varchar(8) DEFAULT NULL,
PRIMARY KEY ('id"),
KEY “c* ('c’)
) ENGINE=InnoDB;

18 | Chapter 1: Query Response Time



+
I
+
I
|
I
I
I
I
I
[ A
Colum v id is the same as before (primary key). Colum \ ¢ has a nonunique idex.
Colum vdis ‘ot idexed.

How ma vy rows will query SELECT d FROM t2 WHERE c¢ = 'a' AND d = 'acorn'
exami ve? The a vswer is: four. MySQL uses the vo wuvique i vdex o ¥ colum \ ¢ to look
up rows matchi g the coditiovc = 'a', ad that matches four rows. A \d to match
the other coditioy, d = 'acorn', MySQL exami ves each of those four rows. As a
result, the query exami es four rows but matches (a \d retur \s) o \ly o e row.

It's vot ucommo \ to discover that a query exami ves more rows tha v expected. The
cause is usually the selectivity of the query or the i vdexes (or both), but sometimes it’s
because the table has grow v a lot larger tha v expected, so there are a lot more rows to
exami ve. Chapter 3 exami ves this further (pu vi vte vded).

Rows exami ved o \ly tells half the story. The other half is rows se vt.

Rows sent

Rows sent is the vumber of rows retur ved to the clie vt—the result set size. Rows se 1t
is most mea vi vgful i \ relatio  to rows exami ved.

Rows sent = Rows examined

The ideal case is whe v rows se vt ad rows examived are equal ad the value
is relatively small, especially as a perce tage of total rows, a\d query respo \se
time is acceptable. For example, 1,000 rows from a table with o ve millio \ rows
is a reaso vable 0.1%. This is ideal if respo \se time is acceptable. But 1,000 rows
from a table with o \ly 10,000 rows is a questio vable 10% eve v if respo \se time
is acceptable. Regardless of the perce vtage, if rows se vt ad rows exami ved are
equal ad the value is suspiciously high, it stro \gly idicates that the query is
causi\g a table sca, which is usually terrible for performa vce—“Table sca v’ o
page 48 explai \s why.

Rows sent < Rows examined
Fewer rows se 1t tha \ exami ved is a reliable sig v of poor query or i vdex selectiv-
ity. If the differe ce is extreme, it likely explai 1s slow respo vse time. For example,
1,000 rows se ‘t axd 100,000 rows exami ved are vt large values, but they mea
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99% of rows did ‘ot match—the query caused MySQL to waste a lot of time.
Eve if respose time is acceptable, av ivdex could dramatically reduce the
wasted time.

Rows sent > Rows examined
Its possible, but rare, to sed more rows thay were examied. This happe \s
uder special co \ditio vs, like whe + MySQL ca v “optimize away” the query. For
example, SELECT COUNT(id) FROM t2 o the table i the previous sectio v se \ds
o0 e row for the value of COUNT(id) but exami ves zero rows.

Rows set is rarely a problem by itself. Moder v ‘etworks are fast a \d the MySQL
protocol is efficie +t. If your distributio v ad versio v of MySQL have the bytes sent
metric i the slow query log (the Performa vce Schema does ‘ot provide this query
metric), you ca \ use it two ways. First, the mi vimum, maximum, a \d average values
reveal the result set size i\ bytes. This is usually small, but it ca  be large if the query
retur \s BLOB or JSON colum »s. Seco \d, total bytes se vt ca v be co werted to a vetwork
throughput (Mbps or Gbps) to reveal the ‘etwork utilizatio v of the query, which is
also usually very small.

Rows affected

Rows affected is the vumber of rows itserted, updated, or deleted. Egieers are
very careful to affect oly the correct rows. It’s a serious bug whe v the wro \g rows
are chaged. Viewed this way, the value of rows affected is always correct. But a
surprisi \gly large value could i+dicate a vew or modified query that affects more
rows tha v i vte vded.

A vother way to view rows affected is as the batch size of bulk operatio \s. Bulk
INSERT, UPDATE, ad DELETE are a commo \ source of several problems: replicatio v
lag, history list le gth, lock time, a\d overall performace degradatio . Equally
commo \ is the questio v, “How large should the batch size be?” There’s vo u viversally
correct aswer. I\stead, you must determie the batch size and rate that MySQL
ad the applicatio \ ca v sustai \ without impacti \g query respo 1se time. I explai i
“Batch Size” o~ page 115, which focuses o v DELETE but is also applicable to INSERT
ad UPDATE.

Select scan

Select scan is the vumber of full table sca s o the first table accessed. (If the query
accesses two or more tables, the vext metric applies: select full joi+.) This is usually
bad for performa vce because it mea \s the query is vt usi g a v i \dex. After Chapter 2,
which teaches idexes ad ivdexi g, it should be easy to add a  i+dex to fix a table
sca . If select sca v is vot zero, query optimizatio v is stro \gly advised.
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It’s possible, but very rare, that a query causes a table sca \ sometimes but ‘ot always.
To determi e why, you ‘eed a query sample a\d EXPLAIN pla for both: a query
sample that causes a table sca v, a \d a query sample that does vot. O ve likely reaso v is
how ma vy rows MySQL estimates the query will exami e relative to i \dex cardi vality
(the vumber of uvique values i+ the ivdex), total rows iv the table, ad other
costs. (The MySQL query optimizer uses a cost model.) Estimates are vt perfect a \d
sometimes MySQL is wro g, resulti g i v a table sca \ or suboptimal executio v pla,
but agai v: this is very rare.

More tha v likely, select sca v is either all zero or all o ve (it’s a bi vary value). Be happy
if it’s zero. Optimize the query if it’s ot zero.

Select full join

Select full join is the vumber of full table sca s o tables joived. This is similar to
select sca \ but worse—I explai v why i+ a mome vt. Select full joi v should always be
zero; if vot, query optimizatio v is practically required.

Whe » you EXPLAIN a query with multiple tables, MySQL pri \ts the table joi+ order
from top (first table) to bottom (last table). Select sca v applies o \ly to the first table.
Select full joi v applies o \ly to the seco \d a \d subseque 1t tables.

Table joi order is determied by MySQL, vot the query? Example 1-4 shows the
EXPLAIN pla~ for SELECT...FROM t1, t2, t3: MySQL determi ves a differe vt joi
order tha v the implicit three-table joi v i the query.

Example 1-4. EXPLAIN plan for three tables joined

EE 1' row B
id: 1
select_type: SIMPLE
table: t3
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 3
filtered: 100.00
Extra: NULL
B 2. row B
id: 1
select_type: SIMPLE

2 Unless STRAIGHT_JOIN is used—but do vt use this. Let the MySQL query optimizer choose the joi v order for
the best query executio v pla . It’s almost always right, so trust it u \less you ca v prove it wro \g.
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table: t1
partitions: NULL
type: range
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: NULL
rows: 2
filtered: 100.00
Extra: Using where
B o 3' row B
id: 1
select_type: SIMPLE
table: t2
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 7
filtered: 100.00
Extra: NULL

MySQL reads table t3 first, the v joi s table t1, the v joi \s table t2. That joi v order is
differe vt tha \ the query (FROM t1, t2, t3), which is why you must EXPLAIN a query
to see its joi v order.

Always EXPLAIN a query to see its joi \ order.

Select sca v applies to table t3 because it’s the first table i \ the joi v order a \d it causes
a table sca\ (ivdicated by type: ALL). Select full joi+ would apply to table t1 if it
caused a table sca v, but it does vt: MySQL joi \s the table usi\g a rage scax o the
primary key (ivdicated by type: range a\d key: PRIMARY, respectively). Select full
joi v applies to table t2 because MySQL joi 1s it usiyg a full table sca v (i \dicated by
type: ALL).

The table sca~ o t2 is called a full join because MySQL sca s the full table o v joi .
Select full joi v is worse tha v select sca v because the vumber of full joi s that occur
0 a table duri g query executio v is equal to the product of rows from the precedi\g
tables. MySQL estimates three rows from table t3 (i dicated by rows: 3) axd two
rows from table t1 (i+dicated by rows: 2). Therefore, 3 x 2 = 6 full jois o table
t2 duri g query executio \. But the select full joi v metric value will be 1 because it
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cou vts full joi s i v the executio v pla v, vot duri vg query executio v, which is sufficie vt
because eve v o0 ve full joi v is too ma vy.

As of MySQL 8.0.18, the hash joi v optimizatio v improves perfor-
ma ce for certai joiss, but avoidig full jois remais the best
practice. See “Table Joi Algorithms” o v page 87 for a brief over-
view of hash joi .

Created tmp disk tables

Created tmp disk tables is the vumber of temporary tables created o v disk. It’s vormal
for queries to create temporary tables i v memory; but whe v a+ i v-memory tempo-
rary table becomes too large, MySQL writes it to disk. That ca v affect respo se time
because disk access is orders of mag vitude slower tha y memory access.

However, temporary tables o disk is ‘ot a commo \ problem because MySQL tries
to avoid them. Excessive “tmp disk tables” i vdicates a query that ca v be optimized, or
(perhaps) the system variable tmp_table_size is too small. Always optimize queries
first. Cha \ge system variables as a last resort—especially o ves that affect memory
allocatio v.

See “Iterval Temporary Table Use iy MySQL’ iy the MySQL ma wal for more
iformatio .

Query count

Query count is the vumber of query executios. The value is arbitrary uless
extremely low ad the query is slow. “Low ad slow” is a\ odd combi vatio » worth
i westigati\g.

As I write this, 'm looki g at a query profile that’s a perfect example: the slowest
query executed once but took 44% of executio 1 time. Other metrics are:

o Respo se time: 16 s
o Lock time: 110 ps
o Rows exami ved: 132,000
o Rowsset: 13
Not your everyday query. It looks like a v e \gi veer ma wually executed the query, but I

ca tell from the digest text that it was programmatically ge verated. What’s the story
behi \d this query? To fi \d out, I'll have to ask the applicatio \ developers.
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Metadata and the Application

There’s more to query avalysis thav query metrics: metadata. I+ fact, you cavt
complete a query a valysis without at least two pieces of metadata: the EXPLAIN pla
(also called the query execution plan), axd the table structure for each table. A few
query metric tools automatically collect metadata a \d show it i\ the query report. If
your query metric tool does vot, do vt worry: it’s easy to collect metadata. EXPLAIN
ad SHOW CREATE TABLE report the EXPLAIN pla v a \d table structures, respectively.

Metadata is i \dispe vsable for query a valysis, query optimizatio v, a \d MySQL perfor-
ma ce i1 geveral. EXPLAIN is a vital tool i+ your MySQL repertoire. I explai it i
“EXPLAIN: Query Executio Plav’ o+ page 51 a“d use it exte \sively throughout
this book.

There’s eve v more to query avalysis tha v query metrics a \d metadata: the applica-
tio \. Metrics a \d metadata are must-have for a vy query a valysis, but the story is o \ly
complete whe v you k vow what purpose the query serves: why does the applicatio
execute the query? K vowi g this allows you to evaluate cha ges to the applicatio v,
which is the focus of Chapter 4. More tha o \ce, I've see \ e gi veers realize that a
query ca \ be a lot simpler—or completely removed.

Query metrics, metadata, a\d the applicatio v should complete the story. But I'd be
remiss ‘ot to me ‘tio v that, sometimes, issues outside MySQL ad the applicatio
iflue ce the story—ad usually ‘ot for the better. “Noisy Neighbors” o\ page 301
is a classic case. If respo vse time is slow but a thorough query a valysis does vt reveal
why, the v co sider outside issues. But do vt be too quick to jump to this co \clusio v;
outside issues should be the exceptio v, vever the vorm.

Relative Values

For each query metric, the o\ly objectively good value is zero because, as the sayi g
goes, the fastest way to do somethig is to ‘ot do it. No vzero values are always
relative to the query ad applicatio v. For example, o ve thousa d rows set is five
iv geeral, but it could be terrible if the query is supposed to retur v oly o e row.
Relative values are mea vi gful whe v co \sideri g the full story: metrics, metadata,
ad the applicatio .

Here’s avother true story to illustrate that values are relative ad mea i gful with
the full story. I ivherited a applicatio v that became slower ad slower over the
years. It was a iter val applicatio v— ‘ot used by customers—so fixi g it was vt a
priority u vtil it became u vbearably slow. I the query profile, the slowest query was
examivivg ad retur vivg over te\ thousad rows— ‘ot a full table sca v, just a lot
of rows. I \stead of fixati g o\ the values, I we 1t spelu ki g i+ the source code ad
discovered that the fu \ctio v executi \g the query was o \ly cou ti g the vumber of
rows, ‘ot usi‘g the rows. It was slow because it ‘eedlessly accessed ad retur ved
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thousa vds of rows, ad it became slower over time because the vumber of rows
ivcreased as the database grew. With the full story, the optimizatio v was glari \gly
obvious a vd simple: SELECT COUNT(*).

Average, Percentile, and Maximum

It’s stadard to talk about query respo vse time as if it's a si‘gle value, but it’s vot.
From “Aggregatio v’ o\ page 6 you k vow that query metrics are grouped a \d aggre-
gated by query. As a result, query metrics are reported as si gle, statistical values:
miimum, maximum, average, ad perce tile. You are udoubtedly familiar with
these ubiquitous “stats,” but with respect to query respo \se time, the followi vg poi vts
may surprise you:

o Average is overly optimistic
o Perce rtile is a v assumptio

o Maximum is the best represe vtatio

Let me explai v:

Average

Do vt be fooled by the average: if query cou vt is small, a few very large or small
values ca skew the average respo \se time (or a vy metric). Moreover, without
k vowi vg the distributio v of values, we ca v ‘ot k vow what perce vtage of values
the average represe \ts. For example, if the average equals the mediay, the
the average represe \ts the bottom 50% of values, which are the better (faster)
respo se times. I+ that case, the average is overly optimistic. (Most values are
overly optimistic if you ig vore the worst half.) The average oly tells you, at a
gla \ce, if the query typically executes i\ a matter of microseco \ds, milliseco \ds,
or seco \ds. Do vt read more i vto it tha v that.

Percentile

Perce rtiles solve the problem of averages. Without goi g ito a full expla vatio v
of perce tiles, P95 is the value that 95% of samples are less tha v or equal to.* For
example, if P95 equals 100 ms, the v 95% of values are less tha v or equal to 100
ms, ad 5% of values are greater tha v 100 ms. Co seque ‘tly, P95 represe vts 95%
of values, which is objectively more represe ‘tative—a 1d less optimistic—tha
the average. There’s a vother reaso \ perce vtiles are used: the small perce vtage of
values ig vored are co vsidered outliers. For example, vetwork jitter a vd flukes ca
cause a small perce vtage of query executio \s to take lo \ger thay vormal. Sice
that’s vo fault of MySQL, we ig vore those executio \ times as outliers.

3 For a full expla vatio v of perce rtiles, see HackMySQL.
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Perce rtiles are stadard practice, but theyre also a v assumptio \. Yes, there ca
be outliers, but they should be proven, ot assumed. Until the top N% are
prove \ not to be outliers, they are the most i vteresti vg values precisely because
they’re ‘ot vormal. What’s causing them? That’s difficult to a vswer, which is why
perce tiles are sta vdard practice: it’s easier to ig vore the top N% of values tha  to
dig deep ad fi \d the a \swer.

The best perce tile is P999 (99.9%) because discardivg 0.1% of values is a
acceptable tradeoff betwee v assumi g that theyre outliers ad the reality that
outliers do exist.*

Maximum

Maximum query time solves the problem of perce vtiles: do vt discard a vy values.
The maximum value is ot a myth or statistical apparitio+ like the average.
Somewhere i\ the world, some applicatio \ user experie \ced the maximum query
respo \se time—or gave up after a few seco \ds a \d left. You should wa 1t to k vow
why, avd you can fivd the aswer. Whereas explaiivg the top N% of values
is difficult because there are ma vy values ad, thus, ma vy pote tially differe t
aswers, explaiivg the maximum is a sigle value ad aswer. Query metric
tools ofte v use the query with the maximum respo \se time as the sample, which
makes explai vi vg it almost trivial because you have the proverbial smoki g gu .
With that sample, o ve of two thi vgs will happe v: either it reproduces the prob-
lem, i+ which case you co vti vue with the aalysis; or, it does ‘ot reproduce the
problem, i v which case you have prove \ that it’s a v outlier that ca \ be ig vored.

Heres avother true story of the former case. A+ otherwise good applicatio
would ra domly respo \d very slowly. Miimum, average, a\d P99 query time
were all milliseco vds, but maximum query time was seco \ds. I stead of ig vori \g
the maximum, I collected query samples of ‘ormal a'd maximum executio
time. The differe \ce was the size of the IN list i+ the WHERE clause: hu vdreds of
values for vormal query time, a \d several thousa \d values for maximum query
time. Fetchi vg more values takes lo vger to execute, but milliseco \ds to seco \ds is
ot ‘ormal eve  for thousa \ds of values. EXPLAIN provided the a swer: vormal
query time used av ivdex, but maximum query time caused a full table sca .
MySQL ca » switch query executio v pla s (see “It’s a Trap! (Whe + MySQL Choo-
ses A other I1dex)” o+ page 87), which explais MySQL, but what explai \s
the applicatio v? Lo g story short, the query was used to look up data for fraud
detectio v, ad occasio vally a big case would look up several thousa \d rows at
0 \ce, which caused MySQL to switch query executio \ pla vs. Normally, the query
was perfectly five, but diggi g ivto the maximum respo \se time revealed ‘ot

4 P95, P99, ad P999 are co we vtio val. I've vever see \ other perce vtiles used with MySQL—media v (P50) a \d
maximum (P100) rotwithsta \di vg.
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o\ly a MySQL gotcha but also a+ opportu ity to improve the applicatio v axd
user experie ce by ha \dli vg large lookups more efficie vtly.

Average, perce vtile, a \d maximum are useful, just be aware of what they do a\d do
‘ot represe t.

Also co vsider the distributio v of values betwee v the mivimum a‘d maximum. If
you're lucky, the query report i vcludes histograms, but do vt cou vt o v it: calculati g
histograms for a arbitrary time rage is difficult, so almost ‘o query metric tool
does it. The basic statistics (mi vimum, maximum, average, a \d perce vtile) idicate
e vough of the distributio v to determi e if the query is stable: metrics are roughly the
same for every executio . (I \ Chapter 6, I retur \ to the idea of stability. See “Normal
ad Stable: The Best Database Is a Bori \g Database” o v page 180.) U stable queries
complicate the aalysis: what causes the query to execute differe vtly? The cause is
likely outside MySQL, which makes it more difficult to fi \d, but it’s vecessary to fi\d
because stable queries are easier to a valyze, u vdersta \d, a \d optimize.

Improving Query Response Time

Improvig query respose time is a jour ey called query optimization. I call it a
jour vey to set the proper expectatio vs. Query optimizatio v takes time ad effort,
ad there is a desti vatio v: faster query respo 1se time. To make the jour ey efficie vt—
ot a waste of time ad effort—there are two parts: direct query optimizatio v a~d
idirect query optimizatio .

Direct Query Optimization

Direct query optimization is chages to queries ad ivdexes. These chages solve
a lot of performa ce problems, which is why the jour ey begis with direct query
optimizatio v. A d because these chages are so powerful, the jour ey ofte v eds
here, too.

Let me use a v avalogy that’s a little simplistic vow but will be more i \sightful later.
Thi k of a query as a car. Mecha vics have tools to fix a car whe v it’s ot ruvisg
well. Some tools are commo v (like a wre vch), a\d others are specialized (like a
dual overhead cam lock). O ce a mecha vic pops the hood ad fids the problem,
they kvow which tools are veeded to fix it. Likewise, e \gi veers have tools to fix a
query whe v it’s ru v vi\g slowly. The commo v tools are query a valysis, EXPLAIN, a\d
ivdexes. The specialized tools are query-specific optimizatio \s. To vame oly a few
from “Optimizi \g SELECT Stateme ‘ts” i v the MySQL ma vual:

» Rage Optimizatio
o I'dex Merge Optimizatio
« Hash Joi v Optimizatio
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o I'dex Co vditio Y Pushdow \ Optimizatio
o Multi-Ra vge Read Optimizatio 1

« Co sta vt-Foldi vg Optimizatio

e IS NULL Optimizatio

« ORDER BY Optimizatio

« GROUP BY Optimizatio

e DISTINCT Optimizatio

o LIMIT Query Optimizatio

I+ this book, I do ‘ot explai v query-specific optimizatio vs because Chapter 8, “Opti-
mizatio v’ i v the MySQL ma vual already explai s them i v detail, a \d it’s authoritative
ad regularly updated. Plus, query-specific optimizatio \s vary by MySQL versio v a \d
distributio . I \stead, I teach ivdexes ad ivdexig iy Chapter 2: the fou datio  for
k vowi vg which query-specific optimizatio \s to use—a \d how—whe \ fixi g a slow
query. After Chapter 2, you will wield specialized tools like the “I'dex Co vditio
Pushdow  Optimizatio v’ like a master mecha vic wields a dual overhead cam lock.

Every so ofte I talk with a egiveer who is surprised ad a little uhappy whe
the query optimizatio \s they so assiduously applied do ot solve the problem. Direct
query optimizatio v is ‘ecessary but ‘ot always sufficie \t. A v optimized query ca
be or become a problem u der differe 1t circumsta vces. Whe v you ca vt optimize a
query a vy further (or you ca vt optimize it at all because you do vt have access to
the source code), you ca v optimize around the query, which leads to part two of the
jour vey: i \direct query optimizatio \.

Indirect Query Optimization

Indirect query optimization is cha ges to data a \d access patter vs. I \stead of cha \gi g
a query, you cha ge what the query accesses ad how: its data a\d access patter s,
respectively. These chages idirectly optimize the query because query, data, axd
access patter \s are iextricable with respect to performa vce. Cha ges to o e i flu-
e \ce the others. It’s easy to prove.

Suppose you have a slow query. Data size ad access patter \s do vt matter for this
proof, so imagi ve whatever you like. I ca \ reduce query respo se time to ‘ear-zero.
(Let’s say vear-zero is 1 microseco \d. For a computer thats a log time, but for
a huma v it's imperceptible.) The idirect “optimizatio Y’ is: TRUNCATE TABLE. With
‘o data, MySQL ca execute avy query iy ‘ear-zero time. That’s cheati\g, but it
10 ‘etheless proves the poi \t: reduci vg data size improves query respo \se time.

Let’s revisit the car avalogy. I\direct query optimizatio v is a valogous to chagig
major desigy eleme vts of the car. For example, weight is a factor i+ fuel efficie \cy:
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decreasi g weight i \creases fuel efficie \cy. (Data is a valogous to weight, which is why
TRUNCATE TABLE dramatically i \creases performa vce—but do vt use this “optimiza-
tio ) Reduci g weight is ‘ot a straightforward (direct) chage because e \gi eers
ca vt magically make parts weigh less. I \stead, they have to make sig vifica vt cha \ges,
such as switchivg from steel to alumivum, which ca+ affect mavy other desig
eleme 1ts. Co vseque tly, these cha \ges require a greater level of effort.

A greater level of effort is why i \direct query optimizatio v is part two of the jour vey.
If direct query optimizatio \ solves the problem, the v stop—be efficie \t. (A \d co -
gratulatio vs.) If it does vt ad you're certai v the query ca ‘ot be further optimized,
the v it’s time to cha \ge data a \d access patter \s, which Chapters 3 a \d 4 cover.

When to Optimize Queries

Whe  you fix a slow query, a vother o ‘e takes its place. There will always be slow
queries, but you should vot always optimize them because it's ‘ot a+ efficie vt use
of your time. I \stead, recall “North Star” o\ page 3 ad ask: is query respo 1se time
acceptable? If vot, the v please co vti ue optimizi vg queries. If yes, the v youre do ‘e
for vow because whe \ the database is fast, vobody looks or asks questio vs.

As a DBA, I would like you to review query metrics (starti \g with the “Query profile”
0 page 9) every week ad optimize the slowest queries if needed, but as a software
e gieer I kow that’s ot practical a \d almost vever happe 1s. I \stead, here are three
occasio s whe v you should optimize queries.

Performance Affects Customers

Whe + performa vce affects customers, it is the duty of e \gi veers to optimize queries.
I do vt thivk avy e giveer would disagree; rather, e gieers are eager to improve
performa ce. Some might say this is bad advice because it’s reactive, ‘ot proactive,
but my overwhelmi g experie \ce is that e gieers (a\d evey DBAs) do vt look at
query metrics u il customers report that the applicatio v is too slow or timi\g out.
As lo g as query metrics are always o v ad at the ready, this is a v objectively good
time to optimize queries because the veed for better performa \ce is as real as your
customers.

Before and After Code Changes

Most e giveers do vt argue agai \st prioritizi \g query optimizatio  before ad after
code chages, but my experie \ce is that they do vt do it, either. I implore you to
avoid this commo v patter \: seemi \gly i+ 1oce 1t cha ges are made to code, vetted
iv stagivg, deployed to productio v, the v performa \ce starts to “swirl the bowl” (a
colorful metaphor related to toilets that meas “become worse”). What happe ved?
The cause is usually cha vges to queries a \d access patter \s, which are closely related.
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Chapter 2 begi s to explai v why; Chapters 3 axd 4 complete the expla vatio \. For
ow, the poi 1t is: you will be a hero if you review query metrics before a \d after code
chages.

Once a Month

Eve v if your code a“d queries do ‘ot chage, at least two thi+gs aroud them are
chagivg: data ad access patter s. I hope your applicatio v is wildly successful a \d
stores ever more data as the wumber of users climbs “up ad to the right” Query
respo 'se time chages over time as data ad access patter \s cha ge. Fortu vately,
these cha \ges are relatively slow, usually o 1 the order of weeks or mo vths. Eve  for
a applicatio v experie \ci g hyper-growth (for example, addi g thousads of ‘ew
users every day to millio \s of existi g users), MySQL is really good at scali g up so
that query respo \se time remais stable—but vothi g lasts forever (eve\ the stars
die). There is always a poit at which good queries go bad. This reality becomes
clear after Chapters 3 a d 4. For ‘ow, the poi 1t is: you will rise from hero to lege \d—
possibly with so g ad story writte v about you—if you review query metrics o \ce
amo th.

MySQL: Go Faster

There is ‘o magic or secret to make MySQL sig vifica vtly faster without cha \gi g
queries or the applicatio . Here’s a vother true story to illustrate what I mea .

A team of developers lear ved that their applicatio v was goi g to be me vtio ved by
a celebrity. They expected a flood of traffic, so they plaved ahead to esure that
MySQL a d the applicatio v would survive. A v e gi veer o 1 the team asked me to help
ivcrease MySQL throughput (QPS). I asked, “By how much?” She said, “By 100x”. I
said, “Sure. Do you have a year a \d a willi vg vess to rearchitect the applicatio \¢” She
said, “No, we have o ve day”

I uderstaxd what the e giveer was thi vki \g: how much throughput could MySQL
hadle if we significantly upgraded the hardware—more CPU cores, more memory,
more IOPS? There’s o simple or siygle a vswer because it depe \ds o\ ma vy factors
that this book explores i v the comi g chapters. But o e thi \g is certai \: time is a hard
limit.
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There are 1,000 milliseco \ds iy 1 seco \d— o more, ‘o less. If a query takes 100
milliseco \ds to execute, the v its worst-case throughput is 10 QPS per CPU core:
1,000 ms / 100 ms/query = 10 QPS. (Its real throughput is likely higher—more o  this
iva momet.) If vothig chages, the \ there’s simply ‘o more time to execute the
query with greater throughput.

To make MySQL do more work i v the same amou 1t of time, you have three optio 1s:

o Chage the vature of time
o Decrease respo \se time

o Icrease load

Optio v 0 e is beyo \d the scope of this book, so let’s focus o  optio \s two a \d three.

Decreasi \g respo se time frees time that MySQL ca 1 use to do more work. It’s simple
math: if MySQL is busy 999 milliseco \ds out of every seco \d, the v it has o ve free
milliseco \d to do more work. If that’s ‘ot e vough free time, the v you must decrease
the time that the curre \t work is co vsumi vg. The best way to accomplish that: direct
query optimizatio . Failivg that: ivdirect query optimizatio~. Ad fivally: better,
faster hardware. The followi g chapters teach you how.

I\creasivg load—the wumber of queries executiyg co \curre vtly—te \ds to happe
first because it does vt require a vy query or applicatio v chages: simply execute
more queries at oce (cocurretly), axd MySQL respo \ds by usig more CPU
cores. This happe \s because 0 ve CPU core executes o e thread, which executes o e
query. Worst case, MySQL uses N CPU cores to execute N queries co vcurre vtly. But
the worst case is practically 1o vexiste vt because respo \se time is ‘ot CPU time. A
10 zero amou vt of respo vse time is CPU time, a \d the rest is off-CPU. For example,
respo vse time might be 10 ms of CPU time ad 90 ms of disk I/O wait. Therefore,
the worst-case throughput for a query that takes 100 milliseco \ds to execute is 10
QPS per CPU core, but its real throughput should be higher sice the worst case
is practically vo vexiste \t. Souds great, right? Just push MySQL harder ad voila:
more performa ce. But you kow how the story e ds: push MySQL too hard ad
it stops worki \g because every system has fivite capacity. MySQL ca easily push
most moder \ hardware to its limits, but do vt try it u ‘il you've read “Performa ce
Destabilizes at the Limit” o v page 125.

Bottom li ve: MySQL ca v vot simply go faster. To make MySQL go faster, you must
embark o v the jour vey of direct a \d i \direct query optimizatio .
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Summary

This chapter expouded query time so that, i\ subseque vt chapters, you ca lear
how to improve it. The ce vtral takeaway poi vts are:

Performa \ce is query response time: how lo g it takes MySQL to execute a query.

Query respo \se time is the North Star of MySQL performa vce because it is
meaningful ad actionable.

Query metrics origi vate from the slow query log or the Performa vce Schema.
The Performa vce Schema is the best source of query metrics.

Query metrics are grouped a \d aggregated by digest: vormalized SQL stateme ts.
A query profile shows slow queries; slow is relative to the sort metric.

A query report shows all available i vformatio v for o ve query; it’s used for query
avalysis.

The goal of query analysis is udersta di g query executio, ‘ot solvig slow
respo se time.

Query a valysis uses query metrics (as reported), metadata (EXPLAIN pla s, table
structures, a \d so 0 v), a \d k vowledge of the applicatio .

Ni e query metrics are esse vtial to every query a valysis: query time, lock time,
rows exami ved, rows se t, row affected, select sca v, select full joi, created tmp
disk tables, a \d query cou t.

Improvig query respose time (query optimizatio“) is a two-part jour vey:
direct query optimizatio v, the v i \direct query optimizatio .

— Direct query optimization is cha \ges to queries a \d i \dexes.
— Indirect query optimization is cha vges to data a \d access patter s.

At the very least, review the query profile a\d optimize slow queries whe
performa ce affects customers, before a \d after code cha \ges, a \d 0 \ce a mo th.

To make MySQL go faster, you must decrease respo \se time (free time to do
more work) or i \crease load (push MySQL to work harder).

The vext chapter teaches MySQL i vdexes a \d i vdexi vg—direct query optimizatio .
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Practice: Identify Slow Queries

The goal of this practice is to idetify slow queries usivg pt-query-digest: a
comma d-li ve tool that ge verates a query profile axd query reports from a slow

query log.

Use a developme vt or stagi'g MySQL istace—do ‘ot use pro-
ductio v uless you are co ‘fide \t that it will ot cause problems.
The slow query log is i+here vtly safe, but evablivg it o\ a busy
server ca \ i \crease disk I/O.

If you have DBAs who maiage MySQL, ask them to evable axd co ‘figure the
slow query log. Or, you ca lear v how by readig “The Slow Query Log” i\ the
MySQL ma ual. (You reed a MySQL user accou vt with SUPER privileges to co ‘figure
MySQL.) If you're usi \g MySQL i+ the cloud, read the cloud provider docume rtatio
to lear v how to e vable a \d access the slow query log.

MySQL co ‘figuratio \s vary, but the simplest way to co ‘figure a\d e vable the slow
query log is:

SET GLOBAL long_query_time=0;
SET GLOBAL slow_query_log=0ON;

SELECT QQGLOBAL.slow_query_log_file;

Zero i the first stateme \t, SET GLOBAL long_query_time=0;, causes MySQL to log
every query. Be careful: o v a busy server, this ca v i \crease disk I/O a \d use gigabytes
of disk space. If veeded, use a slightly larger value like 0.0001 (100 microseco \ds) or
0.001 (1 milliseco \d).

Perco va Server a \d MariaDB Server support slow query log sam-
plivg: set system variable log_slow_rate_limit to log every Nth
query. For example, log_slow_rate_limit = 100 logs every 100th
query, which equals 1% of all queries. Over time, this creates a
represe ‘tative sample whe ' combived with long_query_time =
0. Whe usivg this feature, be sure that the query metric tool
accou ts for sampli g, else it will uder report values. pt-query-
digest accou vts for sampli vg.
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The last statemet, SELECT @Q@GLOBAL.slow_query_log_file;, outputs the slow
query log file vame that you ‘eed as the first comma \d li ve argume t to pt-query-
digest. You ca \ dy vamically cha ge this variable if you wa vt to log to a differe 1t file.

Seco \d, ru v pt-query-digest with the slow query log file vame as the first comma \d
li ve argume vt. The tool will pri+t a lot of output; but for ow, look at the Profile
vear the top of the output:

Profile
Rank Query ID Response time Calls

#
#
#
# 1 O0x95FD3A847023D37C95AADD230F4EB56A 1000.0000 53.8% 452 SELECT tbl
#
#
#

2 O0xBB15BFCE4C9727175081E1858C60FDOB  500.0000 26.9% 10 SELECT foo bar
3 Ox66112E536C54CE7170E215C4BFEDOOSC 50.0000 2.7% 5 INSERT tbl
MISC OxMISC 310.0000 16.7% 220 <2 ITEMS>

The precedi g output is a text-based table listi vg the slowest queries from the slow
query log. I+ this example, SELECT tbl (a query abstract) is the slowest query,
accoutivg for 53.8% of total executio time. (By default, pt-query-digest sorts

queries by perce vtage executio v time.) Below the query profile, a query report is
pri vted for each query.

Explore the pt-query-digest output. Its ma vual docume vts the output, ad there
is a trove of ivformatio v o 1 the iter vet because the tool is widely used. Also check
out Percova Mo vitorivg a'd Maageme ‘t: a comprehe \sive database mo vitori g
solutio v that uses Grafa va to report query metrics. Both tools are free, ope v source,
ad supported by Perco va.

By reviewiyg slow queries, you kow exactly which queries to optimize for the
most efficie \t performa \ce gai vs. More importa 1tly, you've begu + to practice MySQL
performa vce like a v expert: with a focus o\ queries, because performa vce is query
respo se time.
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CHAPTER 2
Indexes and Indexing

Ma vy factors determi e MySQL performa ce, but i \dexes are special because perfor-
ma ce cavvot be achieved without them. You cay remove other factors—queries,
schemas, data, a \d so o0 v—a d still achieve performa 1ce, but removi g i vdexes limits
performa vce to brute force: relyi g o the speed ad capacity of hardware. If this
book were titled Brute Force MySQL Performance, the co vte \ts would be as lo g as
the title: “Buy better, faster hardware” You laugh, but just a few days ago I met with a
team of developers who had bee \ improvi \g performa vce i v the cloud by purchasi \g
faster hardware u +til stratospheric costs compelled them to ask, “How else ca we
improve performa vce?”

MySQL leverages hardware, optimizatio vs, a \d i vdexes to achieve performa \ce whe
accessi\g data. Hardware is a v obvious leverage because MySQL ru s o v hardware:
the faster the hardware, the better the performa \ce. Less obvious a \d perhaps more
surprisi \g is that hardware provides the least leverage. I explai+ why iy a mome 1t.
Optimizations refer to the vumerous tech viques, algorithms, a \d data structures that
e vable MySQL to utilize hardware efficie vtly. Optimizatio s bri vg the power of hard-
ware ito focus. A \d focus is the differe \ce betwee 1 a light bulb a \d a laser. Co se-
que ‘tly, optimizatio \s provide more leverage tha v hardware. If databases were small,
hardware a\d optimizatio \s would be sulfficie \t. But i \creasi \g data size deleverages
the be vefits of hardware a \d optimizatio \s. Without i vdexes, performa ce is severely
limited.

To illustrate these poits, thivk of MySQL as a fulcrum that leverages hardware,
optimizatio s, a \d i vdexes to figuratively lift data, as show vi\ Figure 2-1.
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Optimizations

Performance
Data Hardware

Figure 2-1. MySQL performance without indexes

Without ivdexes (o the right side), MySQL achieves limited performa ce with
relatively small data. But add i+dexes to the balace, as show v i+ Figure 2-2, axd
MySQL achieves high performa vce with large data.

Performance

Figure 2-2. MySQL performance with indexes

I '\dexes provide the most and the best leverage. They are required for a vy 1o vtrivial
amou \t of data. MySQL performa \ce requires proper i dexes a \d i \dexi \g, both of
which this chapter teaches i v detail.

Several years ago, I desig ved a \d impleme vted a v applicatio v that stores a lot of data.
Origi vally, I estimated the largest table ‘ot to exceed a millio v rows. But there was a
bug i+ the data archivig code that allowed the table to reach o ve billion rows. For
years, vobody ‘oticed because respo ‘se time was always great. Why? Good i dexes.
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It's commo \ly said that MySQL uses o \ly o e i \dex per table, but
thats vot e vtirely true. The i vdex merge optimizatio v, for example,
ca use two ivdexes. I+ this book, however, I focus o\ the vormal
case: 0 ‘e query, o \e table, 0 e i vdex.

This chapter teaches MySQL i vdexes a \d i vdexi vg. There are five major sectio vs. The
first argues why you should ‘ot be distracted by hardware or MySQL tuvig. It’s a
vecessary digressio v iy order to fully u vdersta \d why hardware a \d MySQL tu viyg
are ot efficie vt solutio \s for improvi \g MySQL performa ce. The seco \d is a visual
i vtroductio \ to MySQL i vdexes: what they are a \d how they work. The third teaches
ivdexi \g—applyi g ivdexes for maximum leverage—by thi ki vg like MySQL. The
fourth covers commo v reaso \s why idexes lose effective vess (leverage). The fifth
is a brief overview of MySQL table joi algorithms because effective joits rely o
effective i \dexes.

Red Herrings of Performance

Red herring is a v idiom that refers to a distractio v from a goal. Whe v tracki \g dow »
solutio vs to improve MySQL performa ce, two red herrivgs commoly distract
e giveers: faster hardware a \d MySQL tu vig.

Better, Faster Hardware!

Whe v MySQL performa ce is vt acceptable, do not begi + by scali vg up (usi \g better,
faster hardware) to “see if that helps.” It probably will help if you scale up sig vifica vtly,
but you lear v vothi \g because it 0 \ly proves what you already k vow: computers ru
faster o faster hardware. Better, faster hardware is a red herrig of performa \ce
because you miss lear vi vg the real causes of, a \d solutio s to, slow performa ce.

There are two reaso vable exceptio vs. First, if the hardware is blata tly i vsufficie \t,
the v scale up to reaso vable hardware. For example, usivg 1 GB of memory with
500 GB of data is blata tly i vsufficie . Upgradig to 32 GB or 64 GB of memory
is reasovable. By co ‘trast, upgradi\g to 384 GB of memory is sure to help but
is uvreaso vable. Seco \d, if the applicatio v is experie \ci g hyper-growth (a massive
ivcrease iv users, usage, a‘d data) ad scalig up is a stopgap solutio v to keep the
applicatio v ru v vivg, the v do it. Keepi g the applicatio v ru v vi vg is always reaso vable.

Otherwise, scali g up to improve MySQL performa \ce happe \s last. Experts agree:
first optimize queries, data, access patter vs, a \d the applicatio v. If all those optimiza-
tio vs do ot yield sufficie vt performa vce, the v scale up. Scali vg up happe s last for
the followi g reaso s.
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You do vt lear v a wthig by scalivg up, you simply clobber the problem with faster
hardware. Sice youre a e \gi veer, ‘ot a cave-dwelli \g protohuma v, you solve prob-
lems by lear vivg ad udersta \di \g—you do vt clobber them. Admittedly, lear vi g
ad udersta \di g is more difficult a \d time-co vsumi g, but it’s far more effective
ad sustai vable, which leads to the ‘ext reaso \.

Scalivg up is vot a sustaivable approach. Upgradi vg physical hardware is o vtrivial.
Some upgrades are relatively quick a \d easy, but it depe \ds o \ ma vy factors outside
the scope of this book. Sufficie vt to say, however, that you will drive yourself or the
hardware egiveers crazy if you freque \tly chage hardware. Crazy e gi \eers are
‘ot sustai vable. Moreover, compa vies ofte v use the same hardware for several years
because the purchasi g process is lo g ad complicated. As a result, easy hardware
scalability is o ve allure of the cloud. I+ the cloud, you ca \ scale up (or dow ) CPU
cores, memory, ad storage iy a few miutes. But this ease is significantly more
expe \sive tha v physical hardware. Cloud costs ca v i \crease expo ‘e vtially. The cost of
Amazo ' RDS, for example, doubles from o ve i sta \ce size to the vext—double the
hardware, double the price. Expo ve 1tially i vcreasi vg costs are ot sustai vable.

Ge verally speaki g, MySQL ca v fully utilize all the hardware that its give \. (There
are limits, which I address i+ Chapter 4.) The real questio v is: ca the applicatio
fully utilize MySQL? The presumptive a \swer is yes, but it’s vot guara vteed. Faster
hardware helps MySQL but it does ‘ot chage how the applicatio v uses MySQL.
For example, i \creasi \g memory might ‘ot improve performa ce if the applicatio
causes table scas. Scalivg up is oly effective at ivcreasi g performa vce whe \ the
applicatio v workload ca v scale up, too. Not all workloads ca v scale up.

Workload is the combi vatio \ of queries, data, a vd access patter vs.

But let’s imagi ve that you successfully scale up the workload to fully utilize MySQL
o\ the fastest hardware available. What happe s as the applicatio v co vti wues to grow,
ad its workload co ‘i vues to ivcrease? This remids me of a Ze v proverb: “Whe
you reach the top of the mou taiy, keep climbig” While I do e \courage you to
meditate o v that, it prese \ts a less e \lighte vi vg dilemma for your applicatio \. With
vowhere else to go, the o1ly optio+ is doivg what should have bee do e first:
optimize queries, data, access patter s, a \d the applicatio .
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MySQL Tuning

I the televisio v series Star Trek, e \gieers are able to modify the ship to icrease
power to e \gi \es, weapo s, shields, se sors, tra \sporters, tractor beams—everythi g.
MySQL is more difficult to operate tha v a starship because ‘o such modificatio \s are
possible. But that does 1ot stop e vgi veers from tryig.

First, let’s clarify three terms.

Tuning

Tuvivg is adjusti'g MySQL system variables for research a‘d developme vt
(R&D). It’s laboratory work with specific goals ad criteria. Be \chmarkig is
commo \: adjusti vg system variables to measure the effect o v performa vce. The
blog post “MySQL Challe vge: 100k Co vectio \s” by re vow ved MySQL expert
Vadim Tkache ko is a example of extreme tuvivg. Sivce tuvivg is R&D, the
results are ot expected to be ge verally applicable; rather, the goal is to expad
our collective k vowledge a \d u\dersta \di vg of MySQL, especially with respect
to its curre vt limits. Tuvivg i+flue vces future MySQL developme vt ad best
practices.

Configuring
Co figurig is setti\g system variables to values that are appropriate for the
hardware ad e wiro yme t. The goal is a reaso vable co vfiguratio v with respect
to a few default values that veed to be chaged. Co vfiguri \g MySQL is usually
do e whe  the MySQL i sta \ce is provisio ved or whe v hardware cha vges. It’s
also vecessary to reco figure whe \ data size i \creases by a v order of mag vitude,
for example from 10 GB to 100 GB. Co figuri g i vflue \ces how MySQL ru s i
ge eral.

Optimizing
Optimizi vg is improvi \g MySQL performa \ce by reduci vg the workload or mak-
ig it more efficie vt—usually the latter si vce applicatio \ usage te \ds to i \crease.
The goal is faster respo vse time a \d more capacity with the existi \g hardware.
Optimizi vg i vflue vces MySQL a \d applicatio \ performa ce.

You will u~doubtedly e cou vter these terms iy MySQL literature, videos, co vfer-
exces, avd so forth. The descriptio vs are more importat tha+ the terms. If, for
example, you read a blog post that uses optimizing but describes what is defi ved here
as tuning, the v it’s tu vi vg as defi ved here.

The disti \ctio v of these terms is importa \t because e \gi veers do all three, but oly
optimizi \g (as defi ved here) is a v efficie 1t use of your time.!

1 Unless youre Vadim Tkache ko, i v which case: please keep tu vig.
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MySQL tuving is a red herri g of performa \ce for two reaso 1s. First, it’s ofte v ‘ot
dove as a cotrolled laboratory experime t, which makes the results dubious. I+
totality, MySQL performa vce is complex; experime \ts must be carefully co vtrolled.
Secod, results are ulikely to have a sighificat effect o+ performa yce because
MySQL is already highly optimized. Tu i \g MySQL is aki + to squeezi \g blood from a
tur vip.

Goi g back to the first paragraph of this sectio v, I realize that we all admire Lieu-
tevayt Commader Geordi La Forge, the Chief Egiveer iy Star Trek: The Next
Generation. Whe the captaiy calls for more power, we feel obligated to make
it so by applyiyg arcae server parameters. Or, o\ Earth, whe v the applicatio
veeds more power, we wat to save the day by applyi g a ivge vious reco vfigura-
tio v of MySQL that boosts throughput ad co vcurre \cy by 50%. Good work, La
Forge! U fortu vately, MySQL 8.0 itroduced automatic co ‘figuratio v by e vabli g
innodb_dedicated_server. Sivxce MySQL 5.7 will be e d-of-life (EOL) soo  after
this book is published, let’s keep looki g to ad buildi+g the future. Good work
revertheless, La Forge.

Optimizi g is all you veed to do because tu vi g is a red herri g a \d co ‘figuratio v is
automatic as of MySQL 8.0. This book is all about optimizi g.

MySQL Indexes: A Visual Introduction

I\dexes are the key to performa vce ad, if you recall “Direct Query Optimizatio v’
0\ page 27, chages to queries a \d i \dexes solve a lot of performa ce problems. The
jour vey of query optimizatio \ requires a solid u vdersta \di \g of MySQL i \dexes, a \d
that’s what this sectio \ prese vts—i v detail with copious illustratio vs.

Although this sectio v is detailed a \d relatively lo g, I call it a v introduction because
there is more to lear v. But this sectio v is the key that u\locks the treasure chest of
MySQL query optimizatio vs.

The followi g i e sectio vs apply oly to stadard ivdexes o Iv1oDB tables—the
type of ivdex created by a simple PRIMARY KEY or [UNIQUE] INDEX table defi vitio v.
MySQL supports other specialized ivdex types, but I do vt cover them i+ this book
because sta vdard i vdexes are the basis of performa ce.

Before we dive ivto the details of MySQL i+dexes, I begi+ with a revelatio v about
I+ \oDB tables that will cha vge the way you see ‘ot 0 \ly i \dexes but most of MySQL
performa ce.
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InnoDB Tables Are Indexes

Example 2-1 is the structure of table elem (short for elements) ad the 10 rows that
it co vtaivs. All examples i+ this chapter refer to table elem—with o ve clearly ‘oted
exceptio v—so take a mome 1t to study it.

Example 2-1. Table elen

CREATE TABLE ‘elem’ (
‘id® int unsigned NOT NULL,
‘a’ char(2) NOT NULL,
‘b> char(2) NOT NULL,
‘¢’ char(2) NOT NULL,
PRIMARY KEY (id'),
KEY “idx_a_b" ("a’,'b")

) ENGINE=InnoDB;

B R R +
[ id | a | b | |
B O R +
[ 11 Ag |B | € |
| 2] Au | Be | Co |
| 3| AL |Br | Cr |
| 4| A | Br | Cd |
| 5] Ar | Br | C |
| 61Ag |B [ Co |
| 7| At | BL | Ce |
| 8| AL | B | € |
| 91 Al | B | cd |
| 106 | Ar | B | c¢d |
tomm - R R +

Table elem has two i \dexes: the primary key o\ colum id axd a ‘o wuvique seco +-
dary ivdex o colum s a, b. The value for colum + id is a mo voto vically i \creasi vg
ivteger. The values for colums a, b, ad c are atomic symbols correspo \dig to
the colum v rame letter: “Ag” (silver) for colum+ a, “B” (borov) for colum b, axd
so o \. The row values are raxdom ad mea vi \gless; it’s just a simple table used for
examples.

Figure 2-3 shows a typical view of table elem—just the first four rows for brevity.
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Be Co

Br cd

Figure 2-3. Table elem: visual model

Nothi vg special about table elem, right? It’s so simple, o ve might say it’s eleme tary.
But what if I told you that it’s ‘ot really a table, it’s a v i \dex? Get the “F” (fluori ve)
out of here! Figure 2-4 shows the true structure of table elem as a v I 110DB table.

Root
Internal
1 2 3 4
Ag Au Al Ar Leaf
[ s J (s J[w J( e )
Ce Jle Je J(« )

Figure 2-4. Table elem: InnoDB B-tree index

I110DB tables are B-tree ivdexes orgaized by the primary key. Rows are i‘dex
records stored i+ leaf vodes of the ivdex structure. Each ivdex record has metadata
(de voted by “..”) used for row locki g, tra vsactio v isolatio v, axd so o .

Figure 2-4 is a highly simplified depictio v of the B-tree i \dex that is table elem. Four
ivdex records (at bottom) correspod to the first four rows. Primary key colum v
values (1, 2, 3, a\d 4) are show + at the top of each i \dex record. Other colum 1 values
(“Ag,” “B,” “C” ad so forth) are show 1 below the metadata for each i \dex record.
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You do vt veed to k vow the tech vical details of I v \oDB B-tree i dexes to u \dersta \d
or achieve remarkable MySQL performa vce. O \ly two poi vts are importa vt:

o Primary key lookups are extremely fast a \d efficie vt

o The primary key is pivotal to MySQL performa ce

The first poi 1t is true because B-tree i vdexes are i vhere vtly fast a \d efficie \t, which
is ove reasoy why ma vy database servers use them. The secod poit becomes
icreasigly clear i v the comi \g sectio y\s—a \d chapters.

To lear v about the fasci vati \g world of database iter vals, i vcludi g i vdexes, read
Database Internals by Alex Petrov (O'Reilly, 2019). For a deep dive ito I1voDB
iter vals, i vcludi \g its B-tree impleme vtatio v, ca vcel all your meeti vgs a \d check out
the website of re vow ved MySQL expert Jeremy Cole.

A~ TvvoDB primary key is a clustered i vdex. The MySQL ma wual
occasio vally refers to the primary key as the clustered index.

I '\dexes provide the most a \d the best leverage because the table is a v i \dex. The pri-
mary key is pivotal to performa vce. This is especially true because seco vdary i vdexes
ixclude primary key values. Figure 2-5 shows the seco \dary i dex o\ colum s a, b.

' A

Ag,B..Au, Be Root

Ar, Br..Au, Be

Internal

J

\ J

Figure 2-5. Secondary index on columns a, b

Seco vdary idexes are B-tree idexes, too, but leaf vodes store primary key values.
Whe v MySQL uses a seco vdary ivdex to find a row, it does a secod lookup o
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the primary key to read the full row. Let’s put the two together a \d walk through a
seco \dary i vdex lookup for query SELECT * FROM elem WHERE a='Au' AND b='Be':

r

Root

1

~\

\.

~

Internal

Leaf

N

J

Root

N

J

N\
J

! 1
nterra
v v v

[f][:][g][;\:
([ J@ « J[ ¢« ][«

\.

Leaf

4

Figure 2-6. Secondary index lookup for value “Au, Be”
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Figure 2-6 shows the seco \dary ivdex (colum s a, b) o top a“d the primary key
(colum v id) o bottom. Six callouts ( vumbered circles) show the lookup for value
“Au, Be” usi g the seco \dary i \dex:

1. I+dex lookups begi v at the root vode; bra ch right to a v ivter val vode for value
“Au, Be”
2. Atanvitterval vode, bra vch right to the leaf vode for value “Au, Be”

3. Leaf vode for secodary ivdex value “Au, Be” co vtai s the correspo \dig pri-
mary key value: 2.

4. Begi primary key lookup at the root vode; bra ch left to a v iteral vode for
value 2.

5. Ataviteral vode, bra \ch right to the leaf vode for value 2.

6. Leaf vode for primary key value 2 co vtai vs the full row matchi vg “Au, Be”

A table has o\ly o ve primary key. All other i vdexes are seco \dary
ivdexes.

This sectio v is short but i \credibly importa 1t because the correct model provides the
fou vdatio v for u vdersta \di g ivdexes and more. For example, if you thi 'k back to
“Lock time” o\ page 13, you might see it i va ‘ew light si \ce rows are actually leaf
vodes i+ the primary key. K vowi g that a\ I 110DB table is its primary key is aki  to
k vowi g that helioce vtrism, ‘ot geoce vtrism, is the correct model of the solar system.
I+ the world of MySQL, everythi \g revolves arou d the primary key.

Table Access Methods

Usivg av ivdex to look up rows is o e of three table access methods. Sice tables
are ivdexes, av index lookup is the best axd most commo+ access method. But
sometimes, depe \divg o+ the query, ay ivdex lookup is ‘ot possible ad the o\ly
recourse is a \ index scan or a table scan—the other access methods. K vowi vg which
access method MySQL uses for a query is imperative because performa \ce requires
a\ ivdex lookup. Avoid ivdex scats ad table scas. “EXPLAIN: Query Executio
Plav’ o page 51 shows how to see the access method. But first, let’s clarify ad
visualize each o ve.
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The MySQL ma wual uses the terms access method, access type, a\d
join type. Ad EXPLAIN uses a field called type or access_type to
refer to those terms. I+ MySQL, the terms are closely related but
used equivocally.

I+ this book, for precisio v ad co siste xcy I use o1ly two terms:
access method avd access type. There are three access methods:
ivdex lookup, ivdex scay, avd table scav. For av ivdex lookup,
there are several access types: ref, eq_ref, range, ad so forth.

Index lookup

A v ivdex lookup fids specific rows—or ra vges of rows—by leveragi vg the ordered
structure avd algorithmic access of av ivdex. This is the fastest access method
because it’s precisely what ivdexes are desigved for: fast axd efficie vt access to
large amou vts of data. Co vseque vtly, ivdex lookups are esse vtial for direct query
optimizatio \. Performa \ce requires that practically every query uses a v i \dex lookup
for every table. There are several access types for a ivdex lookup that I cover i
forthcomi vg sectio 1s such as “WHERE” o v page 54.

Figure 2-6 i \ the previous sectio v shows a v i vdex lookup usi \g a seco \dary i \dex.

Index scan

Whe  a ivdex lookup is ot possible, MySQL must use brute force to fid rows:
read all rows ad filter out o v-matchig o ves. Before MySQL resorts to readi g
every row usi \g the primary key, it tries to read rows usi g a seco vdary i vdex. This is
called avivdexsca.

There are two types of ivdex sca. The first is a full ivdex scay, meaivg MySQL
reads all rows i videx order. Readi \g all rows is usually terrible for performa vce, but
readivg them i+ ivdex order ca avoid sorti g rows whe v the idex order matches
the query ORDER BY.

Figure 2-7 shows a full i \dex sca » for query SELECT * FROM elem FORCE INDEX (a)
ORDER BY a, b. The FORCE INDEX clause is required because, si \ce table elenm is ti vy,
it's more efficie vt for MySQL to sca 1 the primary key ad sort the rows rather tha
sca v the seco vdary ivdex ad fetch the rows i\ order. (Sometimes bad queries make
good examples.)

Figure 2-7 has eight callouts ( umbered circles) that show the order of row access:

1. Read first value of seco \dary i vdex (SI): “Ag, B”
2. Look up correspo di vg row i v primary key (PK).
3. Read seco \d value of SI: “Al, Br”

4. Look up correspo \di vg row i+ PK.
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5. Read third value of SI: “Ar, Br”

6. Look up correspo \di vg row i v PK.
7. Read fourth value of SI: “Au, Be”
8. Look up correspo \di vg row i v PK.

Ag,B..Au, Be

Root

Internal

\.

—_
N
w

& |

Ar Leaf

)
@
—/

t

\

Figure 2-7. Full index scan on secondary index

MySQL Indexes: A Visual Introduction

47



There is a subtle but importa vt detail i+ Figure 2-7: sca vvivg the seco vdary i\dex
i+ order might be seque ‘tial reads, but the primary key lookups are almost certai \ly
ravdom reads. Accessiyg rows i1 ivdex order does ‘ot guara tee seque vtial reads;
more tha 1 likely, it i vcurs ra \dom reads.

Seque vtial access (reads a \d writes) is faster tha v ra \dom access.

The seco \d type of i vdex sca v is a v index-only scan: MySQL reads colum + values ( ot
full rows) from the i vdex. This requires a coveri \g i dex, which is covered later (pu
ivtevded) iv “Coverivg Idexes” o+ page 71. It should be faster tha+ a full idex
sca ' because it does vt require primary key lookups to read full rows; it o \ly reads
colum  values from the seco \dary i vdex, which is why it requires a coveri\g i \dex.

Do vt optimize for av ivdex scav uiless the o\ly altervative is a full table sca .
Otherwise, avoid i vdex sca \s.

Table scan

A (full) table sca reads all rows i\ primary key order. Whe v MySQL ca \vot do
a\ ivdex lookup or avivdex scay, a table sca is the oly optio\. This is usually
terrible for performa ce, but it’s also usually easy to fix because MySQL is adept
at usivg ivdexes ad has ma vy ivdex-based optimizatio vs. Esse vtially every query
with a WHERE, GROUP BY, or ORDER BY clause ca\ use a ' ivdex—eve vif just a vivdex
sca v—because those clauses use colum s a \d colum s ca v be i vdexed. Co \seque vtly,
there are vearly zero reaso s for a v u vfixable table sca .

Figure 2-8 shows a full table sca : readi g all rows i+ primary key order. It has four
callouts that show the order of row access. Table elenm is ti vy a \d o \ly four rows are
show v here, but imagi ve MySQL sloggi vg through thousa vds or millio s of rows iva
real table.

The ge veral advice ad best practice is to avoid table sca vs. But for a complete a \d
bala vced discussio v, there are two cases whe v a table sca v might be acceptable or
(surprisi \gly) better:

o Whe » the table is ti vy a \d i vfreque tly accessed

o Whe » the table selectivity is very low (see “Extreme Selectivity” o \ page 86)
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Figure 2-8. Full table scan

But do vt take a vy table scav for grated: theyre usually bad for performace. I+
very rare cases, MySQL ca icorrectly choose a table scay whe v a+ ivdex lookup
is possible, as explai ved i+ “It’s a Trap! (Whe v MySQL Chooses A vother I1dex)” o
page 87.

Leftmost Prefix Requirement

To use aivdex, a query must use a leftmost prefix of the idex: o e or more idex
colum s starti vg with the leftmost i vdex colum v as specified by the i vdex defi vitio v.
A leftmost prefix is required because the u vderlyi vg i vdex structure is ordered by the
ivdex colum v order, a \d it ca v 0 \ly be traversed (searched) i + that order.

Use SHOW CREATE TABLE or SHOW INDEX to see idex defivitio vs.

Figure 2-9 shows a\ ivdex oy colums a, b, c axd a WHERE clause usig each
leftmost prefix: colum v a; colum s a, b;axd columsa, b, c.
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INDEX

WHERE

INDEX

WHERE  a="Au') AND b = 'Be']

INDEX ((%].I%F.)
|

WHERE (2 = Au'JAND b = ‘Be’ JAND (c = ‘Co' |

Figure 2-9. Leftmost prefixes of a three-column index

The top WHERE clause i Figure 2-9 uses colum\ a, which is the leftmost colum v
of the ivdex. The middle WHERE clause uses colum s a ad b that, together, form a
leftmost prefix of the ivdex. A vd the bottom WHERE clause uses the e vtire i vdex: all
three colum vs. It’s ideal to use all colum s of a v ivdex, but it's ‘ot required; o \ly
a leftmost prefix is required. I vdex colum s ca+ be used i+ other SQL clauses, as
illustrated by ma vy examples i 1 the followi \g sectio vs.

To use a vivdex, a query must use a leftrmost prefix of the i \dex.

The leftmost prefix requireme vt has two logical co \seque ces:

1. I'dexes (a, b) axd (b, a) are differe vt i vdexes. They i vdex the same colum s
but iy a differe vt order, which results i+ differe 1t leftmost prefixes. However, a
query that uses both colum s (for example, WHERE a = 'Au' AND b = 'Be')
ca use either ivdex, but that does ‘ot mea + the i \dexes are equivale vt i v terms
of performa vce. MySQL will choose the better of the two by calculati \g ma vy
factors.

2. MySQL cax most likely use i \dex (a, b, c) i+ place of i vdexes (a) axd (a, b)
because the latter two are leftmost prefixes of the first. I+ this case, i \dexes (a)
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avd (a, b) are duplicates ad ca be dropped. Use pt-duplicate-key-checker to
fivd a\d report duplicate i \dexes.

Lurki g at the e \d (rightmost) of every seco vdary i \dex is the primary key. For table
elem (Example 2-1), the seco vdary i \dex is effectively (a, b, id), but the rightmost
id is hidde \. MySQL does vt show the primary key appe vded to seco \dary i \dexes;
you have to imagi ve it.

The primary key is appe vded to every seco vdary ivdex: (S, P)
where S are secodary ivdex columis axd P are primary key
colum »s.

I+ MySQL ligo we say, “The primary key is appe ded to seco vdary i vdexes” eve
though its vot literally appe vded. (You ca v literally appe \d it by creati g i\dex (a,
b, 1d), but do vt do that.) “Appe vded to” really mea s that seco vdary i+dex leaf
odes co vtai\ primary key values, as show v earlier i\ Figure 2-5. This is importa 1t
because it i \creases the size of every seco \dary i vdex: primary key values are duplica-
ted i+ seco vdary i+dexes. Larger i \dexes require more memory, which mea s fewer
ivdexes ca fit i v memory. Keep the size of the primary key small a \d the vumber of
seco vdary idexes reaso vable. Just the other day, my colleagues were helpi g a team
whose database has 693 GB of seco \dary i vdexes 0 1 397 GB of data (primary key).

The leftmost prefix requireme vt is a blessivg ad a restrictio v. The restrictio v is
relatively easy to work arou \d with additio val seco \dary i \dexes, but wait u +til you
read “Excessive, Duplicate, a d Uused” o page 85. Joivivg tables is a particular
challe vge give v the restrictio v, but I address it i v “Joi v Tables” o \ page 71. I e \cour-
age you to see the leftmost prefix requireme vt as a blessi vg. Query optimizatio v with
respect to ivdexig is ‘ot trivial, but the leftmost prefix requireme vt is a simple a\d
familiar starti vg poi vt o \ the jour ey.

EXPLAIN: Query Execution Plan

The MySQL EXPLAIN comma \d shows a query execution plan (or, EXPLAIN plan)
that describes how MySQL pla s to execute the query: table joi order, table access
method, i \dex usage, a \d other importa 1t details.

EXPLAIN output is vast a \d varied. Moreover, it's completely depe \de 1t o \ the query.
Chagig a siygle character i+ a query ca sigifica vtly cha ge its EXPLAIN pla .
For example, WHERE id = 1 verses WHERE id > 1 yields a sigvifica tly differe v+t
EXPLAIN pla. Avd to complicate the matter further, EXPLAIN co ti vues to evolve.
“EXPLAIN Output Format” iy the MySQL ma wal is required readi g—eve \ for
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experts. Fortu vately for the sake of our savity, the fu vdame vtals have remai ved the
same for decades.

To illustrate ivdex usage, the ext five sectio vs explaiv queries for each case that
MySQL ca v use avivdex:

o Fid matchi g rows: “WHERE” o \ page 54

o Group rows: “GROUP BY” o+ page 60

o Sort rows: “ORDER BY” o \ page 65

« Avoid readi vg rows: “Coveri \g I dexes” o \ page 71

o Joi v tables: “Joi \ Tables” o \ page 71

There are other specific cases like MIN() a vd MAX(), but these five cases are the bread
ad butter of i \dex usage.

But first I veed to set the stage by reviewi \g the mea vi \g of the EXPLAIN output fields
show v iy Example 2-2.
Example 2-2. EXPLAIN output (traditional format)

EXPLAIN SELECT * FROM elem WHERE id = 1\G

Rk ok Rk Rk Rk Rk Rk Rk Rk Rk 1 row *khkkhkkhkkhhkhkhhkhhdhhhhhdhkhrdkkx

id:
select_type:
table:
partitions:
type:
possible_keys:
key:
key_len:
ref:

rows:
filtered:
Extra:

1
SIMPLE
elem
NULL
const
PRIMARY
PRIMARY
4

const

1
100.00
NULL

For this itroductio v, we ig vore fields id, select_type, partitions, key_len, axd
filtered; but the examples i vclude them to habituate you to the output. The remai v-
i g seve fields co wey a wealth of i \formatio  that co vstitutes the query executio 1
plax:

table
The table field is the table vame (or alias) or subquery refere vce. Tables are
listed i+ the joi order determied by MySQL, vot the order they appear i+ the
query. The top table is the first table, a \d the bottom table is the last table.
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type
They type field is the table access method or i vdex lookup access type—see the
first vote i\ “Table Access Methods” o v page 45 for clarificatio v. ALL mea 1s a full
table sca v (see “Table sca v’ o\ page 48). index mea s a v ivdex sca (see “Idex
scaY’ o\ page 46). A vy other value—const, ref, range, ad so o \—is a \ access
type for a vivdex lookup (see “I vdex lookup” o  page 46).

possible_keys
The possible_keys field lists i \dexes that MySQL could use because the query
uses a leftmost prefix. If av ivdex is ‘ot listed i+ this field, the v the leftmost
prefix requireme vt is ‘ot met.

key
The key field is the vame of the i vdex that MySQL will use, or NULL if vo ivdex
cay be used. MySQL chooses the best ivdex based o ma vy factors, some of
which are ivdicated i+ the Extra field. It’s a safe bet that MySQL will use this
ivdex whe v executi g the query (EXPLAIN does ‘ot execute the query), but see
“It’s a Trap! (Whe » MySQL Chooses A vother I \dex)” o » page 87.

ref

The ref field lists the source of values used to look up rows i v the i vdex (the key
field).

For si\gle-table queries or the first table i v a joi v, ref is ofte v const, which refers
to a co stat coditio y 0\ 0 ve or more ivdex colums. A constant condition is
equality (= or <=> [NULL-safe equal]) to a literal value. For example, a = 'Au’ is
a co \sta vt co vditio 1 that equals o \ly o ve value.

For queries that joi v multiple tables, ref is a colum v refere vce from the preced-
ivg table i+ the joi+ order. MySQL joi vs the curre vt table (the table field) usi g
the ivdex to look up rows that match values from colum v ref i+ the precedi g
table. “Joi v Tables” o v page 71 shows this i v actio .

rows
The rows field is the estimated vumber of rows that MySQL will exami ve to fi\d
matchi\g rows. MySQL uses i dex statistics to estimate rows, so expect the real
wumber—“Rows exami ved” o \ page 18—to be close but differe 1t.

Extra
The Extra field provides additio val i vformatio v about the query executio  pla .
This field is importa vt because it i vdicates query optimizatio vs that MySQL ca

apply, if a vy.
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All EXPLAIN output i this book is traditional format: tabular out-
put (EXPLAIN query;) or list output (EXPLAIN query\G). Other
formats are JSON (EXPLAIN FORMAT=JSON query) a\d, as of
MySQL 8.0.16, tree (EXPLAIN FORMAT=TREE query). JSON ad tree
formats are completely differe vt tha v traditio val format, but all
formats co wey the query executio v pla \.

Do vt expect to glea much i+formatio v from those fields without co vtext: tables,
ivdexes, data, ad a query. I the followi g sectio 1s, all illustratio \s refer to table
elem (Example 2-1), its two i \dexes, a \d its te » rows.

WHERE

MySQL ca v use a v ivdex to fid rows that match table co vditio vs i v a WHERE clause.
I'm careful to say that MySQL can use a v ivdex, ‘ot that MySQL will use a v i+dex,
because i \dex usage depe \ds o \ several factors, primarily: table co \ditio s, i \dexes,
ad the leftmost prefix requireme t (see “Leftmost Prefix Requireme \t” o \ page 49).
(There are other factors, like i vdex statistics a \d optimizer costs, but they’re beyo \d
the scope of this book.)

A table condition is a colum v ad its value (if a vy) that matches, groups, aggregates,
or orders rows. (For brevity, I use the term condition whe v it’s uvambiguous.) I+ a
WHERE clause, table co vditio s are also called predicates.

Figure 2-10 shows the primary key o colum v id ad a WHERE clause with a si‘gle
coditiov:id = 1.

PRIMARY KEY ((id))

WHERE m

Figure 2-10. WHERE: primary key lookup

A solid box deli veates a table co \ditio v ad a idex colum \ (also called a index
part) that MySQL ca v use because the former (table co \ditio v) is a leftmost prefix of
the latter (i vdex). A v arrow poi vts from the table co vditio 1 to the i \dex colum v that
it uses. Later, we'll see examples of table co vditio vs a \d i vdex colum s that MySQL
ca v vot use.
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I Figure 2-10, MySQL ca » fi vd rows that match co \ditio v id = 1 usi g primary key
colum + id. Example 2-3 is the EXPLAIN pla + for the full query.

Example 2-3. EXPLAIN plan for primary key lookup

EXPLAIN SELECT * FROM elem WHERE id = 1\G

khkkkkkhkhkkhkhkhkkhkhkkhkkhkkhkkk 1‘ row khkkhkkkhkkhkkhkkhkhkhkhkhkhkkhkkkx
id: 1
select_type: SIMPLE
table: elem
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: const
rows: 1
filtered: 100.00
Extra: NULL

I+ Example 2-3, key: PRIMARY co firms that MySQL will use the primary key—a
ivdex lookup. Correspo vdigly, the access type (the type field) is ‘ot ALL (table
sca) or index (ivdex scav), which is expected give v a simple primary key lookup.
The seco vdary ivdex is ‘ot listed i v the possible_keys field because MySQL ca v vot
use it for this query: colum id is ‘ot a leftmost prefix of the seco vdary ivdex o
colums a, b.

Access type const is a special case that occurs o \ly whe \ there are co \sta 1t co \di-
tios (ref: const) o all i vdex colum s of the primary key or a uique seco \dary
ivdex. The result is a constant row. This is a little too i+-depth for a ivtroductio v,
but sice we're here, let’s keep lear vivg. Give v the table data (Example 2-1) ad the
fact that colum » id is the primary key, the row ide vtified by id = 1 ca be treated as
co 'sta 1t because, whe 1 the query is executed, id = 1 ca match oly o e row (or ‘o
row). MySQL reads that o ve row ad treats its values as co ‘sta \t, which is great for
respo \se time: const access is extremely fast.

Extra: NULL is somewhat rare because real queries are more complex tha these
examples. But here, Extra: NULL mea s that MySQL does ‘ot ‘eed to match rows.
Why? Because the co \sta \t row ca y match o0 1ly o ve row (or o row). But matchi g
rows is the vorm, so let’s see a more realistic example by cha vgi \g the table co di-
tioxsto id > 3 AND id < 6 AND c = 'Cd', as show i\ Figure 2-11 ad the
correspo \di \g EXPLAIN pla vi\ Example 2-4.
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PRIMARY KEY ((id))

WHERE [id>3 AND id<6]AND c="Cd

Figure 2-11. WHERE: range access using primary key

Example 2-4. EXPLAIN plan for range access using primary key

EXPLAIN SELECT * FROM elem WHERE id > 3 AND id < 6 AND c = 'Cd'\G

khkkkkhkhhkhkdkhhhkdhhhhdkdhhddhhddx 1 .
id:
select_type:
table:
partitions:

> type:
possible_keys:
key:

key_len:

> ref:
> rows:
filtered:

> Extra:

row *hkkkkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhhhkhkhkx*x

1
SIMPLE
elem
NULL
range
PRIMARY
PRIMARY
4

NULL

2

10.00
Using where

To highlight EXPLAIN pla chages, I prepe~d > characters to
the perti e 1t fields that cha vged. These highlights are ot part of
EXPLAIN.

By chagiyg the table coditiovs to id > 3 AND id < 6 AND ¢ = 'Cd', the
EXPLAIN pla chages from Example 2-3 to Example 2-4, which is more realistic
for a sivgle-table query. The query still uses the primary key (key: PRIMARY), but
the access type cha vges to a range scan (type: range): usivg aivdex to read rows
betwee v a rage of values. I+ this case, MySQL uses the primary key to read rows
where the value of colum  id is betwee v 3 a\d 6. The ref field is NULL because the
co\ditio s 0 ¥ colum \ id are ot co \sta vt (a\d this is a si \gle-table query, so there’s
v0 precedi \g table to refere vce). The coditiovc = 'Cd' is co sta t, but it’s ‘ot used
for the i vdex lookup (the ra ge sca ), so ref does ‘ot apply. MySQL estimates that it
will exami ve two rows i\ the rage (rows: 2). That’s correct for this trivial example,
but remember: rows is a \ estimate.

“Usivg where” iy the Extra field is so commo \ that it's expected. It meas that
MySQL will fi vd matching rows usi \g the WHERE co vditio vs: for each row read, a row
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matches if all WHERE co vditio s are true. Si ce the co \ditio \s 0 \ colum » id defi ve the
ra ge, it’s really just the co \ditio v o v colum » c that MySQL will use to match rows i
the ra vge. Gla \ci vg back at Example 2-1, o ve row matches all the WHERE co vditio 1s:

oo P I +
| id | a | b | c |
oo N R +
| 4] Ar | Br | Cd |
oo N R +

The row with id = 5 is i+ the rage, so MySQL exami ves the row, but its colum \ c
value (“Cd”) does ‘ot match the WHERE clause, so MySQL does vot retur \ the row.

To illustrate other query executio\ plavs, let's use both leftmost prefixes of the
seco \dary ivdex, as show v i+ Figure 2-12 a \d the correspo \di \g EXPLAIN plas it
Example 2-5.

INDEX

WHERE

INDEX

WHERE

Figure 2-12. WHERE: secondary index lookups

Example 2-5. EXPLAIN plans for secondary index lookups

EXPLAIN SELECT * FROM elem WHERE a = 'Au'\G

khkkhkhkhkhkhkhhhkhkdhhkhdkhhhdhdhhddx 1 . row hhkkhkkhkhkhkhkhhkhkkhhhhdhhkddhhrdkd
id: 1
select_type: SIMPLE
table: elem
partitions: NULL
> type: ref
possible_keys: idx_a_b
> key: idx_a_b
key_len: 3
ref: const
rows: 1
filtered: 100.00
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Extra: NULL

EXPLAIN SELECT * FROM elem WHERE a = 'Au' AND b = 'Be'\G

KIhhkkdhrkrhhhddkrrhhdddrhdhhddd 1. row Ihkhkkhkdhkrkrhhhddkdrhhhddrhhhdrd
id: 1
select_type: SIMPLE
table: elem
partitions: NULL
> type: ref
possible_keys: idx_a_b
> key: idx_a_b
key_len: 6
ref: const,const
rows: 1
filtered: 100.00
Extra: NULL

For each EXPLAIN pla iy Example 2-5, key: idx_a_b co vfirms that MySQL uses
the seco vdary ivdex because the co vditio \s meet the leftmost prefix requireme 1t.
The first WHERE clause uses oly the first i dex part: colum v a. The seco \d WHERE
clause uses both idex parts: colum s a a\d b. Usi g o \ly colum 1 b would ot meet
the leftmost prefix requireme t—I show this i va mome t.

Whats vew ad importa t from previous EXPLAIN pla s is the access type: ref. I
simplest terms, the ref access type is a\ equality (= or <=>) lookup o a leftmost
prefix of the ivdex (the key field). Like a vy idex lookup, ref access is very fast as
lo vg as the estimated vumber of rows to exami e (the rows field) is reaso vable.

Although the co \ditio \s are co vsta \t, the const access type is ‘ot possible because
the i vdex (key: idx_a_b) is vo vuvique, so the lookup ca » match more tha v o0 ve row.
A ~d eve v though MySQL estimates that each WHERE clause will exami ve 0 \ly o ‘e row
(rows: 1), that could cha \ge whe 1 the query is executed.

Extra: NULL occurs agaiy because MySQL ca fid matchi g rows usiyg oly the
ivdex sice there are vo coditio s 01 Yo v-ivdexed colum \s—so let’s add o ve. Fig-
ure 2-13 shows a WHERE clause with co vditio vs 0 ¥ colum s a a \d ¢, a \d Example 2-6
is the correspo \di \g EXPLAIN pla .

INDEX . b)

WHERE AND c= Co

Figure 2-13. WHERE: index lookup and non-indexed column
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Example 2-6. EXPLAIN plan for index lookup and non-indexed column

EXPLAIN SELECT * FROM elem WHERE a = 'Al' AND ¢ = 'Co'\G

B 1' row B
id: 1
select_type: SIMPLE
table: elem
partitions: NULL
type: ref
possible_keys: idx_a_b
key: idx_a_b
key_len: 3
ref: const
> rows: 3
filtered: 10.00
> Extra: Using where

I+ Figure 2-13, there is ‘o box aroud coditiox ¢ = 'Co' because the ivdex does
‘ot cover colum v c. MySQL still uses the seco vdary ivdex (key: 1idx_a_b), but the
coditio v o\ colum 1 ¢ preve ts MySQL from matchi vg rows usi g o \ly the idex.
I'stead, MySQL uses the i vdex to look up a vd read rows for the co \ditio v o y colum
a, the v it matches rows for the co \ditio v 0 Y colum \ c (Extra: Using where).

Gla vcivg back at Example 2-1 agai, you'll votice that zero rows match this WHERE
clause, but EXPLAIN reports rows: 3. Why? The idex lookup o\ colum v a matches
three rows where a = 'Al' is true: row id values 3, 8, axd 9. But ‘o0 ‘e of these rows
also matches ¢ = 'Co'. The query exami ves three rows but matches zero rows.

EXPLAIN output rows is av estimate of the wumber of rows that
MySQL will exami ve whe v it executes the query, ‘ot the vumber of
rows that will match all table co vditio vs.

As a fival example of ivdexes, WHERE, a \d EXPLAIN, let’s not meet the leftmost prefix
requireme 1t, as show v i Figure 2-14 a \d Example 2-7.

INDEX  ( a .{b})

WHERE

o
I
o]
m—

Figure 2-14. WHERE without leftmost prefix
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Example 2-7. EXPLAIN plan for WHERE without leftmost prefix

EXPLAIN SELECT * FROM elem WHERE b = 'Be'\G

khkkkhkhkhkhkhkhkhkhkhkhkhkkk 1_ row khkkkhkkkhkkkhkhkkkhkhkkhhkhkhkhkhxdkkx
id: 1
select_type: SIMPLE
table: elem
partitions: NULL
> type: ALL
possible_keys: NULL
> key: NULL
key_len: NULL
ref: NULL
rows: 10
filtered: 10.00
Extra: Using where

A dotted box outli ve (ad lack of arrow) deli veates a table co \ditio v a\d a v i\dex
colum that MySQL cavot use because they do ‘ot meet the leftmost prefix
requireme \t.

I\ Figure 2-14, there is vo coditioy o\ colum a, therefore the ivdex cavot be
used for the co \ditio v 0 v colum v b. The EXPLAIN pla v (Example 2-7) co vfirms this:
possible_keys: NULL a~d key: NULL. Without a ivdex, MySQL is forced to do a
full table sca v: type: ALL. Likewise, rows: 10 reflects the total \umber of rows, a \d
Extra: Using where reflects that MySQL reads ad the v filters rows ‘ot matchi\g
b= 'Be'.

Example 2-7 is a\ example of the worst possible EXPLAIN pla . Whe ever you see
type: ALL, possible_keys: NULL, or key: NULL, stop what you're doi g a \d a valyze
the query.

As simple as these examples have bee v, they represe 1t the fu \dame vtals of EXPLAIN
with respect to i vdexes a vd WHERE clauses. Real queries have more i vdexes a vd WHERE
co \ditio vs, but the fu \dame vtals do vt cha \ge.

GROUP BY

MySQL ca~ use a v ivdex to optimize GROUP BY because values are implicitly grouped
by ivdex order. For the seco vdary ivdex idx_a_b (o colums a, b), there are five
disti \ct groups of colum v a values, as show iy Example 2-8.

Example 2-8. Distinct groups of column a values

SELECT a, b FROM elem ORDER BY a, b;
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+
| a | b |

EREEEE +o--- - +

| Ag | B | -- Ag group
| Ag | B |

| Al | B | -- Al group
[ AL | B [

| AL | Br

| Ar | B | -- Ar group
| Ar | Br

| Ar | Br

| At | BL | -- At group
| Au | Be | -- Au group

+

I separated the groups i v Example 2-8 with bla vk li ves a \d a v votated the first row i
each group. A query with GROUP BY a ca use ivdex idx_a_b because columais a
leftmost prefix a \d the i \dex is implicitly grouped by colum v a values. Example 2-9
is a represe vtative EXPLAIN pla \ for the simplest type of GROUP BY optimizatio .

Example 2-9. EXPLAIN plan for GROUP BY a

EXPLAIN SELECT a, COUNT(*) FROM elem GROUP BY a\G

*hkkkkkhkkhkkkkhkkk
id:
select_type:
table:
partitions:
type:
possible_keys:
key:
key_len:
ref:
rows:
filtered:
Extra:

>

>

kkkkhkkkkkkhkk 1.

1
SIMPLE
elem
NULL
index
idx_a_b
idx_a_b
6

NULL

10
100.00
Using index

row kkkhkkhkhkkhhkhkhkkhhkhkhkkkkhkhkkk*®

key: idx_a_b cofirms that MySQL uses the idex to optimize the GROUP BY. Si ce
the ivdex is ordered, MySQL is assured that each ew value for colum a is a ‘ew
group. For example, after readi \g the last “Ag” value, the i \dex order assures that ‘o
more “Ag” values will be read, so the “Ag” group is complete.
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“Usivg ivdex” i+ the Extra field idicates that MySQL is readi g colum v a values
oy from the ivdex; it's ‘ot readivg full rows from the primary key. I cover this
optimizatio vi “Coveri g I \dexes” o \ page 71.

This query uses a vi+dex, but ‘ot for a videx lookup: type: index de votesa vivdex
sca (see “Ivdex sca v’ o page 46). A d sice there’s vo WHERE clause to filter rows,
MySQL reads all rows. If you add a WHERE clause, MySQL ca still use the ivdex
for the GROUP BY, but the leftmost prefix requireme 1t still applies. I 1 this case, the
query is usig the leftmost idex part (colum v a), so the WHERE co \ditio v must be
oY colum a or b to meet the leftmost prefix requireme t. Let’s first add a WHERE
co\ditio v 0 \ colum + a, as show v i+ Figure 2-15 a \d Example 2-10.

INDEX

WHERE

Figure 2-15. GROUP BY and WHERE on same index column

Example 2-10. EXPLAIN plan for GROUP BY and WHERE on same index column

EXPLAIN SELECT a, COUNT(a) FROM elem WHERE a != 'Ar' GROUP BY a\G

*hkkkkhkkhkkhhhhhhkdhhhkhhdhhhdkkx 1' row *hkkhkkhkhkhhhhkdhdhkdhdhdhkhhdkkx

id:
select_type:
table:
partitions:

> type:
possible_keys:
key:

key_len:

ref:

rows:
filtered:

> Extra:

1
SIMPLE
elem
NULL
range
idx_a_b
idx_a_b
3

NULL

7
100.00
Using where; Using index

“Usi g where” i the Extra field refers to WHERE a != 'Ar'. The iteresti g cha ge
is type: range. The rage access type works with the ‘ot-equal operator (!= or <>).
You ca v thik of it like WHERE a < 'Ar' AND a > 'Ar', as show vi Figure 2-16.

A conditioy o colum b i+ the WHERE clause ca v still use the ivdex because the
co\ditio \s, regardless of beivg iy differe vt SQL clauses, meet the leftmost prefix
requireme t. Figure 2-17 shows this, a \d Example 2-11 shows the EXPLAIN pla .

62 | Chapter2: Indexes and Indexing



al="Ar

Figure 2-16. Range for not-equal

INDEX (@,@)
WHERE GROUPBYé]

Figure 2-17. GROUP BY and WHERE on different index columns

Example 2-11. EXPLAIN plan for GROUP BY and WHERE on different index columns

EXPLAIN SELECT a, b FROM elem WHERE b = 'B' GROUP BY a\G

* *kkkkk
id:
select_type:
table:
partitions:
type:
possible_keys:
key:

key_len:

ref:

rows:
filtered:

> Extra:

The query i+

* kkkkkkk 1‘

1
SIMPLE
elem
NULL
range
idx_a_b
idx_a_b
6

NULL

6
100.00
Using where; Using index for group-by

row dkkkhkkhhkkhkhkhhkkhkhkhkhkkhhkhkhkhkx

Example 2-11 has two importat details: a+ equality co \ditio o+

colum v b i+ the WHERE clause, ad selectig colum s a axd b i+ the SELECT clause.
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These details e vable the special “Usi g ivdex for group-by” optimizatio v revealed
i+ the Extra field. If, for example, the equality (=) is chaged to ‘ot-equal (!=), the
query optimizatio v is lost. Whe v it comes to query optimizatio 1s like this, details are
critical. You must read the MySQL ma wual to lear v a\d apply the details. “GROUP
BY Optimizatio ¥’ i x the MySQL ma wual elaborates.

The fival GROUP BY example i\ Figure 2-18 a \d Example 2-12 might surprise you.
(@. ()

GROUPBY (b]

INDEX

Figure 2-18. GROUP BY without leftmost prefix

Example 2-12. EXPLAIN plan for GROUP BY without leftmost prefix

EXPLAIN SELECT b, COUNT(*) FROM elem GROUP BY b\G

hhkkkhkhkhhhhhhkhkhhhkhkhkkhkhkhkhkx 1‘ row kkkkhkkhkkhhkhkhhkhhkhkhkhkkhkhkkk*x

id:
select_type:
table:
partitions:

> type:
possible_keys:
key:

key_len:

ref:

rows:
filtered:

> Extra:

1
SIMPLE
elem
NULL
index
idx_a_b
idx_a_b
6

NULL

10
100.00
Using index; Using temporary

Notice key: idx_a_b: MySQL uses the i dex despite the query havi g ‘o co ditio
oY columy a. What happe ved to the leftmost prefix requireme vt? It’s bei g met
because MySQL is sca v vi vg the i vdex (type: index) o colum va. You caimagitea
co\ditio v 0 \ colum 1 a that’s always true, like a = a.

Would MySQL still ivdex scay o colum a for GROUP BY c? No, it would vot; it
would do a full table sca v. Figure 2-18 works because the i vdex has colum v b values;
it does ‘ot have colum v c values.

“Usivg temporary” i the Extra field is a side effect of ‘ot havi\g a strict set of
leftmost prefix co\ditio vs. As MySQL reads colum a values from the i\dex, it
collects colum v b values i v a temporary table (i v memory). After readig all colum
a values, it table sca s the temporary table to group a \d aggregate for COUNT(*).
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There is a lot more to lear v about GROUP BY with respect to ivdexes ad query
optimizatio s, but these examples are the fu vdame vtals. U like WHERE clauses, GROUP
BY clauses te \d to be simpler. The challe vge is creatig a ivdex to optimize GROUP
BY plus other SQL clauses. MySQL has the same challe \ge whe v formulati g the
query executio  pla v, so it might vot optimize GROUP BY eve v whe 1\ possible. MySQL
almost always chooses the best query executio v pla v, but if you wa 1t to experime 1t
with differe vt 0 ves, read “I vdex Hi vts” i v the MySQL ma wual.

ORDER BY

U surprisi vgly, MySQL ca  use a\ ordered idex to optimize ORDER BY. This opti-
mizatio v avoids sorti vg rows, which takes a little more time, by accessi g rows i
order. Without this optimizatio v, MySQL reads all matchi g rows, sorts them, the
retur s the sorted result set. Whe v MySQL sorts rows, it pri vts “Usi \g filesort” i v the
Extra field of the EXPLAIN pla . Filesort mea s sort rows. It’s a historical (a\d vow
misleadi \g) term but still the prevale vt term i + MySQL li vgo.

Filesort is a co \ster vatio \ for e \gi veers because it has a reputatio \ for bei g slow.
Sortivg rows is extra work, so it does ‘ot improve respo \se time, but it's usually
‘ot the root cause of slow respo se time. At the ed of this sectio v, I use EXPLAIN
ANALYZE, which is vew as of MySQL 8.0.18, to measure the real-time pevalty of
filesort. (Spoiler: sorti vg rows is very fast.) But first, let's exami ve how to use i \dexes
to optimize ORDER BY.

There are three ways to use a ivdex to optimize ORDER BY. The first a \d simplest
way is usi g a leftmost prefix of a v i vdex for the ORDER BY clause. For table elem, that
means:

o ORDER BY id

« ORDER BY a

o ORDER BY a, b

The seco \d way is to hold a leftmost part of the i \dex co \sta 1t a \d order by the ext
ivdex colum vs. For example, holdi \g colum v a co \sta vt a \d orderi vg by colum v b,
as show v i\ Figure 2-19 with correspo vdi vg EXPLAIN pla v i v Example 2-13.

(b))

INDEX  ( (a)

WHERE GROUPBY (b]

Figure 2-19. ORDER BY and WHERE on different index columns
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Example 2-13. EXPLAIN plan for ORDER BY and WHERE on different index columns

EXPLAIN SELECT a, b FROM elem WHERE a = 'Ar' ORDER BY b\G

dhkkhkkhkhkhkhkhkhkhkhkhkhkkk 1_ row khkkhkkkhkkkhkkhkkkhkhkhhkhkhkhkhxhk
id: 1
select_type: SIMPLE
table: elem
partitions: NULL
type: ref
possible_keys: idx_a_b
key: idx_a_b
key_len: 3
ref: const
rows: 3
filtered: 100.00
Extra: Using index

WHERE a = 'Ar' ORDER BY b ca use ivdex (a, b) because the WHERE co \ditio
o the first i vdex part (colum v a) is co \stavt, so MySQL jumps to a = 'Ar' i the
ivdex avd, from there, reads colum v b values i v order. Example 2-14 is the result set,
ad although it’s vothi g fa \cy, it shows that colum v a is co wsta 1t (value “Ar”) ad
colum v b is sorted.

Example 2-14. Result set of WHERE a = 'Ar' ORDER BY b

EREEEE D +
| a | b [
P I +
| Ar | B [
| Ar | Br

| Ar | Br

I I +

If table elem had avivdex oy colums a, b, ¢, a query like WHERE a = 'Au' AND b
= 'Be' ORDER BY c could use the i vdex because the co \ditio vs 0\ colums aavd b
hold the leftmost part of the i vdex.

The third way is a special case of the seco \d. Before showi \g the figure that explai \s
it, see if you ca determi ve why the query i+ Example 2-15 does not cause a filesort
(why “Usi g filesort” is vot reported i v the Extra field).

Example 2-15. EXPLAIN plan for ORDER BY id

EXPLAIN SELECT * FROM elem WHERE a = 'Al' AND b = 'B' ORDER BY id\G

hhkkhhhhhkhhhhhkhhhhhrhhdhrx 1‘ row dhhkhkhhkhhhhhhhhhhhhrhhhhrx

id: 1
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select_type: SIMPLE
table: elem
partitions: NULL
type: ref
possible_keys: idx_a_b
key: idx_a_b
key_len: 16
ref: const,const
rows: 2
filtered: 100.00
> Extra: Using index condition

It's u \dersta vdable that the query uses ivdex idx_a_b because the WHERE co \ditio s
are a leftmost prefix, but should vt ORDER BY 1id cause a filesort? Figure 2-20 reveals

the a \swer.
(b). @)

INDEX  ( (a]

Figure 2-20. ORDER BY using primary key appended to secondary index

“Leftmost Prefix Requireme \t” o 1 page 49 has a paragraph that begi vs with, “Lurki vg
at the ed (rightmost) of every seco \dary ivdex is the primary key” That’s what’s
happe vivg i Figure 2-20: the dark box arou \d i \dex colum 1 id reveals the “hidde v’
primary key appe \ded to the seco vdary ivdex. This ORDER BY optimizatio v might
‘ot seem useful with a little table like elem, but with real tables it ca v be very useful—
worth rememberi \g.

To prove that the “hidde v’ primary key allows the ORDER BY to avoid a filesort,
let’s remove the co\ditio v o v colum v b to i walidate the optimizatio v, as show v i+
Figure 2-21 a \d followed by the resulti \g EXPLAIN pla v i Example 2-16.

i)

ORDERBYid

~——

INDEX  ( (a]

WHERE

Figure 2-21. ORDER BY without leftmost prefix
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Example 2-16. EXPLAIN plan for ORDER BY without leftmost prefix

EXPLAIN SELECT * FROM elem WHERE a = 'Al' ORDER BY id\G

*kkkkk *kkkkkhk*k 1‘ row * *kkkkk *kkkkhkk
id: 1
select_type: SIMPLE
table: elem
partitions: NULL
type: ref
possible_keys: idx_a_b
key: idx_a_b
key_len: 8
ref: const
rows: 3
filtered: 100.00
> Extra: Using index condition; Using filesort

By removi g the coditio v o colum 1 b, there’s 1o loger a leftmost prefix o the
seco \dary ivdex that allows MySQL to use the “hidde ¥’ primary key to optimize

ORDER BY. Therefore, for this particular query, “Usi g filesort” appears i+ the Extra
field.

The vew optimizatio v is “Usivg ivdex coditio,” which is called ivdex co vditio v
pushdow . Index condition pushdown meas the storage e give uses ay ivdex to
matches rows for WHERE co vditio s. Normally, storage e \gives o \ly read ad write
rows, axd MySQL hadles the logic of matchig rows. This is a clea separatio v
of cocers (which is a virtue for software desig+), but its ivefficie vt whe v rows
do vt match: both MySQL ad the storage e \gi \e waste time readi g ‘o ‘-matchig
rows. For the query i\ Example 2-16, i \dex co \ditio v pushdow \ mea 1s the storage
egive (I1voDB) uses ivdex 1dx_a_b to match coditiova = 'Al'. Idex co \ditio
pushdow  helps improve respo 1se time, but do vt exert yourself tryi g to optimize
for it because MySQL uses it automatically whe \ possible. To lear v more, read “I \dex
Co vditio Y Pushdow ' Optimizatio v’ i v the MySQL ma wual.

There’s av importa vt detail that affects all ORDER BY optimizatio vs: idex order is
asce \dig by default, a~d ORDER BY col implies asce \dig: ORDER BY col ASC.
Optimizi \g ORDER BY works i 0ly o ve directio v for all colum 1s: ASC (asce \di\g)
or DESC (desce \dig). Co vseque vtly, ORDER BY a, b DESC does ‘ot work because
colum v a is a v implicit ASC sort, which is differe vt thavb DESC.

MySQL 8.0 supports desce vdi vg i \dexes.

68 | Chapter2:Indexes and Indexing



What is the real time pealty of filesort? Prior to MySQL 8.0.18, it was ‘either
measured vor reported. But as of MySQL 8.0.18, EXPLAIN ANALYZE measures ad
reports it. For o \ly Example 2-17, I must use a differe vt table.

Example 2-17. Sysbench table sbtest

CREATE TABLE ‘sbtestl’” (
‘id® int NOT NULL AUTO_INCREMENT,
‘k* int NOT NULL DEFAULT '0',
‘¢’ char(120) NOT NULL DEFAULT '',
‘pad’ char(60) NOT NULL DEFAULT '',
PRIMARY KEY ('id'),
KEY ‘k_1° (k")

) ENGINE=InnoDB;

That’s a staxdard sysbench table; I loaded it with oe millio v rows. Let’s use a
ra dom, mea \i \gless query with a large result set a \d ORDER BY:
SELECT ¢ FROM sbtestl WHERE k < 450000 ORDER BY id;

-- Output omitted
68439 rows in set (1.15 sec)

The query takes 1.15 seco vds to sort a d retur v a little over 68,000 rows. But it’s ‘ot a
bad query; check out its EXPLAIN pla v

EXPLAIN SELECT c FROM sbtestl WHERE k < 450000 ORDER BY id\G

khkkkhkkkhkhkhkhkhkkhkhkhkkhkkhkkk 1'
id: 1
select_type: SIMPLE

row khkkkkhkhkkkkhkhkhkhkhhkhkhkkkhkhkhkk*x

table:
partitions:
type:
possible_keys:
key:

key_len:

ref:

rows:
filtered:
Extra:

sbtest1

NULL

range

k_1

k_1

4

NULL

133168

100.00

Using index condition; Using MRR; Using filesort

The o1ly vew i+formatio v i+ that EXPLAIN pla v is “Usi \g MRR” i\ the Extra field,
which refers to the “Multi-Ra vge Read Optimizatio v’. Otherwise, that EXPLAIN pla
reports i yformatio v already covered i v this chapter.
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Does filesort make this query slow? EXPLAIN ANALYZE reveals the a\swer, albeit
cryptically:

EXPLAIN ANALYZE SELECT c FROM sbtestl WHERE k < 450000 ORDER BY id\G

hhkkhkhkhkhkkhkhkhkhkhhkhkhkhhhkhkhkkx 1. row khkkkhkhkkkhkhkhkhkkhhkhkhkhkkhkhkhkk*x

1 -> Sort: sbtestl.id (cost=83975.47 rows=133168)

2 (actual time=1221.170..1229.306 rows=68439 loops=1)

3 -> Index range scan on sbtestl using k_1, with index condition: (k<450000)
4 (cost=83975.47 rows=133168) (actual time=40.916..1174.981 rows=68439)

The real output of EXPLAIN ANALYZE is wider, but I wrapped axd ‘umbered the
li ves for pri vt legibility a \d refere ce. EXPLAIN ANALYZE output is de \se a \d requires
practice to grok; for ‘ow, let’s go straight to the poivt—or as straight as possible
sivce the output does ot read sequetially. O~ live 4, 1174.981 (milliseco \ds)
meats the ivdex rayge scav (live 3) took 1.17 secods (rourded). O live 2,
1221.170..1229.306 mea \s the filesort (live 1) started after 1,221 milliseco \ds a\d
eded after 1,229 milliseco \ds, which mea \s the filesort took 8 milliseco ds. Total
executio v time is 1.23 seco \ds: 95% readi g rows ad less thay 1% sorti g rows.
The remaivivg 4%—roughly 49 milliseco \ds—is spe t i+ other stages: prepari\g,
statistics, loggi \g, clea vi \g up, a \d so forth.

The aswer is vo: filesort does not make this query slow. The problem is data access:
68,439 rows is ‘ot a small result set. Sorti g 68,439 values is practically zero work
for a CPU that does billions of operatio s per secod. But readig 68,439 rows
is appreciable work for a relatio val database that must traverse i‘dexes, ma vage
tra vsactio 1s, etc. To optimize a query like this, focus o v “Data Access” o \ page 97.

O e last questio to address: why does filesort have a reputatio v for beig slow?
Because MySQL uses temporary files o1 disk whe sortivg data exceeds the
sort_buffer_size, ad hard drives are orders of magitude slower tha\ memory.
This was especially true decades ago whe  spi v vi g disks were the vorm; but today,
SSD is the vorm, ad storage i ge veral is quite fast. Filesort might be a v issue for a
query at high throughput (QPS), but use EXPLAIN ANALYZE to measure a \d verify.

EXPLAIN ANALYZE executes the query. To be safe, use EXPLAIN
ANALYZE o v a read-o \ly replica, ot the source.

Now back to table elem (Example 2-1) a d the vext case for which MySQL ca v use a
ivdex: coveri g i vdexes.
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Covering Indexes

A covering index ixcludes all colum s refere vced iy a query. Figure 2-22 shows a
coveri \g i vdex for a SELECT stateme t.

INDEX ([ET],@)

I
SELECT @ , @ FROM elem WHERE (a="Au') AND (b="Be}

Figure 2-22. Covering indexes

The WHERE co \ditio s 0 ' colum s a a \d b poi 1t to the correspo \di g i \dex colum s
as usual, but these ivdex colum s also poi 1t back to the correspo \di g colum vs i+
the SELECT clause to sig vify that the values for these colum 1s are read from the i \dex.

Normally, MySQL reads full rows from the primary key (recall “I x1oDB Tables Are
I'dexes” o\ page 41). But with a coveri g i \dex, MySQL ca » read o \ly colum  values
from the ivdex. This is most helpful with seco \dary idexes because it avoids the
primary key lookup.

MySQL uses the coveri \g i \dex optimizatio v automtically, a \d EXPLAIN reports it as
“Usivgivdex” i the Extra field. “Usi g i vdex for group-by” is a similar optimizatio
specific to GROUP BY a \d DISTINCT, as demo sstrated i v “GROUP BY” o + page 60. But
“Usivg i vdex co \ditio v’ a\d “Usivg i vdex for skip sca v’ are completely differe vt a \d
u wrelated optimizatio vs.

A ivdex scav (type: 1index) plus a coverivg ivdex (Extra: Using index) is a»
ivdex-oly sca (see “Idex sca Y’ o+ page 46). There are two examples i v “GROUP
BY” o\ page 60: Example 2-9 a \d Example 2-12.

Coveri g i vdexes are glamorous but rarely practical because realistic queries have too
ma vy colum s, co \ditio vs, a\d clauses for o ‘e i\dex to cover. Do ‘ot sped time
tryivg to create coveri\g idexes. Whe v desig i g or a valyzi g simple queries that
use very few colum vs, take a mome vt to see if a coveri \g i \dex might work. If it does,
the v co vgratulatio vs. If vot, that’s okay; ‘o o0 ve expects coveri vg i \dexes.

Join Tables

MySQL uses a+ ivdex to joiv tables, ad this usage is fudame vtally the same as
usig aivdex for awythi g else. The mai v differe \ce is the source of values used i+
joi v covditio s for each table. This becomes more clear whe \ visualized, but first we
veed a seco\d table to joi. Example 2-18 shows the structure of table elem_names
ad the 14 rows that it co vtai \s.
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Example 2-18. Table elem_names

CREATE TABLE ‘elem_names’ (
“symbol’ char(2) NOT NULL,
‘name’ varchar(16) DEFAULT NULL,
PRIMARY KEY ( 'symbol’)

) ENGINE=InnoDB;

EEEE TR e +
| symbol | name |
EEEE TR R +
| Ag | Silver |
| Al | Aluminum |
| Ar | Argon |
| At | Astatine |
| Au | Gold |
| B | Boron |
| Be | Beryllium |
| Bi | Bismuth |
| Br | Bromine |
| € | Carbon |
| Cd | Cadmium |
| Ce | Cerium |
| Co | Cobalt |
| Cr | Chromium |
EEEE TR R +

Table elem_name has o ‘e ivdex: the primary key o+ colum v symbol. The values i
colum \ symbol match the values i\ table elem colum s a, b, a \d c. Therefore, we ca
joi v tables elem a vd elem_names o \ these colum »s.

Figure 2-23 shows a SELECT stateme vt that joi s tables elem ad elem_names, a\d a
visual represe tatio v of the co \ditio vs a \d i vdexes for each table.

I\ previous figures, there’s o 1ly o ve ivdex ad SQL clause pair because there’s o \ly
o0 e table. But Figure 2-23 has two pairs—o ‘e for each table—deli veated by large
rightward-poi vti \g chevro s with the table vame comme vted i+ each: /* elem */
avd /* elem_names */. Like EXPLAIN, these figures list tables i joi order: top to
bottom. Table elem (at top) is the first table i + the joi v order a \d table elem_names (at
bottom) is the seco \d table.
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SELECT
name
FROM
elem
JOIN elem_names ON (elem.a = elem_names.symbol)
WHERE
a IN ( 'Ag', 'Au', 'At')

INDEX (@, b )

I+ eten =/ e

elem.a Values

-

PRIMARY KEY ( )
|

/* elem_names */ WHERE [symbol = <elem.a> ]

L

Figure 2-23. Join table on primary key lookup

I'dex usage o table elem is ‘othivg vew or special: MySQL uses the idex for the
coditiova IN (...). So far, so good.

I'dex usage o\ table elem_names, which is joied to the precedig table, is fu \da-
me vtally the same with two mi vor differe \ces. First, the WHERE clause is a rewrite of
the JOIN...ON clause—more o v this later. Seco \d, values for the co \ditio v 0 ¥ colum v
symbol come from the precedig table: elem. To represet this, a\ arrow poi s
from the precedi g table to a colum 1 refere \ce i v a \gle brackets: <elem.a>. O vjoin,
MySQL looks up rows i+ table elem_names usivg colum \ a values from matchi g
rows i\ table elem for the joiy co \ditio v o\ colum v symbol. I+ MySQL ver vacular
wed say, “symbol is equal to colum+ a from table elem” Give a value from the
precedi g table, the primary key lookup o 1 colum 1 symbol is vothi vg vew or special:
if a row matches, it’s retur ved a d joi ved with the row from the precedi g table.

Example 2-19 shows the EXPLAIN pla  for the SELECT stateme ‘t i v Figure 2-23.
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Example 2-19. EXPLAIN plan for join table on primary key lookup

EXPLAIN SELECT name
FROM elem JOIN elem_names ON (elem.a =
WHERE a IN ('Ag', 'Au', 'At')\G

elem_names.symbol)

hhkkhkhkhkkhhhkhkhhhkhkhkkhkhkhkhkx 1‘ row kkkkkkkkhhkhkhhkkhkhkhkhkkhkhkkkx

id:
select_type:
table:
partitions:
type:
possible_keys:
key:

key_len:

ref:

rows:
filtered:
Extra:
khkkkhkhkhkkhkhkhkhkhkhkhkkhkkk 2.
id:
select_type:
table:
partitions:

> type:
possible_keys:
key:

key_len:

> ref:
rows:
filtered:
Extra:

1

SIMPLE

elem

NULL

range
idx_a_b
idx_a_b

3

NULL

4

100.00
Using where; Using index
row Fhkkkhkhhrkrhhhddkrrhhhddrhhhdrd
1

SIMPLE
elem_names
NULL

eq_ref
PRIMARY
PRIMARY

2
test.elem.a
1

100.00

NULL

O a per-table basis, the EXPLAIN pla+ iy Example 2-19 is ‘othiyg ‘ew, but the
joi reveals two vew details i+ the seco \d table, elem_names. The first is access type
eq_ref: a sigle-row lookup usig the primary key or a uvique vot- wll seco \dary
ivdex. (I this co vtext, not-null mea s all seco vdary ivdex colum s are defied as
NOT NULL.) More o+ the eq_ref access type i\ the vext paragraph. The seco \d is ref:
test.elem.a, which you ca 1 read as “refere vce colum 1 elem.a”. (The database vame
is test, hece the test. prefix.) To joi+ table elem_names, values from refere vce
colum elem.a are used to look up rows by primary key (key: PRIMARY), which
covers the joi colum v: symbol. This correspo \ds to the JOIN co \ditio \: ON (elem.a
= elem_names.symbol).
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O v a per-table basis, a joi v does ‘ot cha vge how i \dexes are used.
The mai v differe \ce is that values for the joi v co ditio \ come from
the precedi \g table.

MySQL can joiv a table usig a vy access method (see “Table Access Methods™ o
page 45), but a ivdex lookup usig the eq_ref access type is the best ad fastest
because it matches o1\ly o e row. The eq_ref access type has two requireme vts: a
primary key or uvique vot- wwull seco vdary i \dex and equality co \ditio \s o v all i \dex
colum s. Together, these requireme ‘ts guara vtee that a v eq_ref lookup matches at
most o ve row. If both requireme ts are ‘ot met, the ¥ MySQL will probably use a ref
i vdex lookup, which is esse tially the same but matches a vy yumber of rows.

Goig back to Figure 2-23, how did I kvow to rewrite the JOIN...ON clause to a
WHERE clause for table elem_names? If you SHOW WARNINGS immediately after EXPLAIN,
MySQL privts how it rewrites the query. This is the abridged output of SHOW
WARNINGS:

/* select#1 */ select
“test’. 'elem_names'. name’ AS ‘name’
from
“test’. elem’
join “test'. elem_names’
where
(( test’. elem_names' . symbol’ = "test’.'elem’.'a’)
and (‘test'.'elem .’a” in ('Ag','Au','At')))
Now you ca v see that /* elem_names */ WHERE symbol = <elem.a> i\ Figure 2-23
is correct.

Sometimes, ruvivg SHOW WARNINGS immediately after EXPLAIN to see how MySQL
rewrites a query is ‘ecessary to uderstad the table joiv order ad ivdexes that
MySQL chose.

Rewritte v SQL stateme \ts show by SHOW WARNINGS are ‘ot
ivtevded to be valid. Theyre oly ivte \ded to show how MySQL
ivterprets a \d rewrites the SQL stateme t. Do ‘ot execute them.

Table joi v order is critical because MySQL joi vs tables i the best order possible, not
the order tables are writte v i\ the query. You must use EXPLAIN to see the table joi v
order. EXPLAIN prits tables i+ the joiv order from top (first table) to bottom (last
table). The default joi algorithm, nested-loop join, follows the joi order. I outli e
joi v algorithms at the e \d of this chapter: “Table Joi v Algorithms” o \ page 87.

MySQL Indexes: A Visual Introduction | 75



Never guess or presume the table joi+ order because small chages to a query ca
yield a sigifica vtly differe vt table joi+ order or query executio v plax. To demo \-
strate, the SELECT stateme vt i\ Figure 2-24 is vearly ide vtically to the SELECT state-
me t i v Figure 2-23 with o e ti vy differe vce—ca 1 you spot it?

SELECT
name
FROM
elem
JOIN elem_names ON (elem.a = elem_names.symbol)
WHERE
a IN ('Ag', 'Au")

PRIMARY KEY ([symbol])
|

/* elem_names */ WHERE [symbol IN (...ﬂ

INDEX (@, b )
|

v
/* elem */ WHERE [a = <e1em_names.symbol>]

elem_names.symbol
Values

Figure 2-24. Join table on secondary index lookup

Here’s a hit: it’s neither gold nor silver. The tivy differe vce yields a sigifica vtly
differe vt query executio \ pla v, as show v i v Example 2-20.

Example 2-20. EXPLAIN plan for join table on secondary index lookup

EXPLAIN SELECT name
FROM elem JOIN elem_names ON (elem.a = elem_names.symbol)
WHERE a IN ('Ag', 'Au')\G

khkkkhkhhkhkdkhhkhkdkhhkhdkdhhddhhdd 1 . row *hhkhkkhkhkhkhkhkhhhkdkhhhkddhhhdhhdd
id: 1
select_type: SIMPLE
table: elem_names
partitions: NULL
type: range
possible_keys: PRIMARY
key: PRIMARY
key_len: 2
ref: NULL
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rows:
filtered:
Extra:
Khhkkdhkrkrhhdddkrdhhdddrhhhddx 2.
id:
select_type:
table:
partitions:
type:
possible_keys:
key:

key_len:

ref:

rows:
filtered:
Extra:

2

100.00

Using where

row Ihkhkkhkdrkrkrhhdddkrrhhdddrhhhdd
1

SIMPLE

elem

NULL

ref

idx_a_b

idx_a_b

3
test.elem_names.symbol
2

100.00

Using index

Sy ‘tactically, the SELECT stateme vts i Figures 2-23 axd 2-24 are ide vtical, but the
executio \ pla s (Examples 2-19 ad 2-20) are sig vifica tly differe \t. What cha vged?
I\ Figure 2-24, a sivgle value was removed from the IN() list: “At” This is a great
example of how a seemi \gly i v vocuous cha \ge ca trigger somethi g i+ the MySQL
query executio v pla vier ad voila: a totally vew ad differe vt EXPLAIN pla . Let’s
exami ve Example 2-20 table by table.

The first table is elem_names, which is differe vt tha x how the query is writte \: elem
JOIN elem_names. MySQL determi ves the table joi v order, ‘ot the JOIN clause.” The
type ad key fields i \dicate a ra vge sca v o  the primary key, but where are the values
comi g from? The ref field is NULL, a \d there are o WHERE co \ditio \s o + this table.
MySQL must have rewritte v the querys; this is the abridged output of SHOW WARNINGS:

/* select#1 */ select
“test’. elem_names'. name’ AS ‘name’
from
‘test’.'elem’ join ‘test’. 'elem_names’
where
(("test’.'elem’.’a’ = "test'.'elem_names'. symbol’)
and (test'.'elem_names'. symbol' in ('Ag','Au')))

Yes, there it is o v the last li ve: MySQL rewrites the query to use the IN() list as the
values for elem_names.symbols iistead of elem.a as origi vally writte v i\ the query.
Now you ca see (or imagie) that idex usage o table elem_names.symbols is a
rage sca to look up two values: “Ag” ad “Au” Usi g the primary key, that will be
a extremely fast i vdex lookup a \d match o \ly two rows that MySQL will use to joi v
the seco d table.

2 Unless STRAIGHT_JOIN is used, but do vt use this. Let the MySQL query optimizer choose the joi v order for
the best query executio  pla .
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The seco\d table is elem, axd the EXPLAIN pla v is familiar: usig ivdex idx_a_b
to look up ivdex values ( ‘ot rows, because Extra: Using index) matchi+g the
co\ditio v 0\ colum v a. The values for that co \ditio » come from matchi g rows i
the precedi g table, as i vdicated by ref: test.elem_names.symbol.

MySQL jois tables i the best order possible, not the order that
tables are writte v i v the query.

Although MySQL ca cha ge the joiy order ad rewrite the query, i \dex usage for
a joiv is fudame vtally the same—o v a per-table basis—as everythig previously
demo vstrated a \d explaived i+ this chapter. Use EXPLAIN ad SHOW WARNINGS, ad
co sider the executio 1 pla v table by table, from top to bottom.

MySQL ca joi tables without a v ivdex. This is called a full join ad it’s the sigle
worst thig a query ca v do. A table sca o 1 a si \gle-table query is bad, but a full joi »
is worse because the table sca v o\ the joi ved table does ot happe » o vce, it happe \s
for every matchi g row from the precedi \g table. Example 2-21 shows a full joiv o

the seco \d table.

Example 2-21. EXPLAIN plan for full J0IN

EXPLAIN SELECT name
FROM elem STRAIGHT_JOIN elem_names IGNORE INDEX (PRIMARY)
ON (elem.a = elem_names.symbol)\G

kkkkkk

id:
select_type:
table:
partitions:
type:
possible_keys:
key:

key_len:

ref:

rows:
filtered:
Extra:
kkhkkkhkkhkhkkhkhkhkhkhhkkhkkhkkhkkk 2‘
id:
select_type:
table:
partitions:
type:
possible_keys:

1
SIMPLE
elem
NULL
index
idx_a_b
idx_a_b
6

NULL

10
100.00
Using index

1

SIMPLE
elem_names
NULL

ALL

NULL

*kkkkkkx 1‘

*kkk khkkkkkkk

row *

row dkkkhkkkkhhkhhhkkhhkhhkkhkhkhkhkk
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key: NULL
key_len: NULL
ref: NULL
rows: 14
filtered: 7.14
Extra: Using where; Using join buffer (hash join)

Normally, MySQL would vot choose this query executio v pla v, which is why I had to
force it with STRAIGHT_JOIN ad IGNORE INDEX (PRIMARY). A ivdex-oily scavon
the first table (elem) yields all te v rows.? For each row, MySQL joi 1s the seco \d table
(elem_names) by doi vg a full table sca v (type: ALL) to fi \d matchi g rows. Si \ce this
is a joived table (ot the first table i+ the joi+ order), the table sca couts as a full
joiv. A full joiv is the sivgle worst thig a query ca~ do because it happe s for each
row from the precedi g table: te v full table sca \s o v table elem_names. Whe vever you
see type: ALL for a joived table, stop everythig youre doivg ad fix it. There’s a
query metric for full joi vs: “Select full joi v’ o v page 21.

“Usivg join buffer (hash joiv)” iy the Extra field refers to the hash joi+ algorithm,
which is vew as of MySQL 8.0.18. I outli ve it (a \d other joi v algorithms) at the e\d
of this chapter: “Table Joiv Algorithms” o+ page 87. Looki g ahead, the oe-live
expla vatio v is: hash joi builds a v i v-memory hash table of values a \d uses that to
lookup rows rather tha v doi \g repeated table sca vs. Hash joi v is a huge performa vce
improveme vt. Regardless, avoidi vg full joi \s remai \s the best practice.

Prior to MySQL 8.0, the query i v Example 2-21 reports “Usi \g joi v
buffer (Block Nested Loop)” i v the Extra field because it uses a dif-
fere vt joi v algorithm: block vested-loop. “Table Joi Algorithms”
0\ page 87 outli ves this joi v algorithm.

At first glace, joivig tables appears to be a categorically differe vt type of i+dex
usage, but it’s ot. A joi+ i wolves more tables a \d idexes, but o v a per-table basis,
ivdex usage ad requireme ‘ts are the same. Eve \ the leftmost prefix requireme vt is
the same. The mai v differe \ce is that, for joived tables, values for joiy co vditio \s
come from the precedi \g table.

It's bee v a lo vg read sice the first example iy “WHERE” o+ page 54. Now you've
see v ma vy full-co vtext examples of i \dexes, queries, a \d EXPLAIN pla s that cover
the techvical details ad mechavics of MySQL i+dexes. This ivformatio v is the
fou vdatio v of direct query optimizatio v o v which the ext sectio \ builds.

3 Strictly speaki vg, the i \dex-o0 \ly sca o \ table elem yields te v values, ot rows, because full rows are ‘ot
reeded: 0 \ly colum 1 a values are veeded.
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Indexing: How to Think Like MySQL

I'dexes ad i+dexi g are differe 1t topics. The previous sectio v i vtroduced i vdexes:
stavdard B-tree ivdexes o IvvoDB tables for WHERE, GROUP BY, ORDER BY, cover-
ivg ivdexes, ad table joirs. This sectio v ivtroduces indexing: applyi g idexes for
maximum leverage. You ca v ‘ot simply i \dex every colum v to effect amazi \g perfor-
ma \ce. If it were that easy, there would be o DBAs. For maximum leverage, you
have to i vdex the colum s that allow MySQL to access the least yumber of rows whe
executi vg a query. To state it metaphorically: maximum leverage is a v i vdex that tells
MySQL exactly where to fid the veedle i v the haystack.

I\ my experie \ce, e \gi veers struggle with i+dexi g because they co \flate how they
thi 'k about a query with how MySQL “thi vks” about a query. As e \gi veers, we thi 'k
about a query i\ the co vtext of the applicatio \: what part of the applicatio v executes
the query, why (the busi vess logic), a \d the correct result set. But MySQL does ‘ot
k vow or care about a vy of that. MySQL thi ks about a much smaller, simpler co ‘text:
ivdexes a\d table co \ditio \s. U vder the hood, MySQL is co \siderably more complex,
but part of its i \determi vable charm is how well it hides that complexity.

How do we kvow that MySQL thi ks about i vdexes ad table co vditio vs? EXPLAIN.
A ~d what is the primary i ‘formatio \ that EXPLAIN reports? Tables (i joi order),
table access methods, idexes, ad Extra i‘formatio v related to the access of those
tables with those i \dexes.

Thi vki vg like MySQL make idexi g easier because it’s a determi vistic machi ve—
algorithms ad heuristics. Huma v thought is etagled with superfluous details.
Clear your mid ad get ready to thi k like a machi ve. The vext four sectio \s walk
through a simple, four-step process.

Know the Query
The first step toward thi ki vg like MySQL is to k vow basic i \formatio v about the
query that you're optimizi vg. Start by gatheri g the followi \g metadata for each table:

e SHOW CREATE TABLE

e SHOW TABLE STATUS

e SHOW INDEXES
If the query is already ruvivg i productio v, the \ get its query report (see “Query
report” o  page 10) a \d familiarize yourself with the curre 1t values.

The v a \swer the followi \g questio \s:
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Query
o How ma vy rows should the query access?

o How ma vy rows should the query retur v?

o Which colum vs are selected (retur ved)?

o What are the GROUP BY, ORDER BY, ad LIMIT clauses (if a vy)?

o Are there subqueries? (If yes, repeat the process for each.)
Table access (per-table)

o What are the table co \ditio \s?

o Which i vdex should the query use?

o What other i \dexes could the query use?

o What is the cardi vality of each i \dex?

« How large is the table—data size a \d row cou 1t?
Those questio s help you me vtally parse the query because that's what MySQL does:

parse the query. This is especially helpful for seei \g complex queries i \ simpler terms:
tables, table co vditio s, i \dexes, a \d SQL clauses.

This i vformatio v helps you piece together a puzzle that, o \ce complete, reveals query
respo yse time. To improve respo \se time, you'll veed to chage some pieces. But
before doig that, the vext step is to assemble the curre vt pieces with the help of
EXPLAIN.

Understand with EXPLAIN

The secod step is to uderstayd the curret query executio+ plav reported by
EXPLAIN. Co vsider each table ad its co \ditio \s with respect to its i \dexes, starti g
with the i+dex that MySQL chose: the key field i the EXPLAIN output. Look at the
table co ditio s to see how they meet the leftmost prefix requireme t for this i vdex.
If the possible_keys field lists other i vdexes, thi vk about how MySQL would access
rows usiyg those ivdexes—always with the leftmost prefix requireme vt iy mid. If
the Extra field has i vformatio (it usually does), the \ refer to “EXPLAIN Output” i+
the MySQL ma vual to lear \ what it mea 1s.

Always EXPLAIN the query. Make this a habit because direct query
optimizatio v is ot possible without EXPLAIN.
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The query ad its respo \se time are a puzzle, but you have all the pieces: executio v
play, table coditio vs, table structures, table sizes, ivdex cardi valities, a\d query
metrics. Keep co vvecti g the pieces u vtil the puzzle is complete—u vtil you ca see
the query workig as MySQL explais it. There is always a reaso\ for the query
executio v plav* Sometimes MySQL is very clever axd uses a ‘o ‘obvious query
optimizatio v, usually me vtio ved i\ the Extra field. If you e \cou vter o e for a SELECT
stateme vt, “Optimizi \g SELECT Stateme vts” i » the MySQL ma vual will elucidate it.

If you get stuck, there are three i \creasi \g levels of support:

1. As of MySQL 8.0.16, EXPLAIN FORMAT=TREE pri \ts a more precise a \d descriptive
query executio v pla i tree-like output. It's a completely differe vt output tha
the traditio val format, so you’ll veed to lear v how to iterpret it, but it’s worth
the effort.

2. Use optimizer traci g to report a \ extremely detailed query executio v pla v with
costs, co vsideratio vs, ad reaso \s. This is a very adva \ced feature with a high
lear vi g curve, so if youre pressed for time, you might prefer the third optio .

3. Ask your DBA or hire a v expert.

Optimize the Query

The third step is direct query optimizatio v: cha \ge the query, its i \dexes, or both.
This is where all the fu v happe vs, a\d there’s vo risk yet because these cha ges are
made i+ developme 1t or stagi g, not productio \. Be certai v that your developme vt
or stagi g e wiro \me vt has data that is represe vtative of productio \ because data size
ad distributio v affect how MySQL chooses i \dexes.

At first, it might seem like the query ca v ot be modified because it fetches the correct
rows, so the query is writte v correctly. A query “is what it is,” right? Not always; the
same result ca be achieved with differe vt methods. A query has a result—literally, a
result set—ad a method of obtai vivg that result. These two are closely related but
ivdepe vde t. K vowi \g that is treme \dously helpful whe  co sideri \g how to modify
a query. Start by clarifyi \g the i vte vded result of the query. A clear result allows you
to explore ‘ew ways of writi \g the query that achieve the same result.

There ca ' be multiple ways to write a query that execute differe vtly
but retur \ the same result.

4 Extremely rare query optimizer bugs ‘otwithsta \di\g.
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For example, some time ago I was helpig a e giveer optimize a slow query. His
questio \ to me was tech vical—somethi \g about GROUP BY ad i \dexes—but I asked
him, “What does the query do? Whats it supposed to retur+?” He said, “Oh! It
retur \s the maximum value for a group.” After clarifyi g the i+te \ded result of the
query, I realized that he did vt veed the maximum group value, he simply ‘eeded the
maximum value. Co 1seque ‘tly, the query was completely rewritte 1 to use the ORDER
BY col DESC LIMIT 1 optimizatio \.

Whe v a query is extremely simple, like SELECT col FROM tbl WHERE id = 1, there
might truly be o way to rewrite it. But the simpler the query, the less likely it
eeds to be rewritte \. If a simple query is slow, the solutio v is likely a chage to
ivdexes rather tha the query. (Ad if i \dex cha ges do vt solve the problem, the
the jour vey co “ti vues: indirect query optimizatio v, addressed i v Chapters 3 a\d 4.)

Addivg or modifyig a ivdex is a trade-off betwee access methods axd query-
specific optimizatio vs. For example, do you trade ax ORDER BY optimizatio \ for a
rage sca \? Do vt get stuck tryi \g to weigh the trade-offs; MySQL does that for you.
Your job is simple: add or alter a v i vdex that you thi 'k will provide MySQL greater
leverage, the v use EXPLAIN to see if MySQL agrees by usig the vew idex. Repeat
u il you a \d MySQL agree o v the most optimized way to write, idex, a \d execute
the query.

Do vot modify ivdexes i+ productio v util you have thoroughly
verified the cha vges i v stagig.

N

Deploy and Verify

The last step is to deploy the chages ad verify that they improve respo \se time.
But first: k vow how to roll back the deployme vt—a \d be ready to do so—i v case the
cha vges have u vi vte \ded side effects. This happe s for ma vy reaso s; two examples
are: queries ruvvivg iy productio that use the ivdex but were ‘ot ruvvivg i
stagi\g, or productio v data that is sig vifica vtly differe vt tha v stagi \g data. It's most
likely goi \g to be fi ve, but be prepared for not fine.

5 Try to outsmart MySQL if you're bored, but do vt expect to wi v. It has see v attack ships o + fire off the
shoulder of Orio v. It watched C-beams glitter i \ the dark vear the Ta v vhiuser Gate.
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Always k vow how to—a \d be ready to—roll back a deployme t to
productio .

After deployi g, verify the cha vges with query metrics a \d MySQL server metrics. If
the query optimizatio \ has sigvifica vt impact, MySQL server metrics will reflect it.
(Chapter 6 elaborates o ¥ MySQL server metrics.) It's awesome whe v this happe 1s, but
do vt be surprised or discouraged if it does vt because the most importa 1t cha \ge is
query respo \se time—recall “North Star” o  page 3.

Wait five to te v mi wutes (preferably lo vger), the v check respo 1se time i+ the query
profile a\d query report. (See “Query profile” o v page 9 ad “Query report” o page
10.) If respo vse time improved, the v co \gratulatio \s: you are doi vg a \d accomplish-
ivg what MySQL experts do; with this skill, you ca achieve remarkable MySQL
performa vce. If respo vse time did ‘ot improve, do vt worry ad do vt give up: eve
MySQL experts e vcou ter queries that require elbow grease. Repeat the process, a \d
co vsider elisti vg avother e gieer because some queries require heavy liftivg. If
youre certai the query ca ot be further optimized, the v it's time for the secod
part of the jour vey: i vdirect query optimizatio \. Chapter 3 addresses cha ges to data,
ad Chapter 4 addresses cha \ges to the applicatio .

It Was a Good Index Until...

If nothing chages, a good ivdex will stay a good i+dex u il the e d of time. (But
if truly vothi g cha vges, would time ever e \d?) Realistically, somethi \g will cha \ge,
re \der a good i \dex bad, a \d decrease performa \ce. Followi \g are commo » causes of
this regrettable (but avoidable a \d correctable) decli ve.

Queries Changed

Whe v queries chage—ad they ofte v do—the leftmost prefix requireme 1t ca be
lost. The worst case is whe v there are ‘o other ivdexes that MySQL ca use, so
it reverts to brute force: a full table sca . But tables ofte v have ma vy ivdexes, a\d
MySQL is determi ved to use a v idex, so the more likely case is that query respo \se
time becomes ‘oticeably poor because the other i \dexes are vt as good as the origi val
ivdex. A query aalysis a \d EXPLAIN pla quickly reveal this case. Presumi g the
query cha vges were ‘ecessary, which is a safe presumptio v, the solutio v is to re-i vdex
for the vew variatio  of the query.
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Excessive, Duplicate, and Unused

I \dexes are vecessary for performa \ce, but sometimes e gi veers go overboard with
them, which results iy too ma vy ivdexes, duplicate ivdexes (dupes), a d uused
ivdexes.

How ma vy ivdexes is too ma vy? O e more tha is ‘ecessary. A overabu da ce
of ivdexes creates two problems. The first was metioved iv “Leftmost Prefix
Requireme \t” o v page 49: i \creased i \dex size. More i \dexes use more RAM which,
iro vically, decreases the RAM available for each ivdex. The secod problem is a
decrease i+ write performace because, whe v MySQL writes data, it must check,
update, a \d pote vtially reorga vize (the i vter val B-tree structure of) every ivdex. A
ivordivate vumber of i vdexes ca 1 severely degrade write performa vce.

Whe + you create a duplicate ivdex, the ALTER stateme ‘t used to create it ge verates a
war vi \g, but you have to SHOW WARNINGS to see it. To fi \d existi vg duplicate i \dexes,
use pt-duplicate-key-checker: it safely fi \ds a \d reports duplicate i \dexes.

U used ivdexes are eve v trickier to ide vtify because, for example, what if the ivdex
is oly used o \ce a week by a log-ruig avalytics query? That edge case aside,
execute this query to list u vused i vdexes:

SELECT * FROM sys.schema_unused_indexes
WHERE object_schema NOT IN ('performance_schema');

That query uses the MySQL sys Schema, which is a collectioy of ready-made
views that retur v all sorts of ivformatio\. The view sys.schema_unused_indexes
queries Performace Schema ad I+formatio v Schema tables to determie which
ivdexes have ‘ot beev used sivce MySQL started. (Execute SHOW CREATE VIEW
sys.schema_unused_indexes to see how this view works.) The Performa \ce Schema
must be evabled; if it is ‘ot already eabled, talk with your DBA (or whoever
ma vages MySQL) because e vabli g it requires restarti \g MySQL.

Be careful whe v droppi g a v ivdex. As of MySQL 8.0, use i wisible i vdexes to verify
that a vivdex is ‘ot used or ‘eeded before droppi \g it: make the i \dex i wisible, wait
ad verify that performa \ce is ‘ot affected, the v drop the i+dex. I wisible i \dexes
are fatastic for this purpose because, whe v a mistake is made, makig a idex
visible is vearly ista vta veous, whereas re-addivg a+ ivdex ca\ take mi utes (or
hours) o v large tables, which feels like a v eter vity if the mistake causes a v applicatio
outage. Before MySQL 8.0, cautio v is the o ly solutio v: talk with your team, search
the applicatio v code, ad use your kowledge of the applicatio v to carefully axd
thoroughly verify that the i vdex is ‘ot used or ‘eeded.
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Be careful whe v droppi vg (removi vg) i vdexes. If a dropped i ‘dex
was used by a query avd MySQL ca ot use aother ivdex, the
query will revert to a full table scav. If a dropped ivdex affects

\ several queries, which is vot uxcommo v, it ca v cause a ripple effect
of performa vce degradatio  that leads to a v applicatio v outage.

Extreme Selectivity

Cardinality is the yumber of u vique valuesivavivdex. Avivdex o valuesa, a, b,
b has a cardiality of 2: a axd b are the two uique values. Use SHOW INDEX to see
ivdex cardi vality.

Selectivity is cardi vality divided by the vumber of rows i+ the table. Usi g the same
example, a, a, b, b, where each value is 0 e row, the i+dex selectivity is 2 / 4 =
0.5. Selectivity ra ges from 0 to 1, where 1 is a uique i\dex: a value for every row.
MySQL does vt show idex selectivity; you have to calculate it ma wually usi g SHOW
INDEX for cardi vality a \d SHOW TABLE STATUS for the vumber of rows.

A v ivdex with extremely low selectivity provides little leverage because each uvique
value could match a large vumber of rows. A classic example is a vivdex o v a colum
with o ly two possible values: yes or 1o, true or false, coffee or tea, o1 so o. If the
table has 100,000 rows, the v selectivity is practically zero: 2 / 100,000 = 0.00002. It’s
avivdex, but ‘ot a good o e because each value could match ma vy rows. How ma vy?
Flip the divisio v: 100,000 rows / 2 u vique values = 50,000 rows per value. If MySQL
were to use this i vdex (which is ulikely), a sigle i vdex lookup could match 50,000
rows. That presumes values are eve \ly distributed, but what if 99,999 rows have value
coffee axd 0ly 1 row has value tea? The » the i vdex works great for tea but terribly
for coffee.

If a query uses a v i vdex with extremely low selectivity, see if you ca v create a better,
more selective idex; or, co sider rewriti vg the query to use a more selective i \dex;
or, thik about alteri vg the schema to orga vize the data better with respect to access
patter \s—more o \ this i v Chapter 4.

A vivdex with extremely high selectivity might be over-leveraged. As the selectivity of
a ‘o ique seco vdary i vdex approaches 1, it begi \s to raise the questio v of whether
or ‘ot the ivdex should be uvique or—eve v better—if the query ca v be rewritte \ to
use the primary key. Such a i vdex does vt hurt performa vce, but it's worth explori vg
alter vatives.

If there are ma vy seco \dary i dexes with extremely high selectivity, it likely i dicates
access patter \s that view or search the whole table by differe vt criteria or dime 1sio s
(presumi g the ivdexes are used a\d ‘ot duplicates). For example: imagi e a table
with product i we vtory that the applicatio \ searches by ma vy differe 1t criteria, each
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requiri vg a v i \dex to meet the leftmost prefix requireme t. I v this case, Elasticsearch
might serve the access patter \s better tha » MySQL.

It's a Trap! (When MySQL Chooses Another Index)

I very rare cases, MySQL chooses the wro g ivdex. This is rare e ough that it
should be your last suspicio v if MySQL is usi\g a+ idex but query respo \se time
is i vexplicably slow. There are several reaso \s this ca occur. A commo  reaso \ is
that, whe v updatiyg a large umber of rows, the wumber is just shy of triggeri g
a\ automatic update of the ivdex “stats” Sivce ivdex statistics are ove of mavy
factors that i vflue \ce which i vdex MySQL chooses, i \dex statistics that have diverged
sig vifica vtly from reality ca v cause MySQL to choose the wro g ivdex. To be clear:
the i vdex itself is vever i vaccurate; it’s o \ly the i \dex statistics that are i vaccurate.

I\dex statistics are estimates about how values are distributed i+ the i vdex. MySQL
does ra xdom dives i to the i dex to sample pages. (A page is a 16 KB u it of logical
storage. Almost everythi g is stored i+ pages.) If i \dex values are eve \ly distributed,
the v a few ra \dom dives accurately represe 1t the whole i vdex.

MySQL updates i vdex statistics for a table whe v:

o The table is first ope ved
e ANALYZE TABLE is ru»
o 1/16th of the table has bee 1 modified si vce the last update
« innodb_stats_on_metadata is e vabled a \d o ve of the followi \g occurs:
— SHOW INDEX or SHOW TABLE STATUS is ru v
— INFORMATION_SCHEMA.TABLES or INFORMATION_SCHEMA.STATISTICS is queried

Ru v vivg ANALYZE TABLE is safe a \d usually very fast, but be careful o \ a busy server:
it requires a flush lock (except i+ Perco va Server) that ca v block all queries accessi \g
the table.

Table Join Algorithms

A brief overview of MySQL table joi v algorithms helps you thi vk about i vdexes ad
ivdexig whe v analyzivg a\d optimizi g JOIN. The default table joi+ algorithm is
called nested-loop join (NL]), ad it operates like vested foreach loops i code. For
example, suppose that a query joi \s three tables with a JOIN clause like:

FROM

t1 JOIN t2 ON t1.A
JOIN t3 ON t2.B

t2.8
t3.C
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A d suppose that EXPLAIN reports the joi+ order as t1, t2, avd t3. The rested-loop
joi v algorithm works like the pseudocode i v Example 2-22.

Example 2-22. NL] algorithm

func find_rows(table, index, conditions) []Jrows {
// Return array of rows in table matching conditions,
// using index for lookup or table scan if NULL

}
foreach find_rows(tl, some_index, "WHERE ...") {
foreach find_rows(t2, index_on_B, "WHERE B = <t1.A>") {
return find_rows(t3, NULL, "WHERE C = <t2.B>")
}
}

Usi vg the NLJ algorithm, MySQL begi s by usi \g some_index to fi vd matchi \g rows
i+ the outermost table: t1. For each matchi g row i+ table t1, MySQL joi \s table t2
by usivg avivdex o the joiy colum v, index_on_B, to lookup rows matchi g t1.A.
For each matchi g row i+ table t2, MySQL joi s table t3 usig the same process,
but—ijust for fu v—let’s say there’s 1o ivdex o the joi+ colum v, t3.C: the result is a
full joi v. (Recall “Select full joi v’ o v page 21 a \d Example 2-21.)

Whe v o more rows i+ t3 match the joiv colum value from table t2, the ext
matchig row from t2 is used. Whe ' o more rows iy t2 match the joi colum v
value from table t1, the vext matchi g row from t1 is used. Whe v 1o more rows i
t1 match, the query completes.

The rested-loop joi v algorithm is simple a\d effective, but there’s o ve problem: the
iviermost table is accessed very freque vtly, a \d the full joi v makes that access very
slow. I this example, table t3 is accessed for every matchi g row i+ t1 multiplied
by every matchig row i+ t2. If both t1 a~d t2 have 10 matchi g rows, the t3 is
accessed 100 times. The block nested-loop joi v algorithm addresses this problem. Joi v
colum + values from matchivg rows i+ t1 ad t2 are saved i+ a join buffer. (The joi
buffer size is set by system variable join_buffer_size.) Whe v the joi v buffer is full,
MySQL sca s t3 ad joivs each t3 row that matches joi v colum v values i+ the joi
buffer. Although the joi+ buffer is accessed ma vy times (for each t3 row), it’s fast
because it’s i v memory—sig vifica vtly faster tha v 100 table sca s required for the NLJ
algorithm.

As of MySQL 8.0.20, the hash joi+ algorithm replaces the block ‘ested-loop joi
algorithm.® Hash join creates a v i -memory hash table of joi \ tables, like table t3 i+

6 Hash joi v exists as of MySQL 8.0.18 but replaces block ‘ested-loop as of MySQL 8.0.20.
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this example. MySQL uses the hash table to look up rows i the joi\ table, which is
extremely fast because a hash table lookup is a co \sta 1t time operatio \. For details,
read “Hash Joi v Optimizatio v’ i v the MySQL ma wual.

EXPLAIN i+dicates a hash joi v by pritivg “Usi g joi v buffer (hash
joiv)”ivthe Extra field.

There are more details a \d vua ces to MySQL joi vs, but this brief overview helps you
to thi \k about joi \s like MySQL: o ve table at a time a \d o ve i \dex per table.

Summary
This chapter taught i dexes a \d i \dexi vg with MySQL. The key takeaway poi vts are:

I \dexes provide the most a \d the best leverage for MySQL performa ce.

Do ot scale up hardware to improve performace util exhaustivg other
optio 1s.

Tuvivg MySQL is ‘ot recessary to improve performace with a reaso vable
co ‘figuratio .

AIvvoDB table is a B-tree i vdex orga vized by the primary key.

MySQL accesses a table by idex lookup, ivdex sca, or full table sca—idex
lookup is the best access method.

To use avivdex, a query must use a leftmost prefix of the i vdex—the leftmost
prefix requirement.

MySQL uses a ivdex to fid rows matchi \g WHERE, group rows for GROUP BY,
sort rows for ORDER BY, avoid readi g rows (coveri g i \dex), a \d joi  tables.

EXPLAIN privts a query execution plan (or EXPLAIN plan) that details how
MySQL executes a query.

I\dexi \g requires thi 1ki vg like MySQL to u \dersta \d the query executio v pla .
Good i \dexes ca \ lose effective vess for a variety of reaso s.

MySQL uses three algorithms to join tables: NLJ, block vested-loop, a \d hash
join.

The rext chapter begi s to address i \direct query optimizatio \ with respect to data.
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Practice: Find Duplicate Indexes

The goal of this practice is to ide vtify duplicate ivdexes usi‘g pt-duplicate-key-
checker: a comma vd-li ve tool that pri vts duplicate i \dexes.

The practice is simple but useful: dow \load a \d ru pt-duplicate-key-checker. By
default, it checks all tables a\d prits a report for each duplicate i vdex, such as the
followi vg:

B S A R A A A A
# db_name.table_name
B

# 1dx_a is a left-prefix of idx_a_b

# Key definitions:

# KEY “idx_a' ("a’),

# KEY ‘idx_a_b® ('a’,’b")

# Column types:

# ‘a' int(11) default null

# ‘bt int(11) default null

# To remove this duplicate index, execute:

ALTER TABLE “db_name". table_name’ DROP INDEX ‘idx_a";

For each i\dex a \d its duplicate, the report i vcludes:

o A reaso \: why o ‘e i dex duplicates the other

Both i vdex defi vitio s

o Colum \ defi vitio \s that the i \dexes cover

e AVALTER TABLE stateme vt to drop the duplicate i vdex

pt-duplicate-key-checker is mature a \d well tested, but always thi vk carefully before
droppi vg a v i \dex—especially i v productio .

Like “Practice: Ide vtify Slow Queries” o\ page 33, this practice is simple—but you
would be surprised how ma vy e \gi veers vever check for duplicate i vdexes. Checki \g
for a \d removi \g duplicate i vdexes is practici \g MySQL performa ce like a v expert.
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CHAPTER 3
Data

This chapter begi \s the seco \d part of the jour vey: indirect query optimization. As
me ‘tio ved i+ “Improvi \g Query Respo vse Time” o \ page 27, direct query optimiza-
tio v solves a lot of problems, but ‘ot all. Eve v whe 1 you surpass the k vowledge a \d
skills i v Chapter 2, which focuses o\ direct query optimizatio v, you will e vcou vter
queries that are simple a \d properly i vdexed but still slow. That’s whe 1 you begi \ to
optimize around the query, starti \g with the data that it accesses. To u \dersta \d why,
let’s thi vk about rocks.

Imagi ve that your job is to move rocks, a \d you have three piles of differe 1t sized
rocks. The first pile co vtai \s pebbles: very light, vo larger tha v your thumb vail. The
seco \d pile co vtai vs cobbles: heavy but light e vough to pick up, o larger tha v your
head. The third pile co vtai s boulders: too large ad heavy to pick up; you reed
leverage or a machi ve to move them. Your job is to move o ve pile from the bottom of
a hill to the top ( vo matter why; but if it helps, imagi e that you're Sisyphus). Which
pile do you choose?

I presume that you choose the pebbles because theyre light a \d easy to move. But
there’s a critical detail that might cha \ge your decisio \: weight. The pile of pebbles
weighs two metric to \s (the weight of a mid-size SUV). The pile of cobbles weighs
o0 e metric to v (the weight of a very small car). Ad there’s o1ly o e boulder that
weighs half a metric to v (the weight of te v adult huma vs). Now which pile do you
choose?

O the ove had, the pebbles are still a lot easier to move. You ca shovel them
ivto a wheelbarrow ad roll it up the hill. There’s just a lot of them (pebbles, ‘ot
wheelbarrows). The boulder is a fractio v of the weight, but its si \gular size makes it
u wieldy. Special equipme vt is ‘eed to move it up the hill, but it’s a o ve-time task.
Tough decisio 1. Chapter 5 provides a v a \swer a \d a v expla vatio v, but we have much
more to cover before that chapter.
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Data is a valogous to a pile of rocks, a \d executi vg queries is a valogous to movi \g the
rocks uphill. Whe v data size is small, direct query optimizatio v is usually sufficie 1t
because the data is trivial to ha vdle—like walki'g (or ruvvivg) up a hill with a
ha dful of pebbles. But as data size i \creases, i\direct query optimizatio v becomes
i\creasi vgly importa vt—like luggi vg a heavy cobble up a hill a \d stoppi \g midway to
ask, “Ca v we do somethi vg about these rocks?”

Chapter 1 provided a “proof” that data size affects performa vce: TRUNCATE TABLE
dramatically i vcreases performa vce—but do vt use this “optimizatio v” That’s a joke,
but it also proves a poi 1t that is ot freque vtly followed through to its logical co se-
que ce: less data is more performance. Thats the tagli ve; the full stateme 1t is: you
ca improve performa \ce by reducivg data because less data requires fewer system
resources (CPU, memory, storage, a \d so o).

You ca v tell by vow that this chapter is goi \g to argue for less data. But is vt more data
the reality a \d reaso v that drives e \gi veers to lear v about performa ce optimizatio 1?
Yes, ad Chapter 5 addresses MySQL at scale, but first it's imperative to lear to
reduce ad optimize data whe v it’s relatively small a \d problems are tractable. The
most stressful time to lear v is whe \ you've ig vored data size util it’s crushi g the
applicatio .

This chapter examies data with respect to performa vce ad argues that reducig
data access a\d storage is a tech vique—a v i \direct query optimizatio \—for improv-
ivg performa vce. There are three major sectio vs. The first reveals three secrets about
MySQL performa vce. The seco \d itroduces what I call the principle of least data
avd its vumerous implicatio \s. The third covers how to quickly and safely delete or
archive data.

Three Secrets

To keep a secret is to co vceal a truth. The followi \g truths are ‘ot always revealed i
books about MySQL performa vce for two reaso s. First, they complicate matters. It’s
a lot easier to write about a\d explai v performa ce without me vtio vi \g the caveats
avd gotchas. Seco \d, theyre cou vteri vtuitive. That does vt make them false, but it
does make them difficult to clarify. Nevertheless, the followi g truths are importa vt
for MySQL performa vce, so let’s dig i vto the details with a v ope » mi \d.

Indexes May Not Help

Iro vically, you ca v expect the majority of slow queries to use a i vdex lookup. That’s
irovic for two reaso vs. First, ivdexes are the key to performa vce, but a query ca
be slow eve v with a good idex. Seco \d, after lear vi g about i \dexes ad i+dexi g
(as discussed i+ Chapter 2), e gi veers become so good at avoidi g i\dex sca s axd
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table scas that o\ly ivdex lookups remaiy, which is a good problem but iro vic
10 vetheless.

Performa ce ca \ ‘ot be achieved without i vdexes, but that does vt mea  that i \dexes
provide i +fi vite leverage for i \fi vite data size. Do vt lose faith i v i vdexes, but be aware
of the followi g cases i+ which idexes may ‘ot help. For each case, presumi g the
query ad its i vdexes ca v vot be optimized a vy further, the vext step is i \direct query
optimizatio .

Index scan

A vivdex sca provides dimi vishi vg leverage as a table grows because the i \dex also
grows: more table rows, more ivdex values.! (By co vtrast, the leverage that a v idex
lookup provides almost ‘ever dimi vishes as lo vg as the i\dex fits i v memory.) Eve
avivdex-oly scateds ‘ot to scale because it almost certai \ly reads a large vumber
of values—a safe presumptio \ because MySQL would have do e a i \dex lookup to
read fewer rows if possible. A v ivdex sca o1ly delays the ievitable: as the vumber
of rows i+ the table i creases, respo 1se time for queries that use a v ivdex sca v also
i\creases.

Finding rows

Whe I optimize a slow query that uses a ivdex lookup, the first query metric I
check is rows exami ved (see “Rows exami ved” o \ page 18). Fi \di \g matchi \g rows is
the fu vdame vtal purpose of a query, but eve v with a good i \dex, a query ca » exami ‘e
too ma vy rows. Too many is the poi 1t at which respo vse time becomes u vacceptable
(avd the root cause is ‘ot somethig else, like ivsufficie t memory or disk IOPS).
This happe s because several i \dex lookup access types ca y match ma vy rows. Oly
the access types listed i v Table 3-1 match at most o ve row.

Table 3-1. Index lookup access types that match at most one row

O system
O const
O eq_ref
O

unique_subquery

If the type field i vay EXPLAIN plavis vot o ve of the access types listed i v Table 3-1,
the v pay close atte vtio » to the rows field a \d the query metric rows exami ved (see
“Rows examived” o+ page 18). Examivivg a very large vumber of rows is slow
regardless of the i \dex lookup.

1 MySQL does ot support sparse or partial i \dexes.
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“EXPLAIN Output Format” iy the MySQL ma vual e vumerates
access types, which it calls join types because MySQL treats every
query as a joiv. I+ this book, for precisio v ad co vsiste xcy I use
o0 ly two terms: access method a~d access type, as writte v through-
out Chapter 2.

Very low idex selectivity is a likely accomplice. Recall “Extreme Selectivity” o \ page
86: i \dex selectivity is cardi vality divided by the vumber of rows i\ the table. MySQL
is uvlikely to chose a v i vdex with very low selectivity because it ca v match too ma vy
rows. Sice seco \dary ivdexes require a seco \d lookup i+ the primary key to read
rows, it cay be faster to eschew av ivdex with extremely low selectivity axd do a
full table sca ivstead—presumig there’s ‘o better ivdex. You ca+ detect this i+
ay EXPLAIN pla+ whe the access method is a table scay (type: ALL) but there
are ivdexes that MySQL could use (possible_keys). To see the executio v pla that
MySQL is ot choosi vg, EXPLAIN the query with FORCE INDEX to use a i‘dex listed
i the possible_keys field. Most likely, the resulti vg executio v pla \ will be a v idex
sca (type: index) with a large vumber of rows, which is why MySQL chooses a
table sca vi\stead.

Recall “Its a Trap! (Whe v MySQL Chooses A vother I1dex)” o
page 87: i very rare cases, MySQL chooses the wro \g ivdex. If a
query exami ves too ma \y rows but youre certai theres a better
ivdex that MySQL should use, there’s a small cha ce that the i vdex
statistics are wro vg, which causes MySQL to ‘ot choose the better
ivdex. Ru v ANALYZE TABLE to update i vdex statistics.

Remember that idex selectivity is a fu \ctio v of cardi vality ad the vumber of rows
iv the table. If cardivality remai s co \sta vt but the wumber of rows i \creases, the v
selectivity decreases. Co vseque vtly, a ivdex that helped whe \ the table was small
may ‘ot help whe + the table is huge.

Joining tables

Whe v joi vivg tables, a few rows i each table quickly obliterate performa vce. If you
recall from “Table Joi v Algorithms” o v page 87, the vested-loop joi v (NLJ) algorithm
(Example 2-22) e +tails that the total vumber of rows accessed for a joi v is the product
of rows accessed for each table. I+ other words, multiply the values for rows ivan
EXPLAIN pla. A three-table joi v with o1ly o ve hu vdred rows per table ca v access
o e million rows: 100 x 100 x 100 = 1,000,000. To avoid this, the i‘dex lookup
o each table joived should match o1ly o1e row—o ve of the access types listed i+
Table 3-1 is best.
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MySQL ca v joi tables i v almost a vy order. Use this to your adva tage: sometimes
the solutio v to a poor joiv is a better ivdex o\ a vother table that allows MySQL to
cha \ge the joi v order.

Without a v ivdex lookup, a table joi+ is doomed. The result is a full joiy, as fore-
war ved iv “Select full joiv” o+ page 21. But eve with a~ ivdex, a table joiv will
struggle if the i \dex does ‘ot match a si gle row.

Working set size

I\dexes are o1ly useful whe theyre iy memory. If the ivdex values that a query
looks up are ‘ot iy memory, the v MySQL reads them from disk. (More accurately,
the B-tree vodes that co \stitute the ivdex are stored iy 16 KB pages, a \d MySQL
swaps pages betwee v memory ad disk as ‘eeded.) Readi g from disk is orders of
mag vitude slower tha v readi \g from memory, which is o ve problem, but the mai
problem is that i vdexes compete for memory.

If memory is limited but ivdexes are vumerous ad freque \tly used to look up a
large perce vtage of values (relative to the table size), the v i \dex usage ca icrease
storage I/0 as MySQL attempts to keep freque vtly used i vdex values i v memory. This
is possible but rare for two reaso \s. First, MySQL is exceptio vally good at keepi g
freque vtly used i+dex values iy memory. Seco \d, freque tly used idex values a\d
the primary key rows to which they refer are called the working set, a\d it’s usually a
small perce vtage of the table size. For example, a database ca \ be 500 GB large, but
the applicatio v freque vtly accesses 01ly 1 GB of data. I light of this fact, MySQL
DBAs commo 1y allocate memory for o \ly 10% of total data size, usually rou vded to
sta xdard memory values (64 GB, 128 GB, ad so forth). 10% of 500 GB is 50 GB, so
a DBA would probably err o + the side of cautio v a\d rou \d up to 64 GB of memory.
This works surpassi \gly well a \d is a good starti vg poi t.

As a starti \g poi ¥, allocate memory for 10% of total data size. The
worki vg set size is usually a small perce vtage of total data size.

Whe v the workig set size becomes sigifica wtly larger thay available memory,
ivdexes may ‘ot help. I \stead, like a fire that bur s so hot that water fuels it rather
tha v exti vguishi \g it, i \dex usage puts pressure o \ storage I/O a \d everythi vg slows
dow . More memory is a quick fix, but remember “Better, Faster Hardware!” o  page
37: scalivg up is ‘ot a sustai vable approach. The best solutio v is to address the data
size a\d access patter \s respo vsible for the large worki \g set. If the applicatio v truly
reeds to store ad access so much data that the worki \g set size ca v vot fit withi s
a reaso vable amou ‘vt of memory o a sigle MySQL ista ce, the v the solutio v is
shardi vg, which is covered i v Chapter 5.
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Less Data Is Better

Experie vced e \gi veers do vt celebrate a huge database, they cope with it. They cele-
brate whe v data size is dramatically reduced because less data is better. Better for
what? Everythi vg: performa vce, ma ageme \t, cost, a \d so o \. It’s simply a lot faster,
easier, a\d cheaper to deal with 100 GB of data thay 100 TB o\ a siygle MySQL
ista vce. The former is so small that a smartpho ve ca \ ha \dle it. The latter requires
specialized hadlivg: optimizi g performa\ce is more challe \gi\g, mavagi\g the
data cav be risky (what’s the backup a“d restore time?), avd good luck fivdivg
affordable hardware for 100 TB. It’s easier to keep data size reaso vable tha v to cope
with a huge database.

Ay amout of data thats legitimately required is worth the time ad effort to
optimize a \d ma vage. The problem is less about data size a \d more about u bridled
data growth. It's ‘ot uycommo for e gieers to hoard data: storivg avy axd all
data. If youre thikivg, “Not me. I do vt hoard data,” the wo vderful. But your
colleagues may ‘ot share your laudable se \se of data asceticism. If ‘ot, raise the issue
of ubridled data growth before data size becomes a problem.

Do vt let a v u wieldy database catch you by surprise. Mo vitor data
size (see “Data Size” o v page 203) a \d, based o \ the curre 1t rate of
growth, estimate data size for the vext four years. If future data size
is vot feasible with the curre \t hardware ad applicatio v desig ,
the v address the issue vow before it becomes a problem.

Less QPS Is Better

You may rever fid a vother book or e gi veer that says less QPS is better. Cherish the
mome t.

I realize that this secret is cou teri vtuitive, perhaps eve v uypopular. To see its truth
ad wisdom, co vsider three less objectio able poi \ts about QPS:

QPS is only a number—a measurement of raw throughput

It reveals vothi\g qualitative about the queries or performa vce i+ ge veral. O ‘e
applicatio v ca be effectively idle at 10,000 QPS, while a vother is overloaded
avd haviyg av outage at half that throughput. Eve v at the same QPS, there
are vumerous qualitative differe \ces. Executi g SELECT 1 at 1,000 QPS requires
almost zero system resources, but a complex query at the same QPS could be
very taxi\g o v all system resources. A \d high QPS— 1o matter how high—is o \ly
as good as query respo ‘se time.
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QPS values have no objective meaning
Theyre reither good vor bad, high vor low, typical vor atypical. QPS values are
0 \ly mea vi vgful relative to a v applicatio v. If o ve applicatio \ averages 2,000 QPS,
the v 100 QPS could be a precipitous drop that i vdicates a outage. But if a vother
applicatio v averages 300 QPS, the v 100 QPS could be a vormal fluctuatio v. QPS
ca also be relative to exter val eve vts: time of day, day of week, seaso s, holidays,
avdsoon.

It is difficult to increase QPS
By co itrast, data size ca icrease with relative ease from 1 GB to 100 GB—a
100x ivcrease. But it’s ivcredibly difficult to ivcrease QPS by 100x (except for
extremely low values, like 1 QPS to 100 QPS). Eve v a 2x i vcrease i v QPS ca be
very challe vgi \g to achieve. Maximum QPS—relative to a v applicatio v—is eve 1
more challe \gi g to ixcrease because you ca ot purchase more QPS, ulike
storage a \d memory.

I+ summary of these poits: QPS is ‘ot qualitative, o \ly relative to a v applicatio v,
ad difficult to icrease. To put a poit o it: QPS does not help you. It's more of a
liability tha v a v asset. Therefore, less QPS is better.

Experie vced e gieers celebrate whe v QPS is reduced (i vte vtio vally) because less
QPS is more capacity for growth.

Principle of Least Data

I defi ve the pri\ciple of least data as: store and access only needed data. That sou \ds
obvious i+ theory, but it’s far from the vorm i+ practice. It's also deceptively simple,
which is why the vext two sectio \s have ma vy fi ve details.

Commo  se \se is ot so commo .

—Voltaire

Data Access

Do vot access more data tha v veeded. Access refers to all the work that MySQL does
to execute a query: fi \d matchi \g rows, process matchi \g rows, a \d retur \ the result
set—for both reads (SELECT) ad writes. Efficie vt data access is especially importa vt
for writes because it's more difficult to scale writes.

Table 3-2 is a checklist that you ca apply to a query—hopefully every query—to
verify its data access efficie \cy.
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Table 3-2. Efficient data access checklist

O Return only needed columns
Reduce query complexity
Limit row access

Limit the result set

Ooooao

Avoid sorting rows

To be fair avd balaced, igorivg a sivgle checklist item is ulikely to affect per-
forma vce. For example, the fifth item—avoid sorti g rows—is commo \ly ig‘ored
without affecti vg performa \ce. These items are best practices. If you practice them
u vtil they become habit, you will have greater success a \d performa vce with MySQL
tha v e vgi veers who ig vore them completely.

Before I explai v each item i+ Table 3-2, let’s take o e paragraph to revisit a v example
i+ Chapter 1 that I deferred to this chapter.

Perhaps you recall this example from “Query profile” o page 9: “As I write this,
I'm lookiyg at a query with load 5,962. How is that possible?” That query load is
possible tha 1ks to incredibly efficie vt data access ad a v extremely busy applicatio .
The query is like SELECT coll, col2 WHERE pk_col = 5: a primary key look up
that retur vs 0 \ly two colum s from a sigle row. Whe v data access is that efficie vt,
MySQL fuctiovs almost like av iv-memory cache, a\d it executes the query at
ivcredible QPS a~d query load. Almost, but vot e tirely, because every query is a
tra vsactio \ that e vtails overhead. (Chapter 8 focuses o\ tra vsactio 1s.) To optimize
a query like this, you must chage access patter \s because the query cavot be
optimized a vy further ad the data size ca 1ot be reduced. I revisit this query o ‘e
more time iy Chapter 4.

Return only needed columns

Queries should retur v 0 \ly veeded colum »s.

Do vot SELECT *. This is especially importa vt if the table has a vy BLOB, TEXT, or JSON
colum vs.

You've probably heard this best practice before because the database idustry (ot
just MySQL) has bee v harpig o it for decades. I ca vt recall the last time I saw
SELECT * i productio v, but it's importa 1t e vough to keep repeati\g.

Reduce query complexity

Queries should be as simple as possible.
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Query complexity refers to all tables, co\ditio vs, axd SQL clauses that co \stitute a
query. I this co vtext, complexity is relative o \ly to a query, ‘ot to e \gi veers. Query
SELECT col FROM tbl WHERE id = 1 is less complex tha a query that joins five
tables with ma vy WHERE co ditio »s.

Complex queries are a problem for egieers, ot MySQL. The more complex a
query, the more difficult it is to avalyze ad optimize. If youre lucky, a complex
query works well a xd vever shows up as a slow query (see “Query profile” o \ page 9).
But luck is ‘ot a best practice. Keep queries simple from the start (whe v first writte v),
a\d reduce query complexity whe \ possible.

With respect to data access, simple queries te \d to access less data because they have
fewer tables, co ditio vs, a \d SQL clauses—less work for MySQL. But be careful: the
wro \g simplificatio v ca yield a worse EXPLAIN pla\. For example, Figure 2-21
i+ Chapter 2 demo 1strates how removi \g a co \ditio v vegates a \ ORDER BY optimiza-
tio v, resulting i+ a (slightly) worse EXPLAIN pla . Always co \firm that a simpler
query has a v equivale 1t or better EXPLAIN pla v—a \d the same result set.

Limit row access
Queries should access as few rows as possible.

Accessi g too ma vy rows usually comes as a surprise; its ‘ot somethi g e \gi \eers
do ittetiovally. Data growth over time is a commo \ cause: a fast query starts by
accessig a few rows, but years ad gigabytes later, it becomes a slow query because
it accesses too ma vy rows. Simple mistakes are a other cause: a v e \gi \eer writes a
query that they thi vk will access a few rows, but they’re wro 1g. At the i vtersectio v of
data growth a\d simple mistakes is the most importa vt cause: not limiting ranges and
lists. A v ope v-e \ded ra \ge like col > 75 ca access cou vtless rows if MySQL does a
rage scay o col. Eve v if this is i vte \ded because the table is presumed to be small,
be aware that row access is virtually ubou vded as the table grows, especially if the
ivdex o colis ‘o whique.

A LIMIT clause does ‘ot limit row access because LIMIT applies to the result set after
matchivg rows. The exceptio \ is the ORDER BY...LIMIT optimizatio v: if MySQL ca
access rows iV ivdex order, the v it stops readi g rows whe v the LIMIT wmber of
matchi g rows are fou \d. But here’s the fu \ part: EXPLAIN does ot report whe  this
optimizatio  is used. You must i vfer the optimizatio v from what a v EXPLAIN does
ad does vot report. Let’s take a mome vt to see this optimizatio v i v actio v a\d prove
that it limits row access.

Usivg table elem (Example 2-1) from Chapter 2, let’s first execute a query that does
‘ot have a LIMIT clause. Example 3-1 shows that the query retur \s eight rows.
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Example 3-1. Rows for query without LIMIT

SELECT * FROM elem WHERE a > 'Ag' ORDER BY a;

oo
| id | a | b
LT
| 8] AL | B
| 9] AL | B
| 3| Al | Br
| 106 | Ar | B
| 4| Ar | Br
| 5] Ar | Br
| 7| At | Bi
| 2] Au | Be
oo
8 rows in set (

-t

+
|

+

| |
| |
| |
| cd |
| |
| |
| |
| |
+

0.00 sec)

Without a LIMIT clause, the query accesses (ad retur vs) eight rows. Accordi gly,
EXPLAIN reports rows: 8 evey with a LIMIT 2 clause—as show v i\ Example 3-2—
because MySQL ca ot k vow how ma vy rows i+ the rage will not match util it
executes the query. Worst case: MySQL reads all rows because 1o ‘e match. But for
this simple example, we ca \ see that the first two rows (id values 8 a \d 9) will match
the o 1ly table co \ditio v. If we're right, query metrics will report two rows exami ved,
‘ot eight. But first, let’s see how to i+fer the optimizatio \ from the EXPLAIN plavi

Example 3-2.

Example 3-2. EXPLAIN plan for ORDER BY...LIMIT optimization

EXPLAIN SELECT

* FROM elem WHERE a > 'Ag' ORDER BY a LIMIT 2\G

hhkkkhkhkhkhhhhkhkhhkhkhkhkkhkhkhkhkx 1. row kkkhkhkhkhkkhhkhkhhkhhkhkhhkkhhkhkkk®

id:
select_type:
table:
partitions:
type:
possible_keys:
key:
key_len:
ref:

rows:
filtered:
Extra:

1
SIMPLE
elem
NULL
range
a

a

8

NULL

8
100.00
Using index condition

You ca v i ‘fer that MySQL uses the ORDER BY...LIMIT optimizatio \ to access o \ly two
rows (LIMIT 2) because:
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o The query uses a vivdex (type: range)
o The ORDER BY colum v is a leftmost prefix of that i vdex (key: a)
o The Extra field does not report “Usi g filesort”

The proof is show v i+ Example 3-3: a svippet of the slow query log after MySQL
executed the query.

Example 3-3. Query metrics for ORDER BY...LIMIT optimization

# Query_time: 0.000273 Lock_time: 0.000114 Rows_sent: 2 Rows_examined: 2
SELECT * FROM elem WHERE a > 'Ag' ORDER BY a LIMIT 2;

Rows_examined: 2 atthe ed of the first li ve i v Example 3-3 proves that MySQL used
the ORDER BY...LIMIT optimizatio \ to access o \ly two rows istead of all eight rows.
To lear v more about this query optimizatio v, read “LIMIT Query Optimizatio ¥’ i+
the MySQL ma wual.

With respect to limiti vg ra ges ad lists, there’s a v importa vt factor to verify: does
the application limit the input used in a query? Way back i+ “Average, Perce rtile, a \d
Maximum” o\ page 25, I related a story: “Lo \g story short, the query was used to
look up data for fraud detectio v, a\d occasio vally a big case would look up several
thousa vd rows at o \ce, which caused MySQL to switch query executio v plaxs” I
that case, the solutio v was simple: limit applicatio v i vput to o e thousa \d values per
request. That case also highlights the fact that a huma ca v ivput a flood of values.
Normally, e \gi veers are careful to limit i vput whe v the user is a vother computer, but
their cautio \ relaxes whe 1 the user is a other huma v because they thik a huma
would vt or could vt i yput too ma vy values. But they’re wro \g: with copy-paste a\d a
loomi vg deadli ve, the average huma 1 ca  overload a vy computer.

For writes, limiti \g row access is critical because, ge verally speaki g, I+ voDB locks
every row that it accesses before it updates matchi g rows. Co \seque vtly, IvvoDB
ca lock more rows tha v you might expect. “Row Lockig” o\ page 260 goes ito
detail.

For table joi vs, limiti vg row access is also critical: recall from “Joi vi vg tables” o v page
94 that, o joiv, a few rows i each table quickly obliterates performa vce. I\ that
sectio v, I was poi vti g out that a table joi is doomed without a v ivdex lookup. I
this sectio v, I'm poi ‘ti vg out that a table joi  is double-doomed u vless it also accesses
very few rows. Remember: a ivdex lookup o a vouique ivdex cav access avy
wumber of duplicate rows.

K ow your access patter 1s: for each query, what limits row access? Use EXPLAIN to
see estimated row access (the rows field), a \d mo vitor rows examied (see “Rows
exami ved” o v page 18) to avoid the surprise of accessi \g too ma vy rows.
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Limit the result set

Queries should retur v as few rows as possible.

This is more i wolved tha v putti g a LIMIT clause o \ a query, although that certaily
helps. It refers to the applicatio v ‘ot usi g the e vtire result set: the rows retur ved by a
query. This problem has three variatio vs.

The first variatio v occurs whe + the applicatio v uses some rows, but ‘ot all. This ca
be do ve ite vtio vally or u i vte vtio vally. Ui vte vtio vally, it i vdicates that the WHERE
clause veeds better (or more) co \ditio \s to match oly ‘eeded rows. You ca spot
this i v applicatio 1 code that filters rows i vstead of usi \g WHERE co vditio 1s. If you spot
this, talk with your team to make sure it’s vot i vte vtio val. I vte vtio vally, a v applicatio 1
might select more rows to avoid a complex query by shifti \g row matchig from
MySQL to the applicatio v. This tech vique is useful o \ly whe v it reduces respo se
time—aki v to MySQL choosi g a table sca v i\ rare cases.

The seco d variatio v occurs whe v a query has a Y ORDER BY clause a \d the applicatio
uses a\ ordered subset of rows. Row order does vt matter for the first variatio v, but
it’s the defivi g characteristic of the seco \d variatio \. For example, a query retur s
1,000 rows but the applicatio v 0 \ly uses the first 20 rows i\ order. I this case, the
solutio v might be as simple as addi vg a LIMIT 20 clause to the query.

What does the applicatio v do with the remai i \g 980 rows? If those rows are ‘ever
used, the 1 defi vitely the query should vot retur \ them—add the LIMIT 20 clause. But
if those rows are used, the  the applicatio v is most likely pagi vati \g: usi g 20 rows
at a time (for example, showi g 20 results per page). I that case, it might be faster
ad more efficie 1t to use LIMIT 20 OFFSET N to fetch pages o  dema \d—where N =
20 x (page vumber — 1)—oly if the ORDER BY...LIMIT optimizatio v ca v be used (see
the previous sectio v, “Limit row access” o\ page 99). The optimizatio v is required
because, without it, MySQL must fi \d a \d sort all matchi g rows before it ca v apply
the OFFSET part of the LIMIT clause—a lot of wasted work to retur v o \ly 20 rows. But
eve \ without the optimizatio v, there’s a vother solutio \: a large but reaso vable LIMIT
clause. If, for example, you measure applicatio v usage ad fi\d that most requests
0 \ly use the first five pages, the v use a LIMIT 100 clause to fetch the first five pages
ad reduce the result set size by 90% for most requests.

The third variatio v occurs whe 1 the applicatio v only aggregates the result set. If the
applicatio v aggregates the result set and uses the i+dividual rows, that’s acceptable.
The atipatter v is only aggregati g the result set i‘stead of usig a SQL aggregate
fu vctio v, which limits the result set. Table 3-3 lists four a ‘tipatter s a vd correspo \d-
i g SQL solutio 1s.
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Table 3-3. Four result set antipatterns in an application

Antipattern in Application Solution in SQL

Adding a column value SUM(column)
Counting the number of rows COUNT(*)
Counting the number of values COUNT(column)...GROUP BY column

Counting the number of distinct values COUNT(DISTINCT column)
Extracting distinct values DISTINCT

Addi g a colum + value applies to other statistical fu vctio \s: AVG(), MAX(), MIN(), axd
so o \. Let MySQL do the calculatio v rather tha v retur \i vg the rows.

Cou tivg the vumber of rows is a \ extreme a tipatter v, but I've see v it, so I'm sure
there are other applicatio \s quietly wastig ‘etwork ba dwidth o+ reedless rows.
Never use the applicatio v 0 ]y to cou t rows; use COUNT(*) i\ the query.

As of MySQL 8.0.14, SELECT COUNT(*) FROM table (without a
WHERE clause) uses multiple threads to read the primary key i
parallel. This is ‘ot parallel query executio v; the MySQL ma vual
calls it “parallel clustered i vdex reads.”

Cou ti vg the vumber of values is, perhaps, easier for programmers to express i v code
tha va SQL GROUP BY clause, but the latter should be used to limit the result set. Usi vg
table elem (Example 2-1) agai v, Example 3-4 demo ‘strates how to cou t the vumber
of values for a colum 1 usi \g COUNT(column)...GROUP BY column.

Example 3-4. Counting the number of values

SELECT a, COUNT(a) FROM elem GROUP BY a;

LT +
| a | COUNT(a) |
R R R +
| Ag | 2|
| AL | 3
| Ar | 3]
| At | 1]
| Au | 1]
B +

For colum v a i\ table elem, two rows have value “Ag,” three rows have value “Al,” a\d
so forth. The SQL solutio » retur \s five rows, whereas the a vtipatter v would retur v all
te \ rows. These are vt dramatic umbers—five versus te v rows—but they make the
poi t: a query ca \ limit its result set by aggregati \g i * SQL, ‘ot applicatio \ code.
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COUNT(*) Versus COUNT(column)

COUNT(*) couts the vumber of matchi g rows—the result set size. COUNT(column)
couts the vumber of 1o \-NULL values i\ the colum \ of the matchi \g rows. Whe
COUNT(column) is used with other colum s (i \cludi vg itself), you veed a GROUP BY
clause for proper aggregatio v, as show v i v Example 3-4.

Extracti vg disti \ct values—deduplicati \g colum \ values—is trivial i v the applicatio
with a v associative array; but MySQL ca v do it, too, with DISTINCT, which limits the
result set. (DISTINCT qualifies as a v aggregate fu \ctio v because it’s a special case of
GROUP BY.) DISTINCT is especially clear a \d useful with a si\gle colum . For example,
SELECT DISTINCT a FROM elem retur s a list of uvique values from colum v a. (If
youre curious, colum v a has five uvique values: “Ag” “Aly” “Ar,” “At” axd “Au”) The
gotcha with DISTINCT is that it applies to all colum vs. SELECT DISTINCT a, b FROM
elem retur \s a list of uvique rows with values from colum s a a\d b. To lear » more,
check out “DISTINCT Optimizatio v’ i v the MySQL ma wual.

Avoid sorting rows

Queries should avoid sorti \g rows.

Sortivg rows i the applicatio v ivstead of MySQL reduces query complexity by
removi \g the ORDER BY clause, a \d it scales better by distributi \g work to applicatio
i sta vces, which are much easier to scale out tha v MySQL.

A Y ORDER BY clause without a LIMIT clause is a telltale sig v that the ORDER BY clause
ca be dropped ad the applicatio v ca v sort the rows. (It might also be the seco\d
variatio 1 of the problem discussed i the precedi \g sectio \.) Look for queries with a 1
ORDER BY clause but 1o LIMIT clause, the v determi ve whether the applicatio v ca v sort
the rows i vstead of MySQL—the a vswer should be yes.

Data Storage
Do ot store more data tha v veeded.

Although data is valuable to you, it’s dead weight to MySQL. Table 3-4 is a checklist
for efficie 1t data storage.

I highly ecourage you to audit your data storage because surprises are easy to
discover. I me vtio ved o ve such surprise at the begi v i \g of Chapter 2: the applicatio
I created that accide vtally stored o ve billion rows.
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Table 3-4. Efficient data storage checklist

O Only needed rows are stored

Every column is used

Every column is compact and practical

Every value is compact and practical

Every secondary index is used and not a duplicate

Oooooao

Only needed rows are kept

If you ca v check off all six items, the v you will be very well positio ved to scale data
to avy size. But its ‘ot easy: some items are easier to igore tha\ to impleme t,
especially whe 1 the database is small. But do vt delay: the very best time to fixd a\d
correct storage i vefficie \cies is whe 1 the database is small. At scale, a byte or two ca
make a big differe \ce whe  multiplied by high throughput a \d all 86,400 seco \dsiva
typical Earth day. Desig  for scale a \d pla \ for success.

Only needed rows are stored

As a v applicatio v cha vges a \d grows, e \gi veers ca \ lose track of what it stores. Ad
whe 1 data storage is ‘ot a\ issue, e \gi veers have 1o reaso \ to look at or ask about
what it stores. If it’s bee v a lo g time sice you or avyo e else reviewed what the
applicatio v is stori g, or if youre ew to the team or applicatio v, the v take a look. I
have see v, for example, forgotte  services writi vg data (for years, vo less) that vo 0 ve
was usiyg.

Every column is used

O e level deeper tha storivg ovly reeded rows is haviyg oily ‘eeded colum ss.
Agaiv, as the applicatio v cha vges ad grows, egieers ca lose track of colum vs,
especially whe v usi \g object-relatio val mappi \g (ORM).

U +fortu vately, there’s ‘o tool or automated way to fi vd uused colum s i v MySQL.
MySQL tracks which databases, tables, a \d i‘dexes are used, but it does ‘ot track
colum  usage. Nothi \g is more furtive tha v a v u vused colum . The o \ly solutio vis a
ma ual review: compare colum s used by applicatio v queries to colum 1s that exist i v
the tables.

Every column is compact and practical

Two levels deeper tha v stori vg 0 \ly veeded rows is havi vg every colum v be compact
ad practical. Compact mea s usi g the smallest data type to store values. Practical
mea s ‘ot usiyg a data type so small that it’s o verous or error-pro ‘e for you or the
applicatio v. For example, usiyg a v usigved INT as a bit field is compact (‘othi g
smaller tha v a bit) but usually vot practical.
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Familiarize yourself with all the MySQL data types.

The classic a vtipatter v is data type VARCHAR(255). This specific data type ad size
are a commo \ but i efficie vt default for ma vy programs ad e gi veers, who likely
copied the practice from a vother program or e gi veer. You will see it used to store
a vythi vg a \d everythi vg, which is why it’s i vefficie +t.

For example, lets reuse table elem (Example 2-1). Atomic symbols are o e or two
characters. Colum v defivitio v atomic_symbol VARCHAR(255) is tech vically compact
—a VARCHAR is variable le vgth, so it would use o\ly o e or two characters—but it
allows garbage in, garbage out: iwalid values like “Carbo v’ iystead of “C,” which
could have u 'k vow » co vseque vces for the applicatio v. A better colum v defi vitio v is
atomic_symbol CHAR(2), which is compact a vd practical.

Is colum v defivitio v atomic_symbol ENUM(...) eve better for table elem? ENUM is
more compact tha v CHAR(2), but is it more practical with over o ve hu \dred atomic
symbols? That’s a trade-off you could decide; either choice is pate \tly better tha v
VARCHAR(255).

ENUM is o ve of the great u vsu \g heroes of efficie 1t data storage.

Beware the colum  character set. If ‘ot explicitly defived, it defaults to the table
character set which, if also ot explicitly defived, defaults to the server character
set. As of MySQL 8.0, the default server character set is utf8mb4. For MySQL 5.7
ad older, the default server character set is latinl. Depe \dig o \ the character set,
a sivgle character like é might be stored as multiple bytes. For example, usi g the
latinl character set, MySQL stores ¢ as a sigle byte: 0xE9. But usi g the utf8mb4
character set, MySQL stores é as two bytes: 0xC3A9. (Emoji use four bytes per
character.) Character sets are a special a \d erudite world beyo \d the scope of most
books. For vow, all you veed to k vow is this: one character ca require several bytes of
storage, depe \di g o v the character a \d character set. Bytes add up quickly i+ large
tables.

Be very co vservative with BLOB, TEXT, axd JSON data types. Do ‘ot use them as a
dumpi \g grou \d, a catch-all, or ge veric buckets. For example, do vot store images i\
aBLOB—vyou ca v, it works, but do vt. There are far better solutio vs, like Amazo + S3.
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Compact ad practical exte \d all the way dow 1 to the bit level. A vother surprisi \gly
commo \ yet easily avoidable colum v storage i vefficie \cy is wastivg the high-order
bit of ivteger data types. For example, usivg INT ivstead of INT UNSIGNED: the
maximum value is roughly two billio v versus four billio v, respectively. If the value
ca ot be regative, the v use a v u \sig ved data type.

As of MySQL 8.0.17, UNSIGNED is deprecated for data types FLOAT,
DOUBLE, a d DECIMAL.

I+ the world of software e \gi veeri g, details like these might be co \sidered micro-
optimizatio \s or premature optimizatio v, which are frow ved upo v, but i\ the world
of schema desig v a \d database performa vce, they’re best practices.

Every value is compact and practical

Three levels deeper tha v storig o \ly eeded rows is havi \g every value be compact
ad practical. Practical has the same mea i \g as defied i+ the previous sectio v, but
compact mea s the smallest represe vtatio v of the value. Compact values are highly
depe vde 1t 0  how the applicatio v uses them. For example, co vsider a stri vg with o e
leadi g a~d o e traili\g space: “ and ”. Table 3-5 lists six ways that a v applicatio
could compact this strig.

Table 3-5. Six ways to compact the string “ and ”

Compactvalue  Possible use
“and” Strip all whitespace. This is common for strings.

“ and” Strip trailing whitespace. In many syntaxes (like YAML and Markdown), leading whitespace is
syntactically significant.

“and ” Strip leading whitespace. Perhaps less common but still possible. Sometimes used by programs to join
space-separated arguments (like command-line arguments).

Delete the value (empty string). Maybe the value is optional, like ASin FROM table AS
table_alias, which can be written as FROM table table_alias.

“8” Replace string with equivalent symbol. In written language, the ampersand character is semantically
equivalent to the word “and”.

NULL No value. Maybe the value is completely superfluous and can be removed, resulting in no value (not even
an empty string, which is still technically a value).

The tra vsformatio \s i v Table 3-5 represe 1t three ways to compact a value: mi vimize,
e code, a \d deduplicate.
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Minimize. To mi\imize a value, remove superfluous a\d extraeous data: white
space, comme \ts, headers, a \d so o \. Let’s co sider a more difficult yet familiar value
iy Example 3-5.

Example 3-5. Formatted SQL statement (not minimized)

SELECT
/*140001 SQL_NO_CACHE */
colil,
col2

FROM
tbl1

WHERE
/* comment 1 */
foo = ' bar

ORDER BY col1l

LIMIT 1; — comment 2

If a v applicatio v stores o \ly the the fu \ctio val parts of the SQL stateme vt i v Exam-
ple 3-5, the v it ca \ mivimize the value by collapsi \g white space betwee 1 keywords
(ot withi v values) a \d removi \g the last two comme vts ( vot the first). Example 3-6
is the mi vimized (compact) value.

Example 3-6. Minimized SQL statement
SELECT /*!40001 SQL_NO_CACHE */ coll, col2 FROM tbll WHERE foo=' bar ' LIMIT 1

Examples 3-5 ad 3-6 are fu \ctio vally equivale vt (same EXPLAIN plav), but the data
size of the mitimized value is almost 50% smaller (48.9%): 137 bytes to 70 bytes,
respectively. For lovg-term data growth, a 50% reductio v—or eve\ just 25%—is
sig vifica vt a \d impactful.

Mi vimizi vg a SQL stateme vt illustrates a v importa t poi \t: mi vimizi \g a value is ‘ot
always trivial. A SQL stateme vt is vt a mea i gless strivg: it's a sy vtax that requires
sy vtactical aware vess to mivimize correctly. The first comme vt ca \ ‘ot be removed
because it’s fu ctio val. (See “Comme ts” i v the MySQL ma wual.) Likewise, the white
space i\ the quoted value ' bar 'isfuxctioval: ' bar 'is votequalto 'bar'. A\d
you might have voticed a ti vy detail: the traili \g semicolo \ was removed because it’s
vot fu ctio val i v this co vtext, but it is fu vctio val i v other co texts.

Whe 1 co sideri vg how to mivimize a value, begi v with its data format. The sy ‘tax
ad sema vtics of the data format dictate which data is superfluous a \d extra veous.
I+ YAML, for example, comme ts # like this are pure comme vts (u like certai v
SQL comme ts) avd cay be removed if the applicatio v does vt veed them. Eve v if
your data format is custom-built, it must have some sy vtax a \d sema tics, else the
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applicatio v could ‘ot programmatically read ad write it. It's vecessary to k vow the
data format to mi vimize a value correctly.

The most mi vimal value is ‘o value at all: NULL. I k vow that deali \g with NULL ca
be a challe vge, but there’s a+ elega 1t solutio v that I highly e vcourage you to use:
COALESCE(). For example, if colum v middle_name is wullable (ot all people have
middle ‘ames), the\ use COALESCE(middle_name, '') to retur\ the value if set,
else retur v a v empty strivg. This way, you get the be vefits of NULL storage—which
requires o0 \ly o e bit—without the hassle of ha \dli vg wull strigs (or poi vters) i+ the
applicatio . Use NULL i \stead of empty stri \gs, zero values, a \d magical values whe
practical. It requires a little extra work, but it’s the best practice.

NULL avd NULL are uhique; that is, two wull values are uique.
Avoid uique ivdexes o+ vullable colum vs, or be certai v that the
applicatio v properly ha dles duplicate rows with NULL values.

If you really wa vt to avoid usi \g NULL, the previous war vi g is your tech vical reaso .
These two sets of values are unique: (1, NULL) axd (1, NULL). That is ‘ot a typo.
To huma vs, those values look ide tical, but to MySQL they are uvique because the
compariso v of NULL to NULL is u defived. Check out “Worki \g with NULL Values”
iy the MySQL ma wual. It begi s with a humble admissio v: “The NULL value ca be
surprisi vg u il you get used to it

Encode. To e“code a value, co wert it from huma v-readable to machi ve-e \coded.
Data ca  be e coded ad stored o e way for computers, a \d decoded a \d displayed
aother way for huma s. The most efficie \t way to store data o\ a computer is to
e vcode it for the computer.

Store for the machi ve, display for the huma .

The qui vtesse vtial example ad atipatter v is storivg a IP address as a stri\g.
For example, storivg 127.0.0.1 as a strivg i+ a CHAR(15) colum . IP addresses are
four-byte u vsig ved itegers—thats the true machive excodivg. (If youre curious,
127.0.0.1 is decimal value 2130706433.) To e vcode a \d store IP addresses, use data
type INT UNSIGNED ad fu \ctio xs INET_ATON() axd INET_NTOA() to co wert to ad
from a strivg, respectively. If e codi+g IP addresses is impractical, the v data type
CHAR(15) is a v acceptable alter vative.
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A vother similar example ad a tipatter v is stori g a UUID as a strivg. A UUID is
a multibyte i vteger represe vted as a strig. Sice UUID byte le vgths vary, you ‘eed
to use data type BINARY(N), where N is the byte le vgth, a~d fu\ctio vs HEX() ad
UNHEX() to co wert the value. Or, if you're usi \g MySQL 8.0 (or vewer) a \d RFC 4122
UUIDs (which MySQL UUID() ge verates), you ca  use fu \ctio \s UUID_TO_BIN() ad
BIN_TO_UUID(). If e xcodi vg UUIDs is impractical, at least store the stri \g represe vta-
tio v usi vg data type CHAR(N), where N is the stri \g le \gth i \ characters.

There is a more compact, computer-e \coded method to store data: compressio v. But
this is a v extreme method that creeps ito the gray zo ‘e of space-speed trade-offs,
which are beyo d the scope of this book. I have ‘ot see \ a case where compressio
was required for performa vce or scale. A rigorous applicatio v of the efficie vt data
storage checklist (Table 3-4) scales data to sizes so large that other problems become
blockers: backup a \d restore time, o \li ve schema cha vges, a \d so forth. If you thi vk
you reed compressio \ to scale performa vce, co vsult with a v expert to verify.

While were o the topic of ecodivg, there’s ay importa vt best practice that I'll
shoehor v ivto this sectio : store a \d access dates ad times oly as UTC. Co wert
dates a \d times to local time (or whatever time zo e is appropriate) o \ly o v display
(or o\ pri \t). Also be aware that the MySQL TIMESTAMP data type e \ds o \ Ja uary 19,
2038. If you received this book as a holiday gift i * December 2037 a \d your databases
have TIMESTAMP colum 1s, you might wa vt to go back to work a little earlier.

Deduplicate. To deduplicate a value, vormalize the colum v ito a vother table with a
0 e-to-0 ve relatio vship. This method is e vtirely applicatio v-specific, so let’s co sider
a co \crete example. Imagive a overly simple catalogue of books stored iy a table
with oly two colum s: title avd genre. (Let’s focus o\ the data a“d ig ore the
details like data types ad i+dexes.) Example 3-7 shows a table with five books a \d
three u vique ge res.

Example 3-7. Book catalogue with duplicate genre values

B L LT T T +
| title | genre |
R T T LT +
| Efficient MySQL Performance | computers |
| TCP/IP Illustrated | computers |
| The C Programming Language | computers |
| Illuminations | poetry |
| A Little History of the World | history |
B R R P +

Colum v genre has duplicate values: three ista \ces of value computers. To dedu-
plicate, vormalize the colum ivto a‘other table with a o ‘e-to-o ve-relatio vship.
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Example 3-8 shows the ‘ew table at top ad the modified origi val table at bottom.
The two tables have a 0 e-to-o ve relatio vship o v colum  genre_1id.

Example 3-8. Normalized book catalogue

e e +
| genre_id | genre |
e e +
| 1 | computers |
| 2 | poetry |
| 3 | history |
ocemneenan Hommmannaeas +
eSS e +
| title | genre_id |
eSS e +
| Efficient MySQL Performance | 1 |
| TCP/IP Illustrated | 1 |
| The C Programming Language | 1 |
| Illuminations | 2 |
| A Little History of the World | 3 |
B e B +

The origi val table (at bottom) still has duplicate values for colum v genre_id, but the
reductio i v data size at scale is huge. For example, it takes 9 bytes to store the stri g
“computers” but o \ly 2 bytes to store the i vteger 1 as data type SMALLINT UNSIGNED,
which allows for 65,536 uvique ge res (probably e vough). That’s a 77.7% reductio
i+ data size: 9 bytes to 2 bytes.

Deduplicati vg values i+ this way is accomplished by database normalization: separat-
ivg data ivto tables based o logical relatio vships (o ‘e to ove, ove to mavy, axd
so forth). However, deduplicati vg values data is not the goal or purpose of database
ormalizatio \.

Database vormalizatio v is beyo \d the scope of this book, so I wo vt
explai it further. There are ma vy books o the subject, so you
wo vt have a vy trouble fidi g a great o e to lear \ about database
vormalizatio \.

From this example, it looks like database ‘ormalizatio causes deduplicatio v of
values, but thats vot strictly true. The sisgle table iy Example 3-7 is tech vically
valid first, seco \d, a \d third vormal forms (presumi \g there’s a primary key)—fully
vormalized, just poorly desiged. It's more accurate to say that deduplicatio v of
values is a commo ' (ad desired) side effect of database ‘ormalizatio . A \d sice
you should vormalize your databases iy avy case, youre likely to avoid duplicate
values.
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There’s a~ ivteresting flip side: denormalization. De vormalizatio v is the opposite
of vormalizatio v: combi i \g related data ito o e table. The si‘gle table i v Exam-
ple 3-7 could be a devormalized table, if that was the ite vtio v behi \d its desig .
De vormalizatio v is a tech vique to i‘crease performa ce by elimi vati \g table jois
ad atte \da vt complexities. But do vt rush to de vormalize your schemas because
there are details ad trade-offs to co vsider that are beyo \d the scope of this book.
I+ fact, de vormalizatio v is the opposite of less data because it i vte vtio vally duplicates
data to trade space for speed.

The safe bet ad best practice is database vormalizatio v ad less
data. I \credible scale a \d performa \ce are possible with both.

Every secondary index is used and not a duplicate

Seco\d to last o the efficie vt data storage checklist (Table 3-4): every seco \dary
ivdex is used axd ‘ot a duplicate. Avoidi g u wused ivdexes ad duplicate idexes
is always a great idea, but it’s especially importa vt for data size because i \dexes are
copies of data. Gra vted, seco \dary i vdexes are much smaller tha v the full table (the
primary key) because they o1ly co taiy ivdex colum v values ad correspo \dig
primary key colum + values, but these add up as the table grows.

Droppig uused ad duplicate seco vdary i+dexes is a easy way to reduce data
size, but be careful. As me vtio ved i\ “Excessive, Duplicate, a \d U vused” o 1 page 85,
findivg uused ivdexes is tricky because a v ivdex might ‘ot be used freque vtly, so
be sure to check i+dex usage over a sufficie \tly lo \g period. By co vtrast, duplicate
ivdexes are easier to fivd: use pt-duplicate-key-checker. Agaiv: be careful whe
droppi g i \dexes.

Droppig avivdex oly recovers a data size equal to the idex size. There are three
methods to see ivdex sizes. Let’s use the employees sample database because it has
a few megabytes of idex data. The first a \d preferred method to see ivdex sizes is
queryi \g table INFORMATION_SCHEMA.TABLES, as show v i v Example 3-9.

Example 3-9. Index sizes of employees sample database (INFORMATION_SCHEMA)

SELECT
TABLE_NAME, DATA_LENGTH, INDEX_LENGTH
FROM
INFORMATION_SCHEMA.TABLES
WHERE
TABLE_TYPE = 'BASE TABLE' AND TABLE_SCHEMA = 'employees';

R R T TR +
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| departments
| dept_emp

| dept_manager
| employees

| salaries

| titles

I
+
16384 |
12075008 |
16384 |
15220736 |
100270080 |
20512768 |
+

16384 |
5783552 |
16384 |

TABLE_NAME is the table vame i+ the employees sample database—o \ly six tables.
(The database has some views that are filtered out by co ditio « TABLE_TYPE = 'BASE
TABLE'.) DATA_LENGTH is the size of the primary key (iv bytes). INDEX_LENGTH is
the size of all seco vdary i+dexes (i bytes). The last four tables have ‘o seco \dary
ivdexes, 0 \ly a primary key.

The seco \d ad historical (but still widely used) method to see ivdex sizes is SHOW
TABLES STATUS. You ca v add a LIKE clause to show o \ly o ve table, as demo vstrated i v

Example 3-10.

Example 3-10. Index sizes of table employees. dept_emp (SHOW TABLE STATUS)

SHOW TABLE STATUS LIKE 'dept_emp'\G

hhkkhhhhhkhhhhdhkhhhhhrhhhhrx 1‘

Name:

Engine:
Version:
Row_format:
Rows:
Avg_row_length:
Data_length:
Max_data_length:
Index_length:
Data_free:
Auto_1increment:
Create_time:
Update_time:
Check_time:
Collation:
Checksum:
Create_options:
Comment:

dept_emp

InnoDB

10

Dynamic

331143

36

12075008

0

5783552

4194304

NULL

2021-03-28 11:15:15
2021-03-28 11:15:24
NULL
utf8mb4_0900_ai_ci
NULL

row dhkhhhhkdkhkhhhhhhhhhhhrhhhhrx

The fields Data_length ad Index_length i+ the SHOW TABLE STATUS output are
the same colum 1s a \d values from INFORMATION_SCHEMA.TABLES. It’s better to query
INFORMATION_SCHEMA.TABLES because you ca  use fu \ctio vs i v the SELECT clause like
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ROUND(DATA_LENGTH / 1024 / 1024) to co wert a \d rou \d the values from bytes to
other u vits.

The third method to see ivdex sizes is curre vtly the o \ly method to see the size of
each ivdex: query table mysql.innodb_index_stats, as show i+ Example 3-11 for
table employees.dept_emp.

Example 3-11. Size of each index on table employees. dept_emp
(mysql.innodb_index_stats)

SELECT

index_name, SUM(stat_value) * @@innodb_page_size size
FROM

mysql.innodb_index_stats
WHERE

stat_name = 'size'

AND database_name = 'employees'

AND table_name = 'dept_emp'
GROUP BY index_name;

doeemeeeaeaas deoeemmeeaa +
| index_name | size |
o e +
| PRIMARY | 12075008 |
| dept_no | 5783552 |
oo e +

Table employees.dept_emp has two ivdexes: a primary key ad a seco vdary ivdex
vamed dept_no. Colum v size co taits the size of each ivdex iv bytes, which is
actually the vumber of i+dex pages multiplied by the I 10DB page size (16 KB by
default).

The employees sample database is ot a spectacular display of seco vdary i vdex size,
but real-world databases ca v be overflowi vg with seco vdary i \dexes that accou vt for
a sigvifica vt amou vt of total data size. Regularly check idex usage ad i‘dex sizes,
ad reduce total data size by carefully droppi g u vused a \d duplicate i \dexes.

Only needed rows are kept

Last item o the efficie vt data storage checklist (Table 3-4): o\ly ‘eeded rows are
kept. This item bri \gs us full circle, closi vg the loop with the first item: “O \ly veeded
rows are stored” o page 105. A row might be ‘eeded whe v stored, but that ‘eed
chages over time. Delete (or archive) rows that are ‘o lo vger ‘eeded. That sou \ds
obvious, but it's commo 1 to fi\d tables with forgotte v or aba vdo ved data. I've lost
cou \t of how ma vy times I've see \ teams drop e 1tire tables that were forgotte .
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Deleti g (or archivi vg) data is a lot easier said tha v do ve, a\d the rext sectio v takes
o\ the challe vge.

Delete or Archive Data

I hope this chapter i \stills i v you a desire to delete or archive data. Too much data has
woke v me from too ma vy pleasa 1t dreams: it’s as if MySQL has a mi\d of its ow vad
waits u vtil 3 a.m. to fill up the disk. I o vce had a  applicatio v page me i the middle
of the vight i+ three differe \t time zo ves (my time zo ‘e cha vged due to meetigs i
differe vt parts of the world). But e vough about me; let’s talk about how to delete or
archive data without egatively impacti vg the applicatio .

For brevity, I refer o1ly to deleti g data, ‘ot deleti\g or archiving data, because the
challe vge lies almost e vtirely i+ the former: deleti \g data. Archivi\g data requires
copyig the data first, the v deleti g it. Copyi g data should use ‘o \lockig SELECT
stateme vts to avoid impacti vg the applicatio v, the v write the copied rows to a vother
table or data store that the applicatio v does vt access. Eve v with o \locki vg SELECT
stateme vts, you must rate-limit the copy process to avoid icreasivg QPS beyod
what MySQL ad the applicatio v ca v hadle. (Recall from “Less QPS Is Better” o
page 96 that QPS is relative to the applicatio v a \d difficult to i \crease.)

Tools

You will have to write your ow  tools to delete or archive data. Sorry to lead with
bad vews, but it’s the truth. The good vews is that deleti vg a \d archivi g data is ‘ot
difficult—it’s probably trivial compared to your applicatio . The critically important
part is throttli \g the loop that executes SQL stateme ts. Never do this:

for {
rowsDeleted = execute(“DELETE FROM table LIMIT 1000000)
if rowsDeleted == 0 {
break
}

}
The LIMIT 1000000 clause is probably too large, a“d the for loop has ‘o delay
betwee  stateme vts. That pseudocode is likely to cause a v applicatio v outage. Batch
size is the key to a safe a \d effective data archivi vg tool.

Batch Size

First, a shortcut that might allow you to skip readig this sectio v util eeded: it’s
safe to manually delete 1,000 rows or less i+ a sigle DELETE stateme t if the rows are
small (o BLOB, TEXT, or JSON colum vs) a \d MySQL is ‘ot heavily loaded. Manually
mea s that you execute each DELETE stateme vt i series (o ve after the other), ot i+
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parallel. Do vot write a program to execute the DELETE stateme ‘ts. Most huma s are
too slow for MySQL to votice, so ‘o matter how fast you are, you ca Yot ma vually
execute DELETE...LIMIT 1000 stateme ts fast e vough to overload MySQL. Use this
shortcut judiciously, a \d have a vother e \gi veer review a vy ma wual deletes.

The method described i v this sectio 1 focuses o v DELETE but applies
iy geveral to INSERT ad UPDATE. For INSERT, batch size is co +-
trolled by the vumber of rows i vserted, ot a LIMIT clause.

The rate at which you ca quickly and safely delete rows is determi ved by the batch
size that MySQL a d the applicatio v ca v sustai v without impacti \g query respo \se
time or replicatio v lag. (Chapter 7 covers replicatio \ lag.) Batch size is the vumber
of rows deleted per DELETE stateme ‘t, which is co vtrolled by a LIMIT clause ad
throttled by a simple delay, if vecessary.

Batch size is calibrated to a v executio v time; 500 milliseco \ds is a good starti \g poi t.
This mea s that each DELETE stateme ‘t should take vo lo vger tha v 500 ms to execute.
This is critically importa 1t for two reaso vs:

Replication lag
Executio v time o\ a source MySQL i \sta \ce creates replicatio v lag o\ replica
MySQL istavces. If a DELETE stateme vt takes 500 ms to execute o v the source,
the v it also takes 500 ms to execute o\ a replica, which creates 500 ms of repli-
catio v lag. You ca ot avoid replicatio v lag, but you must mi vimize it because
replicatio v lag is data loss. (For vow, I gloss over ma vy details about replicatio
that I clarify i + Chapter 7.)

Throttling
I\ some cases, its safe to execute DELETE stateme ‘ts with vo delay— vo throt-
tli \g—because the calibrated batch size limits query executio v time, which limits
QPS. A query that takes 500 ms to execute cay 0 \ly execute at 2 QPS i series.
But these are ‘o ordivary queries: they’re purpose-built to access ad write
(delete) as ma vy rows as possible. Without throttli \g, bulk writes ca v disrupt
other queries a \d impact the applicatio .

Throttlivg is paramout whe deleti \g data: always begi+ with a delay betwee
DELETE stateme vts, a \d mo vitor replicatio v lag.?

2 Check out freno by GitHub E gi veeri 1g: a » ope  source throttle for MySQL.
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Always build a throttle i vto bulk operatio 1s.

To calibrate the batch size to a 500 ms executio \ time (or whatever executio \ time
you chose), start with batch size 1,000 (LIMIT 1000) axd a 200 ms delay betwee
DELETE stateme vts: 200 ms is a lo vg delay, but you decrease it after calibrati \g the
batch size. Let that ru for at least 10 mi vutes while mo vitori g replicatio v lag axd
MySQL stability—do vt let MySQL lag or destabilize. (Replicatio v lag a \d MySQL
stability are covered iv Chapters 7 axd 6, respectively.) Use query reportiyg (see
“Reportig” o\ page 8) to ispect the maximum executio  time of the DELETE state-
me t, or measure it directly i\ your data archivi g tool. If the maximum executio
time is well below the target—500 ms—the v double the batch size ad re-ru~ for
a‘other 10 mi wutes. Keep doubli \g the batch size—or maki vg smaller adjustme vts—
util the maximum executio \ time is co vsiste wtly o v target—preferably just a little
below target. Whe  you're do e, record the calibrated batch size a \d executio  time
because deleti vg old data should be a recurri g eve +t.

To set the throttle usi g the calibrated batch size, repeat the process by slowly reduc-
ivg the delay o each 10-mi wute reruv. Depe \divg o+ MySQL ad the applicatio v,
you might reach zero (o throttlivg). Stop at the first sig of replicatio\ lag or
MySQL destabilizi vg, the v i \crease the delay to the previous value that did vt cause
either problem. Whe \ you're do e, record the delay for the same reaso v as before:
deleti vg old data should be a recurri vg eve 1t.

With the batch size calibrated ad the throttle set, you ca~ fivally calculate the
rate: how ma vy rows per seco \d you ca delete without impacti \g query respo \se
time: batch size * DELETE QPS. (Use query reportiyg to iyspect the QPS of the
DELETE stateme \t, or measure it directly i v your data archivi g tool.) Expect the rate
to chage throughout the day. If the applicatio v is extremely busy duri vg busi vess
hours, the o \ly sustai vable rate might be zero. If youre a \ ambitious go-getter who's
0 a rocket ride to the top of your career, your i‘dustry, ad the world, the v wake
up i+ the middle of the vight ad try a higher rate whe \ the database is quiet: larger
batch size, lower delay, or both. Just remember to reset the batch size a \d delay before
the su v rises a \d database load i \creases.

MySQL backups almost always ru v i \ the middle of the vight. Eve 1
if the applicatio v is quiet i\ the dead of vight, the database might
be busy.
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Row Lock Contention

For write-heavy workloads, bulk operatio \s ca cause elevated row lock contention:
queries waiti\g to acquire row locks o the same (or vearby) rows. This problem
mai ]y affects INSERT a vd UPDATE stateme ts, but DELETE stateme \ts could be affec-
ted, too, if deleted rows are iterspersed with kept rows. The problem is that the
batch size is too large eve \ though it executes withi + the calibrated time. For example,
MySQL might be able to delete 100,000 rows i\ 500 ms, but if the locks for those rows
overlap with rows that the applicatio v is updati g, the v it causes row lock co vte vtio .

The solutio v is to reduce the batch size by calibrati vg for a much smaller executio
time—100 ms, for example. I extreme cases, you might ‘eed to icrease the delay,
too: small batch size, lo vg delay. This reduces row lock co te vtio v, which is good for
the applicatio v, but it makes data archivi \g slower. There’s ‘o magical solutio \ for
this extreme case; it’s best to avoid with less data a \d fewer QPS.

Space and Time

Deleti vg data does 1ot free disk space. Row deletes are logical, ot physical, which is
a commo \ performa vce optimizatio v i v ma vy databases. Whe » you delete 500 GB of
data, you do vt get 500 GB of disk space, you get 500 GB of free pages. I vter val details
are more complex a \d beyo d the scope of this book, but the ge veral idea is correct:
deleti vg data yields free pages, ‘ot free disk space.

Free pages do vot affect performa vce, a \d I 110DB reuses free pages whe v vew rows
are ivserted. If deleted rows will soo v be replaced by ‘ew rows, ad disk space is vt
limited, the v free pages ad uclaimed disk space are ‘ot a co \cer \. But please be
mi vdful of your colleagues: if your compa vy ru s its ow \ hardware a \d MySQL for
your applicatio v shares disk space with MySQL for other applicatio s, the v do vt
waste disk space that ca be used by other applicatio \s. I\ the cloud, storage costs
mo ey, so do vt waste mo vey: reclaim the disk space.

The best way to reclaim disk space from I+ 10DB is to rebuild the table by executi \g a
0-op ALTER TABLE...ENGINE=INNODB stateme vt. This is a solved problem with three
great solutio vs:

o pt-olive-schema-cha ge
e gh-ost
e ALTER TABLE...ENGINE=INNODB
Each solutio v works differe vtly, but they have o ve thig iy commo \: all of them ca

rebuild huge I+ 1oDB tables online: i productio \ without impacti \g the applicatio .
Read the docume +tatio  for each to decide which o ve works best for you.
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To rebuild a table with ALTER TABLE...ENGINE=INNODB, replace ...
with the table vame. Do ‘ot make a vy other cha \ges.

Deleti vg large amou ts of data takes time. You might read or hear about how fast
MySQL ca write data, but that’s usually for be \chmarks (see “MySQL Tuig” o
page 39). I the glamorous world of laboratory research, sure: MySQL will co ysume
every clock cycle a\d disk IOP you ca v give it. But i the quotidia v world that you
ad I slog through, data must be deleted with sig vifica 1t restrai vt to avoid impacti \g
the applicatio \. To put it blu vtly: it’s goi g to take a lot lo vger tha v you thik. The
good rews is: if do ve correctly—as detailed i\ “Batch Size” o v page 115—the \ time
is o your side. A well-calibrated, sustai vable bulk operatio v ca ru for days ad
weeks. This icludes the solutio v that you use to reclaim disk space from I+voDB
because rebuildivg the table is just a vother type of bulk operatio v. It takes time to
delete rows, a \d it takes additio val time to reclaim the disk space.

The Binary Log Paradox

Deleti vg data creates data. This paradox happe \s because data cha \ges are writte \ to
the bivary logs. Bi vary loggi g ca \ be disabled, but it vever is i v productio \ because
the bivary logs are required for replicatioy, axd ‘o sa‘e productio v system ru ‘s
without replicas.

If the table co vtai s large BLOB, TEXT, or JSON colum vs, the v bivary log size could
i vcrease dramatically because the MySQL system variable binlog_row_image defaults
to full. That variable determies how row images are writte \ to the bi vary logs; it
has three setti \gs:

full
Write the value of every colum v (the full row).

minimal
Write the value of colum s that chaged a“d colum s required to ide +tify the
row.

noblob
Write the value of every colum except BLOB ad TEXT colum s that are vt
required.

It’s both safe a \d recomme \ded to use minimal (or noblob) if there are ‘o exter val
services that rely o \ full row images i the bi vary logs—for example, a data pipeli e
service that stream cha vges to a data lake or big data store.

Delete or Archive Data | 119



If you use pt-o \li ve-schema-cha vge or gh-ost to rebuild the table, these tools copy
the table (safely ad automatically), a\d that copy process writes eve \ more data
chages to the bivary logs. However, ALTER TABLE...ENGINE=INNODB defaults to a
iv-place alter— vo table copy.

Whe v deletig a lot of data, disk usage will increase because of
bivary loggi g ad the fact that deleti g data does vot free disk
space.

N

Paradoxically, you must e \sure that the server has e vough free disk space to delete
data a \d rebuild the table.

Summary

This chapter exami ved data with respect to performa \ce ad argued that reducig
data access a \d storage is a tech vique—a v i direct query optimizatio \—for improv-
i g performa vce. The primary takeaway poi ‘ts are:

o Less data yields better performa vce.

o Less QPS is better because it’s a liability, ‘ot a v asset.

 Ixdexes are ‘ecessary for maximum MySQL performa \ce, but there are cases
whe videxes may ‘ot help.

o The pri \ciple of least data mea vs: store a \d access 0 \ly ‘eeded data.
o E vsure that queries access as few rows as possible.

o Do ot store more data tha v veeded: data is valuable to you, but it’s dead weight
to MySQL.

o Deleti vg or archivi vg data is importa 1t a \d improves performa xce.

The vext chapter ce vters o v access patter \s that determi ve how you ca\ cha \ge the
applicatio  to use MySQL efficie vtly.
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Practice: Audit Query Data Access

The goal of this practice is to audit queries for ivefficie \t data access. This is the
efficie vt data access checklist (Table 3-2):

0 Retur v 0 \ly veeded colum s
O Reduce query complexity

O Limit row access

O Limit the result set

O Avoid sorti \g rows

Apply the checklist to the top 10 slow queries. (To get slow queries, refer back to
“Query profile” oy page 9 axd “Practice: Ide tify Slow Queries” o+ page 33.) A
easy fix is a vy SELECT *: explicitly select oly the colum s ‘eeded. Also pay close
atte vtio v to a Yy query with a \ ORDER BY clause: is it usi‘g a v idex? Does it have a
LIMIT? Ca  the applicatio  sort rows i vstead?

Unlike “Practice: Ide vtify Slow Queries” o page 33 axd “Practice: Fivd Duplicate
I'dexes” o page 90, there is ‘o tool to audit query data access. But the checklist
is oy five items, so it does vt take lo g to audit queries ma vually. Carefully ad
methodically auditi \g queries for optimal data access is expert-level MySQL perfor-
ma \ce practice.

Practice: Audit Query Data Access | 121






CHAPTER 4
Access Patterns

Access patterns describe how a applicatio v uses MySQL to access data. Chagig
access patter \s has a powerful effect o v MySQL performa 1ce, but it usually requires
a greater level of effort tha v other optimizatio vs. That’s why it’s the last leg of the
jour vey mapped out i+ “Improvi \g Query Respo 1se Time” o \ page 27: first optimize
queries, i vdexes, a \d data—the \ optimize access patter vs. Before we begi v, let’s thi 1k
agai v about the rocks from Chapter 3.

Suppose you have a truck, which is avalogous to MySQL. If used efficie \tly, the
truck makes movi g a vy pile of rocks uphill easy. But if used i vefficie vtly, the truck
provides little value, a \d it might eve v make the job take lo \ger tha v vecessary. For
example, you could use the truck to haul the cobbles one by one up the hill. That’s
easy for you (a \d the truck), but it’s terribly i vefficie vt a \d time-co sumig. A truck
is oly as useful as the perso v who uses it. Likewise, MySQL is o \ly as useful as the
applicatio v that uses it.

Sometimes, a \ e \gi veer puzzles over why MySQL is vt ru v vi g faster. For example,
whe v MySQL is executi vg 5,000 QPS a \d the e \gi veer wo vders why it’s ‘ot executi \g
9,000 QPS isstead. Or whe v MySQL is usig 50% CPU ad the egi reer wo \ders
why it's ‘ot usivg 90% CPU isstead. The egiveer is unlikely to fixd av aswer
because they’re focused o\ the effect (MySQL) rather tha v the cause: the applicatio .
Metrics like QPS a \d CPU usage say very little—almost vothi \g—about MySQL; they
o0 \ly reflect how the applicatio » uses MySQL.

MySQL is o \ly as fast a \d efficie 1t as the applicatio \ that uses it.
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A v applicatio v ca v outgrow the capacity of a single MySQL i \sta \ce, but agai v: that
says more about the applicatio v tha v MySQL because there are i+ umerable large,
high-performa ce applicatio vs usivg a sivgle MySQL iistace. Without a doubt,
MySQL is fast e vough for the applicatio v. The real questio \ is: does the applica-
tio v use MySQL efficie \tly? After ma vy years with MySQL, hu \dreds of differe t
applicatio vs, ad thousads of differe vt MySQL i\staces, I assure you: MySQL
performa ce is limited by the applicatio v, ‘ot the other way arou \d.

This chapter ce vters o v data access patter 1s that determi ve how you ca v cha \ge the
applicatio v to use MySQL efficie \tly. There are six major sectio vs. The first clarifies
what MySQL does apart from the applicatio v ad why it's importa vt. The seco\d
proves that database performa vce does ‘ot scale li vearly; i \stead, there is a limit past
which performa \ce destabilizes. The third co vtemplates why a Ferrari is faster tha
a Toyota eve v though both car bra vds work roughly the same. The a swer explai \s
why some applicatio s excel with MySQL while others ca vt get out of first gear. The
fourth e vumerates data access patter 1s. The fifth prese vts several applicatio v cha vges
to improve or modify data access patter \s. The sixth revisits a v old frie \d: better,
faster hardware.

MySQL Does Nothing

Whe  the applicatio v is idle, MySQL is idle. Whe v the applicatio \ is busy executi g
queries, MySQL 1is busy executi ‘g those queries. MySQL has several backgroud
tasks (like “Page flushig” o page 212), but they are o \ly busy readi \g a \d writi\g
data for those queries. I+ fact, backgrou \d tasks i\crease performa \ce by allowig
foregrou \d tasks—executi \g queries—to defer or avoid slow operatio vs. Therefore, if
MySQL is ru v i g slowly a \d there are vo exter val issues, the cause ca v 0 \ly be what
drives MySQL: the applicatio .

QPS is directly ad oly attributable to the applicatio v. Without
the applicatio v, QPS is zero.

Some data stores have ghosts in the machine: iter val processes that cay ruv at avy
time a \d degrade performa \ce if they ru v at the worst time: whe  the data store is
busy executi vg queries. (Compactio v a \d vacuumi \g are two examples—MySQL has
veither.) MySQL has vo ghosts i+ the machi ve—u \less the applicatio v is executi g
queries that you do vt k vow about. K vowi \g this helps you avoid looki g for o -
existe 1t causes a \d, more importa vtly, focus o Y what MySQL is busy doi \g: executi \g
queries. From Chapter 1, you k ow how to see that: “Query profile” o page 9. A
query profile shows more tha v just slow queries, it shows what MySQL is busy doi \g.
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Queries affect other queries. The ge veral term for this is query contention: whe
queries compete a \d wait for shared resources. There are specific types of co vte vtio :
row lock co vtevtio v, CPU co vte vtio v, ad so forth. Query co vte vtio v ca v make it
seem like MySQL is busy doi \g other thi \gs, but do vt be misled: MySQL is o \ly busy
executi vg applicatio v queries.

It's vearly impossible to see or prove query co vte vtio \ because MySQL reports o \ly
0 e type of co vte tio v: row lock co vte vtio . (Eve v row lock co vte vtio v is difficult
to see precisely because row locki vg is complex.) Moreover, co te vtio v is fleeti \g—
almost imperceptible—because the problem is i tri wsic to high QPS (where high is
relative to the applicatio ). Query co vte vtio v is like a traffic jam: it requires a lot of
cars o \ the road. Although it’s vearly impossible to see or prove, you ‘eed to be aware
of it because it might explai v i vexplicably slow queries.

Query co vte vtio v plays a major role whe v performa ce is pushed to the limit.

Performance Destabilizes at the Limit

At the e d of “MySQL: Go Faster” o page 30, I said that MySQL ca easily push
most moder v hardware to its limits. That’s true, but the limit might surprise you.
Figure 4-1 illustrates what e \gi veers expect: as load i \creases, database performa vce
ivcreases util it utilizes 100% of system capacity—throughput of the hardware ad
operati \g system—the  performa \ce remai \s steady. This is called linear scaling (or
linear scalability), a d it's a myth.

System capacity

50% 100%]
Load >
Database performance >

Increase

>
»

Figure 4-1. Expected database performance (linear scalability)

Li vear scali vg is the dream of every DBA a d e \gi veer, but it ca v vot happe . I \stead,
Figure 4-2 illustrates the reality of database performa vce with respect to load ad
system capacity.
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Figure 4-2. Real database performance

Database performa ce icreases with load oly to a limit that is less tha 100% of
system capacity. Realistically, the limit of database performa \ce is 80% to 95% of sys-
tem capacity. Whe v load i \creases past the limit, database performa ce destabilizes:
throughput, respo vse time, a \d other metrics fluctuate markedly—sometimes wildly
—from their vormal value. At best, the result is decreased performa vce for some (or
most) queries; at worst, it causes a \ outage.

Equatio v 4-1 shows the Universal Scalability Law articulated by Neil Gu ther: a
equatio  that models the scalability of hardware a \d software systems.

Equation 4-1. Equation 4-1. Universal Scalability Law

YN
X(N) = 1+a(N - 1)/+ AN(N -1)

Table 4-1 outlives what each term iv the Universal Scalability Law equatio
represe ts.

Table 4-1. Universal Scalability Law terms

Term Represents

X Throughput

N Load: concurrent requests, running processes, CPU cores, nodes in a distributed system, and so on
v Concurrency (ideal parallelism)

a Contention: waiting for shared resources

B

Coherency: coordinating shared resources
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A deep dive ivto the Universal Scalability Law is beyod the
scope of this book, so I limit the expla vatio v to the curre vt topic:
the limit of database performa \ce. To lear \ more, read Guerrilla
Capacity Planning by Neil Gu ther.

Throughput is a fu \ctio v of load: X(N). Co vcurre \cy (y) helps throughput i \crease
as load (N) i \creases. But co vte vtio v (a) a \d cohere \cy (B) reduce throughput as load
icreases. This precludes li vear scalability a vd limits database performa vce.

Worse tha v limiti vg performa \ce, cohere \cy causes retrograde performance: decreas-
i\g performa vce at high load. The term retrograde is a v u \derstateme “t. It suggests
that MySQL simply reverts to less throughput whe v it ca v vot ha vdle the load, but the
reality is worse tha v that. I prefer the terms instability a \d destabilize because they
co wey the reality: the system is breaki vg dow v, vot just ru v i \g more slowly.

The Universal Scalability Law models real-world MySQL performa vce surprisi vgly
well.! But as a model, it oly describes ad predicts the scalability of a workload;
it does ‘ot say a vythivg about how or why the workload scales (or fails to scale).
The USL is primarily used by experts who measure a\d fit data to the model to
determi ve the parameters (y, a, a \d B), the \ toil heroically to reduce them. Everyo e
else just watches graphs (Chapter 6 covers MySQL metrics) a vd waits u vtil MySQL
performa vce destabilizes—that’s the limit.

Figure 4-3 shows three charts from a real outage whe\ the applicatio\ pushed
MySQL past the limit.

The outage had three periods:

The Rise (6 a.m. to 9 a.m.)

The applicatio v was stable at the begi v i g of the rise, but its developers were
begi v vig to worry because the metrics show \ were risi g slowly but steadily.
I\ the past, the applicatio \ had outages that bega v with steadily risi \g metrics.
I respo vse, the applicatio v developers i \creased tra vsactio ¥ throughput to cope
with the risi \g dema vd. (The applicatio v is able to throttle tra vsactio \ through-
put; this is vt a feature of MySQL.) The rise a \d the respo vse repeated u vtil it vo
lo vger worked: MySQL had reached the limit.

1 Watch the video U viversal Scalability Law Modeli vg Workbook by re vow ved MySQL expert Baro  Schwartz
to see the USL i v actio v with values from real MySQL servers.
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Figure 4-3. Database performance past the limit

The Limit (9 a.m. to noon)

The applicatio v was completely u \stable a \d effectively offli ve duri vg the limit.
Although CPU usage ad QPS were high ad steady, threads ruvvivg told a
differe vt story. The whipsaw patter v of threads ruvivg show i+ Figure 4-3
was a telltale sig+ that MySQL had destabilized. Siyce ove query requires o ‘e
thread to ru v, the big swigs i+ threads ru v vi g i \dicated that queries were ot
flowi vg smoothly through the system. I \stead, queries were hammeri \g MySQL

ivueve\, disco \certed strikes.
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High ad steady CPU usage a \d QPS were misleadi \g: steady is o \ly good with
a little variatio v, as see \ before a \d after the limit. Steady with ‘o variatio v, as
see \ duri g the limit, is flatli ve. To u vdersta \d why, here’s a stra vge but effective
avalogy. Imagi e a orchestra. Whe v the orchestra is playig correctly, there
are variatio vs i all aspects of the music. I+ fact, those variatio \s are the music:
rhythm, tempo, pitch, to ve, melody, dy vamics, a d so forth. A flatli ve metric is
aalogous to a deraged clari vetist playi g a sigle, co \ti yuous vote fortissimo:
steady, but ‘ot music.

Duriyg the limit, applicatio v developers kept tryiyg to iicrease tra vsactio
throughput, but it did vt work. MySQL would vot use the last 5% of CPU, QPS
would vot ivcrease, avd threads ruvvivg would ‘ot stabilize. From the USL
(Equatio v 4-1), you k vow why: co te \tio v a \d cohere \cy. As load i \creased (N),
tra vsactio v throughput (X) i vcreased, but so did the limiti vg effects of co te tio v
(a) ad cohere vcy (B) u til MySQL reached the limit.

The Fix (noon to 3 p.m.)
Sice i \creasi g tra vsactio \ throughput was its ow \ demise, the fix was to reduce
tra vsactio v throughput. That seems cou vteri vtuitive, but the math does vt lie.
At vo0 v, applicatio v developers reduced tra vsactio v throughput, a \d the results
are clear i\ the charts: CPU usage dropped to 50%, QPS retur ved to a steady
variatio v (ad eve ixcreased a little), a\d threads ruvivg also returved to a
steady variatio v (with a few spikes, which MySQL had spare capacity to absorb).

To imagi ve how this works, co \sider a vother a valogy. Imagi ve a highway. Whe
there are ma vy cars o \ the road, they all slow dow v (hopefully) because huma s
reed time to thik ad react to others cars, especially at highway speeds. Whe
there are too ma vy cars o\ the road, they cause a traffic jam. The o \ly solutio v
(apart from addi vg more la ves) is to reduce the wumber of cars o v the highway:
fewer cars ca drive faster. Reducig trasactio v throughput is aalogous to
reduci vg the wumber of cars o+ the highway, which lets the remai vig cars go
faster a \d traffic flow smoothly.

This example vicely models the limit of database performace accordivg to the
U iversal Scalability Law (Equatio v 4-1), but it’s also a v exceptio val case because the
applicatio v was able to push MySQL a\d the hardware to the limit. More typically,
high load destabilizes the applicatio v, a\d that preve \ts it from i creasi g load o
MySQL. I+ other words: the applicatio v fails before it ca v push MySQL to the limit.
But i+ this example, the applicatio v did vt fail, it kept scalivg up util it pushed
MySQL to the limit.
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Two more poi ts about MySQL performa ce at the limit before we tur \ our atte tio v
to the applicatio :

o The limit is difficult to reach uless the hardware is blata tly i sufficie \t. As
me ‘tio ved i v “Better, Faster Hardware!” o v page 37, this is o \e of two exceptio s
for which you should scale up to reaso vable hardware. It's also difficult for
a\ applicatio v to fully a~d simultaneously utilize all hardware—CPU, memory,
ad storage. A v applicatio v is most likely to ivcur a bottle veck i+ o ve piece of
hardware lo vg before it ca v fully a \d simulta veously utilize all hardware. Whe
this happe 1s, the applicatio + has ot reached the limit of database performa vce,
0 \ly the limit of that o e piece of hardware.

o Whe v high load causes MySQL to respo \d slowly, this does not mea v the limit
has bee \ reached. The reaso v is simple: y. Gamma (y) represe \ts co \curre \cy or
ideal parallelism. Recall from the U viversal Scalability Law equatio v (Equatio
4-1) that gamma is i \ the wumerator.” Slow database performa vce does not mea
the limit has bee v reached because i \creasivg co vcurre \cy (y) raises the limit.
Decreasig co vte vtio (a) also raises the limit. (Cohere \cy [B] is out of our
covtrol: it’s i vhere vt to MySQL ad the operati g system, but it’s usually ot a
problem.)

The seco \d poi vt leads to the questio : how do we i \crease co \curre \cy, or decrease
co vte vtio v, or both? That seems like a critically importa vt questio v, but it’s ‘ot: it’s
misleadi vg because the North Star of MySQL performa \ce is query respo ‘se time.
The values of co curre \cy (v) ad co vtetio v (a) are vot directly measurable. They
are determi ved by fitti vg throughput a \d load measureme vts to the model. Experts
use the Universal Scalability Law to uderstad system capacity, ‘ot to improve
performa vce. A \d this sectio v has used it to prove that performa \ce destabilizes at
the limit.

Toyota and Ferrari

Some applicatio \s achieve i vcredible MySQL performa ce while others struggle with
low throughput. Some applicatio s ca v fully utilize the hardware—up to the limit—
while others barely warm the CPUs. Some applicatio vs do vt have a vy performa \ce
problems while others co vti wally struggle with slow queries. It’s a sweepi \g ge veral-
izatioy, but I'm goi\g to claim that every e gi‘eer wats their applicatio be o
the left side of while: icredible performa vce, fully utilizi \g the hardware, axd ‘o

2 I fact, re vow ved MySQL expert Baro v Schwartz put it there. Neil Gu vther wrote i v a blog post, “USL
Scalability Modeli vg with Three Parameters”, that Baro v added the third parameter because it allowed the
USL to fit data from real databases.
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problems. The differe ce betwee v applicatio vs o » the left of while versus those o \ the
right is u vderstood by co vtemplati g why a Ferrari is faster tha v a Toyota.

Both car bra \ds use roughly the same parts a \d desig v, but the top speed of a Toyota
is ge verally 130 MPH, whereas the top speed of a Ferrari is 200 MPH.? A Ferrari does
‘ot have special parts that make it 70 MPH faster tha v a Toyota. So why is a Ferrari
so much faster tha v a Toyota? The a \swer is the differe vce i+ e gi veeri \g design a \d
details.

A Toyota is ‘ot desiged for high speed. Achievig high speed (like high perfor-
ma \ce) requires careful atte tio  to ma vy details. For a car, those details i vclude:

o Egi e size, co vfiguratio v, a \d timi g

o Tra smissio v gear ratios, shift poi ts, a \d timi \g
o Tire size, tractio v, a \d rotatio val force

o Steeri g, suspe 1sio v, a \d braki \g

o Aerody vamics

Both car bra \ds desig v a d e \gi veer for those details, but the exacti g level of detail
i a Ferrari explai vs why it achieves greater performa ce. You ca v see this i+ 0 ve of
those details: aerody vamics. The u vique exterior desig v of a Ferrari is flamboya 1t but
also fu \ctio val: it lowers the drag coefficie \t, which i \creases efficie cy.

High performa ce, like high speed, is ‘ot accomplished accide vtally or by brute
force. It is the result of meticulous e \gi veeri \g with the goal of high performa ce. A
Ferrari is faster tha v a Toyota because it’s desig ved a \d e \gi veered i\ every detail to
be faster.

Is your applicatio v desigved ad egiteered i every detail for maximum MySQL
performa vce? If yes, the ' I suppose you ca skip the rest of this chapter. If vot,
which is the usual a \swer, the ¥ the ‘ext sectio v addresses the fu v\dame vtal tech vical
differe \ces that separate Toyota-like applicatio vs from Ferrari-like applicatio vs: data
access patter 1s.

Data Access Patterns

Data access patterns describe how a v applicatio v uses MySQL to access data.

The term data access patterns (or access patterns for short) is commo \ly used but
rarely explai ved. Let’s cha vge that by clarifyi \g three details about access patter \s:

3 Toyota: 210 Km/h; Ferrari: 320 Km/h.
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o It's so commo \ to discuss access patter s i+ the plural that they begi+ to blur
together. But it's importa 1t to realize that they are ‘ot a v udiffere ‘tiated blob.
A v applicatio v has ma vy access patter s. For co we vie \ce, theyre discussed i
the plural. But i v practice, you modify access patter 1s i vdividually.

o A access patter v ultimately refers to a query, axd you chaige queries (a\d
the applicatio v) to cha \ge access patter \s, but queries are not the focus. I+ Go
programmi g la \guage terms, a v access patter \ is a \ i vterface a\d a query is a
impleme vtatio . Focus o\ the iterface, ‘ot the impleme vtatio v. This makes it
possible to e wisio v (a \d possibly apply) access patter 1s to differe vt data stores.
For example, certai access patter s executed o\ MySQL are better suited for
a key-value data store, but that’s difficult to see by focusivg oy SQL queries
that bear ‘o resembla vce to key-value queries. I+ this book, I discuss modifyi g
access patter s, but i \ practice you modify queries (a \d the applicatio v).

e A access patter v comprises a vame a“d a list of tech vical traits. The ‘ame
is used to ide tify a'd commu vicate the access patter v with other e gi \eers.
(Access patter s do ‘ot have itrivsic vames.) Choose a ‘ame that’s succi \ct
ad mea vigful. The list of tech vical traits depe \ds o v ad varies by data store.
MySQL data access, for example, is quite differe vt tha v Redis data access. This
sectio v e \umerates a \d explai \s i ve traits for MySQL data access.

I theory, applicatio v developers should ide +tify every i \dividual access patter v, but
let’s be ho vest: that is very tedious. (I've vever see v it do ve, a\d it might “ot eve
be feasible if the applicatio v cha ges quickly.) Nevertheless, that is the goal. Here are
three reaso vable a \d achievable approaches toward that goal:

o Braistorm with your team to ide vtify the most obvious ad commo v access
patter vs.

o Use the query profile (see “Query profile” o\ page 9) to ide ‘tify the top, slowest
access patter 1s.

o Peruse the code for lesser-k vow + (or forgotte v) access patter 1s.

At the very least, you ‘eed to follow the first or secod approach ore time to
accomplish the goal of this chapter: i vdirect query optimizatio v by cha \gi \g access
patter 1s.

O ce you have idevtified (avd ramed) a~ access pattery, ascertai the value or
aswer to each of the followi \g i ve traits. Not k vowi \g the value or a vswer to a trait
is a great opportu ity to lear v axd possibly improve part of the applicatio v. Do vt
leave a trait u "k vow v; fi \d or figure out the value or a \swer.

Before explaivivg each of the vive traits, there’s ove more questio to settle: how
do you use access patter 1s? Access patter \s are pure k vowledge, a \d that k vowledge
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forms a bridge betwee the previous sectio avd the vext sectio. The previous
sectio v, “Toyota ad Ferrari” o+ page 130, makes the poi+t that high-performa \ce
MySQL requires a high-performa \ce applicatior. The rext sectioy, “Applicatio
Chages” o page 140, prese vts commo \ applicatio v cha vges that help re-e \gi veer
the applicatio v for high performa \ce with respect to the database. Access patter \s
help decide (a‘d sometimes dictate) how to re-egiveer the applicatio+ from a
Toyota to a Ferrari.

Without further ado, let’s exami ve i ve traits of data access patter \s for MySQL.

Read/Write

Does the access read or write data?

Read access is clear: SELECT. Write is less clear whe v you co vsider the five details.
For example, INSERT is write access, but INSERT...SELECT is read ad write access.
Likewise, UPDATE a \d DELETE should use a WHERE clause, which makes them read a\d
write access, too. For simplicity: INSERT, UPDATE, a \d DELETE are always co \sidered
write access.

I vter vally, reads a \d writes are ‘ot equal: they have differe 1t tech vical impacts ad
i woke differe 1t i vter val parts of MySQL. A v INSERT a \d a DELETE, for example, are
differe vt writes u vder the hood— vot simply because the former adds ad the latter
removes. For simplicity agai v: all reads are equal a \d all writes are equal.

The read/write trait is o e of the most fudame vtal a\d ubiquitous because scal-
ivg reads ad writes requires differe vt applicatio v cha \ges. Scali g reads is usually
accomplished by offloadi vg reads, which I cover later i v “Offload Reads” o v page 141.
Scali vg write is more difficult, but e \queui \g writes is o0 ve tech vique (see “E \queue
Writes” o \ page 145), a \d Chapter 5 covers the ultimate solutio v: shardig.

Although this trait is quite simple, it's importa vt because k vowi g if a v applicatio
is read-heavy or write-heavy quickly focuses your atte vtio v o v releva 1t applicatio
chages. Usivg a cache, for example, is ‘ot relevat for a write-heavy applicatio .
Furthermore, other data stores are optimized for reads or writes, a\d there is a
write-optimized storage e \gi ve for MySQL: MyRocks.

Throughput
What is the throughput (i v QPS) a \d variatio v of the data access?

First of all, throughput is not performace. Low throughput access—eve just
1 QPS—ca wreak havoc. You ca probably imagie how; iy case ‘ot, heres a
example: a SELECT...FOR UPDATE stateme ‘t that does a table scax axd locks every
row. It’s rare to fivd access that terrible, but it proves the poit: throughput is ‘ot
performa xce.
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Terrible access votwithsta \di g, very high QPS (where high is relative to the appli-
catiov) is usually av issue to abate for all the reaso s eloque vtly stated iv “Less
QPS Is Better” o\ page 96. For example, if the applicatio v executes stock trades, it
probably has a huge burst of read a \d write access at 9:30 a.m. Easter \ Time whe  the
America v stock excha vges ope \. That level of throughput co vjures e rtirely differe vt
co vsideratio vs tha v a steady 500 QPS.

Variation—how QPS i\creases ad decreases—is equally importat. The previous
paragraph me tio ved burst axd steady; aother type of variatio is cyclical: QPS
ivcreases ad decreases over a period of time. A commo v cyclical patter v is higher
QPS duri vg busi vess hours—9 a.m. to 5 p.m. Easter v Time, for example—a \d lower
QPS i+ the middle of the vight. A commo 1 problem is that high QPS duri vg busi vess
hours preve \ts developers from maki g schema cha vges (ALTER TABLE) or backfill-
ivg data.

Data Age
What is the age of the data accessed?

Age is relative to access order, ‘ot time. If a v applicatio v i \serts o ve millio  rows i+
10 mi vutes, the first row is the oldest because it was the last row accessed, ‘ot because
it’s 10 mi wutes old. If the applicatio v updates the first row, the v it becomes the ewest
because it was the most rece vt row accessed. A \d if the applicatio v vever accesses the

first row agai v, but it co i vues to access other rows, the 1 the first row becomes older
ad older.

This trait is importa vt because it affects the worki vg set. Recall from “Worki g set
size” o \ page 95 that the worki \g set is freque tly used i vdex values a \d the primary
key rows to which they refer—which is a lo\g way of sayi\g frequently accessed
data—ad it’s usually a small perce vtage of the table size. MySQL keeps as much data
i\ memory as possible, a\d data age affects whether or ‘ot the data i v memory is
part of the worki \g set. It usually is because MySQL is exceptio vally good at keepi g
the worki\g set i v memory tha ks to a méla ge of algorithms a\d data structures.
Figure 4-4 is a highly simplified illustratio v of the process.

The rectagle i v Figure 4-4 represe 1ts all data. The worki g set is a small amou 1t of
data: from the dashed live to the top. A \d memory is smaller tha both: from the
solid li ve to the top. I+ MySQL li vgo, data is made young whe v accessed. A \d whe
data is ‘ot accessed, it becomes old a \d is eve vtually evicted from memory.

134 | Chapter4: Access Patterns



Newest
L pemory Working set
Made young | [~=""""="7mtm0 B )
ecame o
(evict)
— All data
Oldest

Figure 4-4. Data aging

Sivce accessi \g data keeps it you vg a \d i v memory, the worki g set stays i  memory
because it’s freque vtly accessed. This is how MySQL is very fast with a little memory
ad alot of data.

Freque vtly accessi \g old data is problematic i v more tha v o ve way. To explai v why,
I must delve ito techvical details beyo \d the scope of this sectio, but I clarify
later i+ “IvvoDB” o page 205. Data is loaded ito free pages (i v memory): pages
that do vt already co ‘taiv data. (A page is a 16 KB uit of logical storage i‘side
I+ oDB.) MySQL uses all available memory, but it also keeps a certai v vumber of free
pages. Whe « there are free pages, which is ‘ormal, the problem is o \ly that readi g
data from storage is slow. Whe v there are zero free pages, which is ab vormal, the
problem worse \s threefold. First, MySQL must evict old pages, which it tracks i+ a
least rece tly used (LRU) list. Secod, if a+ old page is dirty (has data chages ‘ot
persisted to disk) MySQL must flush (persist) it before it ca v evict it, a \d flushi g is
slow. Third, the origival problem remai \s: readi vg data from storage is slow. Lo \g
story short: freque vtly dredgi vg up old data is problematic for performa ce.

Occasio vally accessivg old data is ‘ot a problem because MySQL is clever: the
algorithms drivi g the process i\ Figure 4-4 preve vt occasio val access of old data
from i vterferi \g with vew (you \g) data. Therefore, take data age a \d throughput i vto
co vsideratio v together: old ad slow access is probably harmless, but old a\d fast is
bou vd to cause trouble.

Data age is ‘early impossible to measure.* Fortu vately, you o\ly eed to estimate
the age of the data accessed, which you ca+ do with your uderstadi\g of the
applicatio v, the data, a\d the access patter v. If, for example, the applicatio \ stores

4 It’s tech vically possible by i vspecti vg the LSN of data pages i \ the I voDB buffer pool, but that’s disruptive, so
it’s practically vever do ve.

Data Access Patterns | 135



fi va \cial tra vsactio s, you k vow that access is mostly limited to vew data: the last 90
days of tra vsactio vs. Accessi vg data older tha v 90 days should be i vfreque vt because
tra vsactio \s have settled a\d become immutable. By co trast, a vother part of the
same applicatio v that ma vages user profiles might freque tly access old data if the
perce tage of active users is high. Remember: old data is relative to access, ‘ot time.
The profile of a user who last logged i+ a week ago is vt vecessarily old by time, but
their profile data is relatively old because millio \s of other profile data have si\ce
bee v accessed, which mea 1s their profile data was evicted from memory.

K vowi g this trait is a prerequisite for u vdersta \di vg “Partitio + Data” o \ page 146
ad shardi g i~ Chapter 5.

Data Model
What data model does the access exhibit?

Although MySQL is a relatioval data store, it's commoly used with other data
models: key-value, docume ‘t, complex a valytics, graph, a \d so forth. You should be
kee \ly aware of vo wrelatio val access because it’s ‘ot the best fit for MySQL; therefore,
it ca v ot yield the best performa vce. MySQL excels with other data models but o \ly
to a poi t. For example, MySQL works well as a key-value data store, but RocksDB is
i \comparably better because it’s a purpose-built key-value data store.

The data model trait ca v ot be programmatically measured like other traits. I \stead,
you ‘eed to determie which data model the access exhibits. The verb exhibits is
mea i vgful: the access might be relatio val o \ly because MySQL was the o \ly available
data store whe v the access was created, but it exhibits a vother data model whe  you
covsider all data stores. Access is ofte v jammed i vto the data model of the available
data stores. But the best practice is the reverse: determi ‘e the ideal data model for the
access, the 1 use a data store built for that data model.

Transaction Isolation
What tra vsactio  isolatio 1 does the access require?

Isolation is o ve of four ACID properties: atomicity, co ‘siste \cy, isolatio v, a\d dura-
bility. Si vce the default MySQL storage e \gi e, [ \10DB, is tra vsactio val, every query
executes iv a trasactio by default—eve v a sigle SELECT stateme ‘t. (Chapter 8
exami ves tra vsactio 1s.) Co vseque vtly, the access has isolatio « whether it veeds it or
vot. This trait clarifies whether isolatio v is required a \d if so, what level.

Whe 1T ask e \gi veers this questio v, the a \swer falls i vto o ve of three categories:
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None
No, the access does ‘ot require a vy isolatio v. It would execute correctly o a
10 ‘tra sactio val storage e gi ve. Isolatio v is just useless overhead, but it does vt
cause a vy problems or ‘oticeably impact performa vce.

Default
Presumably, the access requires isolatio v, but its ukow or uclear which
level is required. The applicatio v works correctly with the default tra vsactio
isolatio v level for MySQL: REPEATABLE READ. Careful thought would be required
to determi ve if a vother isolatio v level—or 1o isolatio v—would work correctly.

Specific
Yes, the access requires a specific isolatio 1 level because it’s part of a tra vsactio
that executes co curre wtly with other tra vsactio vs that access the same data.
Without the specific isolatio v level, the access could see i vcorrect versio s of the
data, which would be a serious problem for the applicatio .

I\ my experie \ce, Default is the most commo v category, ad that makes se \se
because the default tra vsactio v isolatio v level for MySQL, REPEATABLE READ, is cor-
rect for most cases. But the a \swer to this trait should lead to None or Specific. If the
access does ot require a vy isolatio v, the v it might vot require a tra vsactio val data
store. Else, if the access requires isolatio v, vow you specifically k vow which isolatio
level a \d why.

Other data stores have tra vsactio \s—eve \ data stores that are ‘ot fudame vtally
tra vsactio val. For example, the docume 1t store Mo \goDB itroduced multidocu-
me vt ACID tra vsactio \s i\ versio v 4.0. K vowi vg which isolatio  level is required a \d
why allows you to tra slate a \d move access from MySQL to a vother data store.

Tra vsactio vs i v other data stores ca v be very differe vt tha  MySQL
tra vsactio s, a \d tra vsactio vs affect other aspects, like locki vg.

Read Consistency
Does the read access require stro \g or eve vtual co ‘siste \cy?

Strong consistency (or strongly consistent reads) meas that a read retur \s the most
curre ‘t value. Reads o \ the source MySQL i vsta vce ( ‘ot replicas) are stro \gly co vsis-
te \t, but the tra vsactio  isolatio v level determi ves the current value. A log-ruvisg
travsactio v cay read a old value, but it’s tech vically the curre t value with respect
to the tra vsactio v isolatio v level. Chapter 8 delves i vto these details. For vow, remem-
ber that stro \g co vsiste \cy is the default (a\d o+ly optiov) o+ the source MySQL
ivstavce. This is vot true for all data stores. Amazo+ DyramoDB, for example,
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defaults to eve vtually co vsiste t reads, ad strogly co isiste vt reads are optio val,
slower, a \d more expe vsive.

Eventual consistency (or eventually consistent reads) mea s that a read might retur
a1 old value, but eve vtually it will retur v the curre 1t value. Reads o * MySQL replicas
are eve vtually co vsiste vt because of replication lag: the delay betwee » whe v data is
writte v o v the source ad whe v it’s writte v (applied) o the replica. The duratio
of eventually is roughly equal to replicatio v lag, which should be less tha v a seco \d.
Replicas used to serve read access are called read replicas. (Not all replicas serve reads;
some are o \ly for high availability, or other purposes.)

I\ the world of MySQL, it's commo  for all access to use the source ista \ce, which
makes all reads stro gly co vsiste vt by default. But it’s also commo \ for reads not
to require stro g co vsiste \cy, especially whe v replicatio v lag is subseco \d. Whe v
eve vtual co siste ¢y is acceptable, offloadi g reads (see “Offload Reads” o 1 page 141)
becomes possible.

Concurrency
Is the data accessed co vcurre vtly?

Zero co curre \cy mea s that the access does ‘ot read (or write) the same data at
the same time. If it reads (or writes) the same data at different times, that’s also
zero co \curre \cy. For example, a v access patter v that i serts uvique rows has zero
€O Ycurre \cy.

High co vcurre \cy mea 1s that the access freque vtly reads (or writes) the same data at
the same time.

Co curre ey i vdicates how importa vt (or troublesome) row locki vg will be for write
access. U vsurprisi \gly, the higher the write co vcurre \cy o » the same data, the greater
the row lock co vte vtio v. Row lock co vte vtio v is acceptable as lo g as the i vcreased
respo se time that it causes is also acceptable. It becomes u vacceptable whe v it causes
lock wait timeouts, which is a query error that the applicatio v must ha vdle a \d retry.
Whe v this begis to happe, there are o1ly two solutio \s: decrease co \curre \cy
(cha vge the access patter 1), or shard (see Chapter 5) to scale out writes.

Co rcurre ey also ivdicates how applicable a cache might be for read access. If the
same data is read with high co \curre \cy but i vfreque 1tly cha vged, the v it’s a good fit
for a cache. I discuss this i v “Offload Reads” o v page 141.

As addressed iy “Data Age” o\ page 134, cocurrecy is ‘early impossible to
measure, but you o1y eed to estimate co vcurre \cy, which you ca+ do with your
u \dersta \di g of the applicatio v, the data, a \d the access patter .
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Row Access

How are rows accessed? There are three types of row access:

Point access
A sivgle row

Range access
Ordered rows betwee \ two values

Random access
Several rows i v a vy order

Usivg the Eglish alphabet (A to Z), poit access is avy sivgle character (A, for
example); ra vge access is a \y vumber of characters i+ order (ABC, or AC if B does vt
exist); a \d ra \dom access is a vy vumber of ra \dom characters (ASMR).

This trait seems simplistic, but it's importa vt for write access for two reaso \s:

« Gap locki vg: rage a \d ra dom access writes that use ‘o wu vique i vdexes exacer-
bate row lock co vte vtio v due to gap locks. “Row Locki vg” o \ page 260 goes i vto
detail.

o Deadlocks: raxdom access writes are a setup for deadlocks, which is whe v two
tra vsactio vs hold row locks that the other trasactio reeds. MySQL detects
ad breaks deadlocks, but they kill performa vce (MySQL kills o ve tra vsactio \ to
break the deadlock) a \d they’re a v voyi\g.

Row access is also importa vt whe 1 pla v \i g how to shard. Effective shardi \g requires
that access patter \s use a si‘gle shard. Poit access works best with shardig: oe
row, o ‘e shard. Rage a\d ra'dom access work with shardig but require careful
plavving to avoid vegativg the be vefits of shardig by accessi g too ma vy shards.
Chapter 5 covers shardi g.

Result Set

Does the access group, sort, or limit the result set?

This trait is easy to a yswer: does the access have a GROUP BY, ORDER BY, or LIMIT
clause? Each of these clauses affects if a \d how the access might be cha\ged or ru»
o\ a other data store. “Data Access” o\ page 97 covers several cha vges. At the very
least, optimize access that groups or sorts rows. Limiti 1g rows is ‘ot a problem—it’s a
be vefit—but it works differe vtly o \ other data stores. Likewise, other data stores may
or may ‘ot support groupi \g or sorti \g rows.

Data Access Patterns | 139



Application Changes

You must chage the applicatio v to chage its data access patter xs. The cha ges
prese vted i this sectio v are commo v, ‘ot exhaustive. They are highly effective but
also highly depe \de 1t o v the applicatio \: some could work, others might ‘ot. (Except
the first cha ge, “Audit the Code” o page 140: that always works.) Co \seque vtly,
each cha vge is a v idea that veeds further discussio v a \d pla v i vg with your team.

All chages except the first have a subtle commo vality: they require additio val
ivfrastructure. I poi 1t that out to me tally prepare you for the fact that, i v additio v to
code chages, you will veed i vfrastructure cha vges, too. As foretold from the begi +-
\ivg, “Improviyg Query Respose Time” o page 27, ivdirect query optimizatio
requires a greater level of effort. Whereas chagi g data (Chapter 3) is pote ‘tially
work, chagi g access patter s is certai ly work. But it's worth the effort because
these cha \ges are, by defi vitio v, transformative: how the applicatio v cha \ges from a
Toyota to a Ferrari.

You might wo vder: if these chages are so powerful, why ot make them first—
before optimizi vg queries a\d data? Sice the focus of this book is efficient MySQL
performa vce, I plaved the jour ey to e d with applicatio v cha vges because they
require the most effort. By co vtrast, direct query optimizatio (Chapter 2) ad
chages to data (Chapter 3) require far less effort, a \d the former solves a lot of—if
‘ot most—performa vce problems. But if you have the time a\d e‘ergy to jump
straight i vto re-e \gi veeri \g the applicatio v, you have my support. Just remember the
lesso v from Chapter 2: ivdexes provide the most and the best leverage. Bad queries
rui v wo \derful access patter 1s; or, to quote re vow ved MySQL expert Bill Karwi v:

Your u voptimized queries are killi vg the database server.

Audit the Code

You might be surprised by how log code ca exist ad ru+ without a vy huma
lookivg at it. I a certai v se \se, that’s a sig v of good code: it just works ad does vt
cause problems. But “does vt cause problems” does ‘ot vecessarily mea + that the code
is efficie t or eve \ required.

You do vt have to audit all the code (although thats ‘ot a bad idea), just the code
that accesses the database. Look at the actual queries, of course, but also co sider the
co ‘text: the busi vess logic that the queries accomplish. You might realize a differe vt
ad better way to accomplish the same busi vess logic.

With respect to queries, look for the followi vg:

 Queries that are vo lo vger ‘eeded

« Queries that execute too freque tly
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o Queries that retry too fast or too ofte

o Large or complex queries—ca \ they be simplified?

If the code uses ORM—or a vy ki \d of database abstractio v—double check its defaults
ad cofiguratio v. O ve co vsideratio v is that some database libraries execute SHOW
WARNINGS after every query to check for war vivgs. That’s usually ‘ot a problem,
but it’s also quite wasteful. Also double-check the driver defaults, co \figuratio v, axd
release ‘otes. For example, the MySQL driver for the Go programmi g la vguage has
had very useful developme vts over the years, so Go code should be usi g the latest
versio \.

I \directly audit the code by usi \g the query profile to see what queries the applicatio
executes— o query avalysis required; just use the query profile as a v auditi \g tool.
It's quite commo to see urkvow\ queries iv the profile. Givev “MySQL Does
Nothivg” o\ page 124, u 'k vow \ queries likely origi vate from the applicatio v—either
your applicatio v code or a vy kid of database abstractio v, like ORM—but there is
aother possibility: ops. Ops refers to whoever russ ad mai tais the data store:
DBAs, cloud providers, ayd so o . If you fid uk vow 1 queries a \d you're certai v
that the applicatio v is vt executi \g them, check with whoever operates the data store.

To make query auditi \g easier, add applicatio \ metadata to queries
iv /* SQL comments */. For example, SELECT.../* file:app.go
line:75 */ reveals where the query origiates i+ the applicatio v
source code. SQL comme ts are removed from digest texts, so your
query metric tool must i vclude samples (see Example 1-1) or parse
metadata from SQL comme 1ts.

Lastly ad most overlooked: review the MySQL error log. It should be quiet: ‘o
errors, war i gs, ad so forth. If it’s voisy, look ito the errors because they sig vify
a wide array of issues: ‘etwork, authe vticatio v, replicatio v, MySQL co ‘figuratio v,
10 vdetermi vistic queries, a \d so forth. These types of problems should be i \credibly
rare, so do vt ig vore them.

Offload Reads

By default, a sigle MySQL i \sta vce called the source serves all reads a \d writes. I
productio v, the source should have at least o ve replica: a vother MySQL i \sta ce that
replicates all writes from the source. Chapter 7 addresses replicatio v, but I me vtio v it
here to set the stage for a discussio v about offloadi \g reads.

Performa \ce ca be improved by offloadi vg reads from the source. This tech vique
uses MySQL replicas or cache servers to serve reads. (More o these two iy a
mome t.) It improves performa \ce i+ two ways. First, it reduces load o v the source,
which frees time a \d system resources to ru \ the remai vi \g queries faster. Seco \d, it
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improves respo se time for the offloaded reads because the replicas or caches servi vg
those reads are ‘ot loaded with writes. It’s a wi v-wi \ tech vique that’s commo ly used
to achieve high-throughput, low-late \cy reads.

Data read from a replica or cache is not guara vteed to be curre vt (the latest value)
because there is ivhere vt ad uvavoidable delay i+ MySQL replicatio v ad writi\g
to a cache. Coseque tly, data from replicas ad caches is eventually consistent: it
becomes curre vt after a (hopefully very) short delay. Oly data o the source is
curre vt (tra vsactio  isolatio  levels votwithsta vdi vg). Therefore, before servi vg reads
from a replica or cache, the followi g must be true: reading data that is out-of-date
(eventually consistent) is acceptable, and it will not cause problems for the application or
its users.

Give that stateme \t some thought because more tha v 0 \ce I've see 1 developers thi 1k
about it avd realize, “Yeah, its five if the applicatio v retur s slightly out-of-date
values” A commo ly cited example is the wumber of “likes” or up-votes o v a post
or video: if the curret value is 100 but the cache retur s 98, that’s close e vough
—especially if the cache retur s the curre vt value a few milliseco \ds later. If that
stateme 1t is not true for your applicatio v, do ‘ot use this tech vique.

I\ additio v to the requireme 1t that eve tual co \siste \cy is acceptable, offloaded
reads must ‘ot be part of a multi-stateme 1t tra vsactio \. Multi-stateme vt tra vsactio \s
must be executed o \ the source.

Always e \sure that offload reads are acceptable with eve vtual co +-
siste \cy a\d vot part of a multi-stateme 1t tra vsactio .

Before servig reads from replicas or caches, thoroughly address this questio v: how
will the application run degraded when the replicas or caches are offline?

The o \ly wro g a \swer to that questio vis ‘ot k vowi\g. O \ce a v applicatio v offloads
reads, it te \ds to depe \d heavily o+ the replicas or caches to serve those reads. It’s
imperative to desigy, impleme \t, a\d test the applicatio v to ru v degraded whe  the
replicas or caches are offli ve. Degraded mea s that the applicatio v is ruvvivg but
voticeably slower, limiti vg clie vt requests, or ‘ot fully fu \ctio val because some parts
are offlive or throttled. As log as the applicatio v is ot hard down—completely
offli ve a\d u wrespo vsive with vo huma v-frie \dly error message—the 1 you've do ve a
good job maki 1g the applicatio \ ru v degraded.

Last poit before we discuss usivg MySQL replicas versus cache servers: do ‘ot
offload all reads. Offloadi \g reads improves performa ce by ‘ot wasti g time o \ the
source for work that a replica or cache ca v accomplish. Therefore, start by offloadi vg
slow (time-co vsumi \g) reads: reads that show up as slow queries i \ the query profile.
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This tech vique is pote t, so offload reads o ve by o ve because you might o \ly ‘eed to
offload a few to sig vifica vtly improve performa vce.

MySQL replica

Usi g MySQL replicas to serve reads is commo v because every productio v MySQL
setup should already have at least o ve replica, a \d more tha » two replicas is commo .
With the ivfrastructure (the replicas) already i place, you o\ly have to modify the
code to use the replicas for offloaded reads i vstead of the source.

Before stati'g why replicas are preferable to cache servers, there’s o e importa t
issue to settle: ca the applicatio v use the replicas? Si \ce replicas are used for high
availability, whoever ma vages MySQL might ‘ot ite\d for replicas to serve reads.
Be sure to fid out because, if ‘ot, replicas might be take v offli ve without votice for
mai ‘te \a \ce.

Presumi g your replicas ca\ be used to serve reads, they are preferable to cache
servers for three reaso s:

Availability
Sivce replicas are the foudatiov of high availability, they should have the
same availability as the source—99.95% or 99.99% availability, for example. That
makes replicas vearly worry-free: whoever ma ages MySQL is also ma vagi \g the
replicas.

Flexibility

I the previous sectio, I said that you should start by offloadi vg slow (time-
co vsumi\g) reads. For caches, this is especially true because the cache server
most likely has limited CPU a \d memory—resources ‘ot to be wasted o v trivial
reads. By co vtrast, replicas used for high availability should have the same hard-
ware as the source, so they have resources to spare. Offloadi g trivial reads to
a replica does vt matter as much, he \ce the flexibility whe v choosi g what to
offload. O the off cha \ce that you have pure read replicas—replicas not used
for high availability—with less powerful hardware, the v do vt waste resources o
trivial reads. This is more commo 1 i the cloud because it’s easy to provisio
read replicas with large storage but small CPU a \d memory (to save mo ey).

Simplicity
The applicatio v does vt have to do a vythig to keep replicas i+ sy \c with the
source—that’s i+trisic to beivg a replica. With a cache, the applicatio v must
ma vage updates, i walidatio v, ad (possibly) evictio . But the real simplicity is
that replicas do vt require a vy query chages: the applicatio v ca+ execute the
exact same SQL stateme vts o v a replica.

Application Changes | 143



Those are three compelli \g reaso vs to prefer MySQL replicas to cache servers, but the
latter has o ve importa vt poi vt i v its favor: a cache server ca \ be i \credibly faster tha
MySQL.

Cache server

A cache server is ‘ot e cumbered with SQL, tra vsactio vs, or durable storage. That
makes it i vcredibly faster tha v MySQL, but it also takes more work i v the applicatio v
to use properly. As me vtio ved i+ the previous sectio v, the applicatio * must ma age
cache updates, i walidatio v, a \d (possibly) evictio \. Moreover, the applicatio v eeds
a data model that works with the cache, which is usually a key-value model. The
extra work is worth the effort because practically ‘othig is faster tha+ a cache.
Memcached a \d Redis are two popular a \d widely-used cache servers.

If you hear that MySQL has a built-i v query cache: forget it ad
vever use it. It was deprecated as of MySQL 5.7.20 a \d removed as
of MySQL 8.0.

Cachig is ideal for data that’s freque vtly accessed but i‘freque vtly chaged. This
is ‘ot a co sideratio v for MySQL replicas because all cha ges replicate, but a cache
stores o\ly what the applicatio puts i+ it. A bad example is the curret Unix
timestamp iv seco\ds: it's always chagig. The exceptio~ i a bad case like this:
if the freque \cy of access is sigifica \tly greater than the freque \cy of chage. For
example, if the curre vt Unix timestamp i v seco \ds is requested o ve millio v times per
seco \d, the \ cachi g the curre 1t timestamp might be appropriate. A good example is
the curre vt year: it cha vges i vfreque \tly. However, the exceptio v i+ a good case like
this: if the freque \cy of access is sig vifica \tly less than the freque vcy of cha vge. For
example, if the curre vt year is requested o \ly o \ce per seco \d, the v a cache provides
almost ‘o value because 1 QPS does vt make a vy differe vce for this data access.

A word of cautio\ whe\ usivg a cache: decide whether the cache is ephemeral or
durable. This, too, is ot a co vsideratio \ for MySQL replicas because they are always
durable, but some cache servers ca\ be either. If the cache is truly ephemeral, the
you should be able to do the equivale 1t of TRUNCATE TABLE o  the cache data without
affecti vg the applicatio . You also veed to decide how the ephemeral cache is rebuilt.
Some applicatio vs rebuild the cache o cache miss: whe v the requested data is ‘ot
i the cache. Other applicatio vs have a exter val process to rebuild the cache from
aother data source (for example, loadi g the cache with images stored i Amazo
S3). A~d some applicatio s rely so heavily o+ the cache, or the cache is so large,
that rebuildi vg it is ot feasible. For such applicatio vs, a durable cache is required.
Either way—ephemeral or durable—test your decisio v to verify that the applicatio
fu \ctio s as expected whe \ the cache fails a \d recovers.
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Enqueue Writes

Use a queue to stabilize write throughput. Figure 4-5 illustrates u \stable—erratic—
write throughput that spikes above 30,000 QPS a \d dips below 10,000 QPS.

30,000

4
& 20,000

10,000

Time

Figure 4-5. Erratic write throughput

Eve v if performa vce is curre vtly acceptable with u \stable write throughput, its ‘ot
a recipe for success because u stable throughput worse s at scale—it ‘ever spo ‘ta ve-
ously stabilizes. (A \d if you recall Figure 4-3 from “Performa ce Destabilizes at the
Limit” o  page 125, a flatli ve value is ‘ot stable.) Usi vg a queue allows the applicatio
to process cha \ges (writes) at a stable rate, as show v i\ Figure 4-6.
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Figure 4-6. Stable write throughput

The real power of e \queuei vg writes a\d stable write throughput is that they allow
the applicatio \ to respo \d gracefully ad predictably to a thundering herd: a flood
of requests that overwhelms the applicatio v, or the database, or both. For example,
imagi ve that the applicatio v vormally processes 20,000 cha ges per seco \d. But it
goes offli ve for five seco \ds, which results i 1 100,000 pe \di \g cha vges. The mome 1t
the applicatio v comes back o+live, its hit with the 100,000 pedig chages—a
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thu vderi \g herd—plus the vormal 20,000 cha ges for the curre ‘t seco \d. How will
the applicatio v a \d MySQL ha vdle the thu vderi vg herd?

With a queue, the thu vderig herd does vot affect MySQL: it goes ito the queue,
ad MySQL processes the cha vges as usual. The o \ly differe \ce is that some cha \ges
happe v later tha v usual. As lo \g as write throughput is stable, you ca v i \crease the
wumber of queue co vsumers to process the queue more quickly.

Without a queue, experie ce teaches that ove of two thivgs will happe . Either
you’ll be super lucky a \d MySQL will ha vdle the thu vderi g herd, or it wo vt. Do vt
cout o luck. MySQL does ot throttle query executio v, so it will try to execute
all queries whe the thuderivg herd hits. (However, MySQL E vterprise Editio,
Perco va Server, ad MariaDB Server have a thread pool that limits the vumber of
co vcurre ‘tly executi \g queries, which acts as a throttle.) This vever works because
CPU, memory, a\d disk I/O are i+here tly limited— vot to me tio v the U iversal
Scalability Law (Equatio \ 4-1). Regardless, MySQL always tries because it’s i \credibly
ambitious a d a little foolhardy.

This tech vique bestows other adva vtages that make it worth the effort to impleme 1t.
O e advatage is that it decouples the applicatio from MySQL availability: the
applicatio v ca v accept cha vges whe « MySQL is offli ve. A vother adva vtage is that it
ca\ be used to recover lost or aba vdo ved cha vges. Suppose a cha vge requires various
steps, some of which might be log-ruvvisg or ureliable. If a step fails or times
out, the applicatio v ca 1 re-e \queue the cha \ge to try agai . A third adva vtage is the
ability to replay cha vges if the queue is a v eve vt stream, like Kafka.

For write-heavy applicatio 1s, e \queuei \g writes is the best practice
ad practically a requireme vt. I west the time to lear v a\d imple-
me \t a queue.

Partition Data

After Chapter 3, it should be ‘o surprise that it’s easier to improve performa \ce with
less data. Data is valuable to you, but it's dead weight to MySQL. If you ca v ‘ot delete
or archive data (see “Delete or Archive Data” o\ page 115), the v you should at least
partitio \ (physically separate) the data.

First, let’s briefly address the v put aside MySQL partitio vi vg. MySQL supports parti-
tio vi g, but it requires special ha vdli vg. It's vot trivial to impleme vt or mai taiy, axd
some third-party MySQL tools do vt support it. Co vseque vtly, I do vt recomme \d
usi \g MySQL partitio vivg.

The type of data partitio vivg that is most useful, more commo», ad easier for
applicatio v developers to impleme ‘t is separati g hot ad cold data: freque vtly a \d
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ivfreque tly accessed data, respectively. Separati \g hot ad cold data is a combi va-
tio v of partitio \i \g a\d archivi vg. It partitio \s by access, a \d it archives by movi g
the i vfreque tly accessed (cold) data out of the access path of the freque tly accessed
(hot) data.

Let’s use a v example: a database that stores payme vts. The hot data is the last 90 days
of payme ts for two reaso vs. First, payme vts usually do ‘ot chage after settli g,
but there are exceptio s like refu \ds that ca+ be applied later. After some period,
however, payme vts are fivalized avd cavot be chaged. Secod, the applicatio
shows o 1ly the last 90 days of payme 1ts. To see older payme ts, users have to look up
past stateme vts. The cold data is payme vts after 90 days. For a year, thats 275 days,
which is roughly 75% of data. Why have 75% of data sit idly i+ a tra vsactio val data
store like MySQL? That’s a rhetorical questio v: there’s vo good reaso .

Separativg hot ad cold data is primarily a v optimizatio v for the former. Stori\g
cold data elsewhere yields three immediate adva vtages: more hot data fits i v memory,
queries do vt waste time exami vi \g cold data, a \d operatio \s (like schema cha \ges)
are faster. Separati g hot ad cold data is also a optimizatio  for the latter whe v
it has completely differe vt access patter vs. I+ the precedi vg example, old payme vts
might be grouped by mo vth ito a sigle data object that o lo \ger requires a row
for each payme t. I+ that case, a docume t store or key-value store might be better
suited for stori g a \d accessi \g the cold data.

At the very least, you ca v archive cold data i+ aother table i\ the same database.
That’s relatively easy with a co vtrolled INSERT...SELECT stateme \t to select from the
hot table a \d isert i vto the cold table. The v DELETE the archived cold data from the
hot table. Wrap it all up i+ a tra vsactio \ for co ssiste \cy. See “Delete or Archive Data”
0\ page 115.

This tech vique ca be impleme vted ma vy differe vt ways, especially with respect to
how ad where the cold data is stored ad accessed. But fu dame vtally its very
simple a \d highly effective: move i \freque vtly accessed (cold) data out of the access
path of freque vtly accessed (hot) data to improve performa ce for the latter.

Don’t Use MySQL

I watt to put a figurative capstove o\ the curret discussio v about applicatio
cha ges: the most sigvifica vt chage is ‘ot usi g MySQL whe v it’s clearly ‘ot the
best data store for the access patter \s. Sometimes it’s very easy to see whe x MySQL
is ‘ot the best choice. For example, i\ previous chapters I made refere \ce to a query
with load 5,962. That query is used to select vertices i+ a graph. Clearly, a relatio val
database is ‘ot the best choice for graph data; the best choice is a graph data store.
Eve\ a key-value store would be better because graph data has ‘othig to do with
relatio val database co cepts like vormalizatio v ad tra vsactio 1s. A vother easy ad
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commo \ example is time series data: a row-orie vted tra vsactio val database is ‘ot the
best choice; the best choice is a time series database, or perhaps a colum var store.

MySQL scales surprisi vg well for a wide ra \ge of data a \d access patter \s eve » whe
it's vot the best choice. But vever take that for gra ‘ted: be the first e \gi veer o \ your
team to say, “Maybe MySQL is vt the best choice.” It's okay: if I ca \ say that, the \ you
ca too. If ayo ve gives you grief, tell them I support your decisio v to use the best
tool for the job.

That said, MySQL is amazi \g. Please at least fi vish this chapter a\d the ‘ext, Chap-
ter 5, before you swipe left o + MySQL.

Better, Faster Hardware?

“Better, Faster Hardware!” o+ page 37 cautios agaisst scalivg up hardware to
ivcrease performace. But the first setece of that sectio is carefully worded:
“Whe » MySQL performa vce is vt acceptable, do not begi\ by scali \g up...” The key
word i\ that se vte \ce is begin, a \d the pivotal questio v that it leads to is: when is the
correct time to scale up hardware?

That questio v is difficult to a \swer because it depe \ds o v a combi vatio v of factors:
queries, idexes, data, access patter \s, a \d how those utilize the curre vt hardware.
For example, let’s say that the applicatio \ has a super i vefficie 1t access patter : it uses
MySQL as a queue a \d polls it very quickly from ma vy applicatio v i \sta ces. I would
‘ot scale up hardware u +til fixi \g the access patter  first. But sometimes, e \gi veers
do vt have the luxury of time vecessary to make such applicatio v cha vges.

Table 4-2 is a checklist to help determi ve if it’s time to scale up the hardware. Whe
you ca check all items i+ colum 1 ad at least two items iy colum 2, the v it’s a
stro \g i \dicatio 1 that it’s time to scale up the hardware.

Table 4-2. Hardware upgrade checklist

1. Check all 2. Check at least two

I Response time is too high I CPU utilization is greater than 80%
O Slow queries have been optimized O Threads running greater than number of CPU cores
O Data has been deleted or archived O Memory is less than 10% of total data size

O Access patterns have been reviewed and optimized [J Storage IOPS utilization is greater than 80%

Colum v 1 is a uvapologetic reiteratio v of everythi g sice Chapter 1, but it’s also
a uequivocal justificatio v for spe \di \g mo ey to upgrade the hardware. Colum 1 2
requires at least two checks because hardware works together. Heavily utilizi vg o \ly
o0 e piece of hardware does vt guara tee a problem or slow performa ce. I \stead,
it’s probably a good sig \: you're fully utilizi \g that piece of hardware. But whe v o0 ve
piece of hardware is overloaded, it usually begi s to affect other pieces of hardware.
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For example, whe v slow storage causes a backlog of queries which causes a backlog
of clie vts which causes high CPU utilizatio v because MySQL is tryi g to execute too
ma vy threads. That’s why colum + 2 requires two checks.

Values i+ colum v 2 should be co vsiste \tly greater or less tha v the suggested thresh-
olds. Occasio val spikes a \d dips are vormal.

The maximum ‘umber of storage IOPS is determied by the storage device, if
ruvvivg your ow \ hardware. If youre ‘ot sure, check the device specificatio s, or
ask the e \gi veers who ma vage the hardware. I+ the cloud, storage IOPS are allocated
or provisio ved, so it’s usually easier to tell the maximum because you purchase the
IOPS. But if youre ‘ot sure, check the MySQL storage settigs, or ask the cloud
provider. “IOPS” o v page 208 shows which metrics report storage IOPS.

Storage IOPS utilizatio + has a v additio val co \sideratio \ based o \ whether the appli-
catio  is read-heavy or write-heavy (see “Read/Write” o v page 133):

Read-heavy

For read-heavy access patter 1s, co siste vtly high IOPS is probably due to i vsuffi-
cie vt memory, ‘ot i sufficie vt IOPS. MySQL reads data from disk whe v it’s ‘ot
iy memory, a d it’s exceptio vally good at keepi g the worki g set i+ memory
(see “Worki \g set size” o 1 page 95). But a combi vatio v of two factors ca \ cause
high IOPS for reads: the worki g set size is sig vifica \tly larger tha v memory,
ad read throughput is exceptio vally high (see “Throughput” o v page 133). That
combi vatio v causes MySQL to swap so much data betwee v disk a \d memory
that the problem shows up as high IOPS. This is rare, but possible.

Write-heavy

For write-heavy access patter s, co 1siste vtly high IOPS is probably due to i vsuf-
ficie vt IOPS. Simply put: the storage ca vt write data fast e vough. Normally,
storage achieves high throughput (IOPS) with write caches, but caches are ‘ot
durable. MySQL requires durable storage: data physically o v disk, ‘ot i+ caches.
(The phrase “o\ disk” is still used eve v for flash-based storage that does vt have
disks.) Co seque vtly, MySQL must flush data—force it to be writte to disk.
Flushi g severely limits storage throughput, but MySQL has sophisticated tech vi-
ques a\d algorithms to achieve performa vce with durability—“Page flushig” o
page 212 goes i vto detail. The o \ly solutio v at this poi vt—because you’ve already
optimized queries, data, a \d access patter \s—is more storage IOPS.

With a cautious vod to scali'g up hardware, it might seem that we've reached the
e \d. No matter how ma vy pebbles, or cobbles, or boulders we have to move, we ca
always use a bigger truck to move them. But what if you have to move a mou vtai 1?
The v you eed the vext chapter: shardig.
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Summary

This chapter ce vtered o \ data access patter \s that determi ve how you ca v cha ge the
applicatio  to use MySQL efficie vtly. The importa vt takeaway poi vts are:

o MySQL does vothi vg but execute applicatio \ queries.

o Database performa \ce destabilizes at a limit that is less thay 100% of hardware
capacity.

» Some applicatio \s have far greater MySQL performa vce because every detail is
e \gi veered for high performa vce.

o Access patter s describe how a v applicatio \ uses MySQL to access data.
» You must cha vge the applicatio v to cha vge its data access patter 1s.

o Scale up hardware to improve performa \ce after exhausti \g other solutio vs.

The ext chapter itroduces the basic mechavics of shardivg MySQL to achieve
MySQL at scale.

Practice: Describe an Access Pattern

The goal of this practice is to describe the access patter v of the slowest query. (To
get slow queries, refer back to “Query profile” o+ page 9 axd “Practice: Ide +tify
Slow Queries” o+ page 33.) For the slowest query, describe all ive access patter
traits from “Data Access Patter vs” o \ page 131. As me vtio ved i\ that sectio v, access
patter \s are pure kowledge. Use that kowledge to co sider what “Applicatio 1
Cha vges” o 1 page 140 could be made to i \directly optimize the query by cha gi g its
access patter \. Eve v if 1o applicatio v cha vges are possible, k vowi \g access patter 1s is
a\ expert practice because MySQL performa ce depe \ds o v queries, data, a \d access
patter vs.

150 | Chapter 4: Access Patterns



CHAPTER 5

Sharding

O a sivgle ivstavce of MySQL, performa ce depe \ds o v queries, data, access pat-
tervs, ad hardware. Whe direct axd ivdirect query optimizatio v—assiduously
applied— vo loger deliver acceptable performa ce, you have reached the relative
limit of si vgle-i vsta \ce MySQL performa vce for the applicatio  workload. To surpass
that relative limit, you must divide the applicatio » workload across multiple i sta \ces
of MySQL to achieve MySQL at scale.

Sharding a database is the commo v ad widely used tech vique of scaling out (or,
horizontal scaling): i creasi vg performa \ce by distributi vg the workload across mul-
tiple databases. (By co ‘trast, scaling up, or vertical scaling, i \creases performa \ce by
ivcreasi \g hardware capacity.) Shardig divides o ve database ito ma vy databases.
Each database is a shard, a\d each shard is typically stored o a separate MySQL
ivstace ruvvivg o separate hardware. Shards are physically separate but logically
the same (very large) database.

MySQL at scale requires shardiyg. I'm goitg to repeat that se vte \ce several times
iv this chapter because it’s a fact that e gieers hesitate to accept. Why? Because
shardig is vot a v ivtri vsic feature or capability of MySQL. Co yseque vtly, shardi \g is
complex ad e vtirely applicatio v-specific, which mea s there’s ‘o easy solutio v. But
do vt be discouraged: shardi g is a solved problem. E \gi veers have bee \ scali \g out
MySQL for decades.

This chapter i vtroduces the basic mecha vics of shardi g to achieve MySQL at scale.
There are four major sectiovs. The first explaivs why a sigle database does ‘ot
scale—why shardi g is vecessary. The seco \d completes the a valogy from Chapters 3
ad 4: why pebbles (database shards) are better tha v boulders (huge databases). The
third is a brief i vtroductio + to the complex topic of relatio val database shardi vg. The
fourth prese vts alter vatives to shardig.
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Why a Single Database Does Not Scale

Nobody questio s that a sigle applicatio v ca \ overload a si \gle server—that’s why
scalivg out is vecessary for all types of servers ad applicatiovs, ‘ot just MySQL.
Shardi g is therefore ‘ecessary because it's how MySQL scales out: more databases.
But it’s reaso vable to wo vder why a si vgle MySQL database does ‘ot scale give v that
very powerful hardware is available a \d some be \chmarks demo \strate icredible
performa vce o v that hardware. Five reaso vs follow, begi v i \g with the most fu \da-
me vtal: the applicatio v workload ca v sig vifica vtly outpace the speed a \d capacity of
sivgle-server hardware.

Application Workload

Figure 5-1 is a simple illustratio v of hardware capacity o v a sigle server with zero
load.

Hardware

Figure 5-1. Hardware without load

Figure 5-1 is ite vtio vally simple—but ‘ot simplistic—because it subtly co weys a
critically importa vt poi \t: hardware capacity is finite and limited. The circle represe vts
the limits of the hardware. Let’s presume the hardware is dedicated to ruvvivg a
sivgle MySQL i1stace for o e applicatio v— ‘o virtualizatio v, crypto coi miving,
or other load. Everythi g that rus o v the hardware must fit i vside the circle. Si \ce
this is dedicated hardware, the oly thig ruvvivg o it is the applicatio v+ workload
show v i+ Figure 5-2: queries, data, a \d access patter s.
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Hardware

Access patterns

Figure 5-2. Hardware with standard MySQL workload

It's vo coicide vce that Queries refer to Chapter 2, Data to Chapter 3, ad Access
Patterns to Chapter 4. These co sstitute the applicatio v workload: everythi g that
causes load o * MySQL which, i tur v, causes load o \ the hardware (CPU utilizatio v,
disk I/O, a \d so forth). The box sizes are importa 1t: the bigger the box, the bigger the
load. I~ Figure 5-2, the workload is withi v the capacity of the hardware, with a little
room to spare because the operati \g system ‘eeds hardware resources, too.

Queries, data, ad access patter s are i‘extricable with respect to performa ce. (I
proved this with TRUNCATE TABLE i+ “Ivdirect Query Optimizatio v’ o \ page 28.) Data
size is a commo \ reaso \ for scali \g out because, as show v i Figure 5-3, it causes the
workload to exceed the capacity of a si \gle server.

Hardware

Access patterns

Figure 5-3. Hardware with too much data
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Data size ca v vot icrease without eve vtually affecti \g queries ad access patter 1s.
Buyig a bigger hard drive wo vt solve the problem because, as Figure 5-3 shows,
there’s plety of capacity for the data, but the data is vot the o\ly part of the
workload.

Figure 5-4 illustrates a commo \ misco \ceptio v that leads e \gi veers to thi k that a
sigle database ca v scale to maximum data size, which is curre \tly 64 TB for a si\gle
I1voDB table.

Hardware

Figure 5-4. Hardware with only data (scaling misconception)

Data is 0ly o ve part of the workload, a \d the other two parts (queries a \d access
patter \s) ca ot be igored. Realistically, for acceptable performa vce with a lot of
data o v a si \gle sever, the workload must look like Figure 5-5.

Hardware

Data

Access
patterns

Figure 5-5. Hardware with large data
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If the queries are simple a \d have exceptio vally good i vdexes, a \d the access patter \s
are trivial (for example, very low-throughput reads), the v a sigle server ca store a
lot of data. This is vt just a clever illustratio v; real applicatio \s have workloads like
Figure 5-5.

These five illustratio \s reveal that a si \gle database ca \ vot scale because the applica-
tio v workload—which comprises queries, data, a \d access patter \s—must fit withi
the capacity of the hardware. After “Better, Faster Hardware!” o \ page 37 a \d “Better,
Faster Hardware?” o\ page 148, you already k vow that hardware wo vt solve this
problem.

MySQL at scale requires shardi g because applicatio v workloads ca v sigvifica vtly
outpace the speed a \d capacity of si \gle-server hardware.

Benchmarks Are Synthetic

Be vchmarks use sy vthetic (fake) queries, data, a d access patter \s. These are ‘eces-
sarily fake because theyre ‘ot real applicatio vs ad certaily ‘ot your applicatio .
Therefore, be \chmarks ca 1 ot tell you—or eve v suggest—how your applicatio v will
perform a \d scale—eve v o 1 the same hardware. Moreover, be \chmarks largely focus
01 0e or more access pattery (see “Data Access Patters” o+ page 131), which
produces a workload like the o ve pictured i v Figure 5-6.

Hardware

Access patterns

Figure 5-6. Hardware with benchmark workload

Most applicatio s do vt have a workload where performa \ce is domivated by o e
or more access patter . But it's commo v for be \chmarks because it allows MySQL
experts to stress a \d measure a particular aspect of MySQL. For example, if a MySQL
expert wats to measure the effective vess of a ew page flushi g algorithm, they
might use a 100% write-o \ly workload with a few perfectly optimized queries a \d
very little data.
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But let me be perfectly clear: be \chmarks are importa vt avd recessary for MySQL
experts ad the MySQL i+dustry. (As me tio ved i+ “MySQL Tuig” o page 39,
be \chmarki vg is laboratory work.) Be \chmarks are used to do the followi \g:

o Compare hardware (o ve storage device agai st a vother)
o Compare server optimizatio \s (o e flushi g algorithm agai st a vother)
o Compare differe vt data stores (MySQL versus PostgreSQL—the classic rivalry)

o Test MySQL at the limit (see “Performa vce Destabilizes at the Limit” o+ page
125)

That work is icredibly importa vt for MySQL, ad its why MySQL is capable of
amazi g performa \ce. But co \spicuously abse 1t from that list is a vythig related
to your applicatio v a+d its particular workload. Co vseque ‘tly, whatever amazig
MySQL performa vce you read or hear about i v be \chmarks will vot tra \slate to your
applicatio v, avd the very same experts producig those be \chmarks will tell you:
MySQL at scale requires shardi g.

Writes
Writes are difficult to scale o v a si \gle MySQL i vsta vce for several reaso 1s:

Single writable (source) instance
For high availability, MySQL i\ productio v employs several i \sta vces co \ vected
iv a replicatio v topology. But writes are effectively limited to a sigle MySQL
i sta \ce to avoid write conflicts: multiple writes to the same row at the same time.
MySQL supports multiple writable i sta ces, but you will have a difficult time
fi \di \g a vyo ve who uses this feature because write co vflicts are too troublesome.

Transactions and locking
Tra vsactio s use locki g to guara vtee co siste \cy—the Civa vy ACID-complia 1t
database. Writes must acquire row locks, a \d sometimes they lock sig vifica vtly
more rows tha v you might expect—“Row Lockig” o page 260 explai \s why.
Locks lead to lock co vte vtio v, which makes access patter v trait “Co \curre \cy”
0 page 138 a critical factor i\ how well writes scale. If the workload is write-
heavy o  the same data, eve \ the best hardware i  the world wo vt help.

Page flushing (durability)
Page flushing is the delayed process by which MySQL persists cha ges (from
writes) to disk. The etire process is too complex to explaiv i+ this sectio,
but the salie vt poit is: page flushig is the bottle veck of write performa ce.
Although MySQL is very efficie \t, the process is ivhere tly slow because it
must e sure that data is durable: persisted to disk. Without durability, writes
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are ixcredibly fast due to cachig, but durability is a requireme vt because all
hardware crashes eve vtually.

Write amplification
Write amplification refers to writes requiri \g more writes. Seco vdary i vdexes are
the simplest example. If a table has 10 seco \dary idexes, a sigle write could
write 10 additio val writes to update those idexes. Page flushig (durability)
ivcurs additio val writes, ad replicatio v ivcurs eve v more writes. This is ot
uvique to MySQL; it affects other data stores, too.

Replication

Replicatio v is required for high availability, so all writes must replicate to other
MySQL i \sta \ces—replicas. Chapter 7 addresses replicatio v, but here are a few
salie \t poivts with respect to scalivg writes. MySQL supports asy ‘chro vous
replicatio v, semisy \chro vous replicatio v, a \d Group Replicatio v. Asy \chro vous
replicatio v has a small effect o+ write performa \ce because data chages are
writte v a \d flushed to bivary logs o v tra vsactio ¥ commit—but after that, there’s
vo effect. Semisy chro vous replicatio v has a greater effect o v write performa vce:
it atte vuates tra vsactio v throughput to ‘etwork late \cy because every commit
must be ack vowledged by at least o e replica. Si vce vetwork late \cy measures i v
milliseco \ds, the effect o v write performa vce is voticeable, but it’s a worthwhile
trade-off because it guara vtees that o committed tra vsactio s are lost, which is
ot true for asy chro vous replicatio v. Group Replicatio v is more complex a \d
it's more difficult to scale writes. For various reaso s explai ved i v Chapter 7, I do
‘ot cover Group Replicatio v i v this book.

These five reaso \s are formidable challe vges to scali g writes o+ a sigle MySQL
istace—eve \ for MySQL experts. MySQL at scale requires shardi g to overcome
these challe vges a \d scale write performa ce.

Schema Changes

Schema cha vges are more tha » routi ve; they’re practically required. Furthermore, it’s
ot ucommo \ for the largest tables to cha vge freque tly because their size reflects
their usage, a‘d usage leads to developme \t, which leads to chages. Eve v if you
ma vage to overcome all other obstacles a \d scale a si \gle table to a \ e vormous size,
the time required to cha \ge that table will be u vte vable. How lo vg? It ca \ take days
or weeks to alter a large table.

The lo vg wait is ‘ot a problem for MySQL or the applicatio \ because o \li ve schema
chage (OSC) tools like pt-o 1li ve-schema-cha vge ad gh-ost a“d certai built-i
olive DDL operatio \s ca ru for days or weeks while allowi vg the applicatio v to
fuctio v vormally—which is why they’re called online. But it is a problem for e \gi-
reers developi g the applicatio \ because waiti g that lo g does ot go uoticed;
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rather, it te \ds to become a v i \creasi \gly a v voyi \g blocker to you, other e \gi eers,
ad possibly other teams.

For example, just a few weeks ago I helped a team alter several tables, each with
o e billion rows, that had failed to complete after ‘early two weeks of tryi g (for
various tech vical reaso vs ‘ot related to MySQL). The blocker we vt far beyo \d the
table or the team: lo \g story short, it blocked a \ orga vizatio v-level goal—mo vths of
work by several other teams. Luckily, the veeded schema cha \ge happe ved to be a»
ivstavt olive DDL operatio v. But i\sta vt schema cha \ges are exceedi \gly rare, so
do vt cou vt o ' them. I \stead, do vt let a table become so large that you ca v vot alter it
iva reaso vable amou vt of time—whatever you, your team, a \d your compa vy deem
reasonable.

MySQL at scale requires shardi g because e \gi veers ca '\ ‘ot wait days or weeks to
cha\ge a schema.

Operations

If you directly a \d i vdirectly optimize queries with exacti \g precisio v a \d u vmitiga-
ted meticulous vess, you ca scale up a sigle database to a size that people wo vt
believe util you show them. But the illustratio s of hardware a‘d workload i+
“Applicatio v Workload” o v page 152 do vot depict the followi vg operations (or ops as
they’re more commo \ly called):

 Backup ad restore

o Rebuildi g failed i \sta vces

o Upgradi g MySQL

o MySQL shutdow v, startup, a \d crash recovery

The larger the database, the lo vger those operatio \s take. As a v applicatio \ developer,
you might ‘ot mavage avy of those operatio \s, but they will affect you u \less the
e gi veers ma vagi\g the database are exceptio vally adept at—a \d deeply committed
to—zero-dow time operatio \s. Cloud providers, for example, are ‘either adept vor
committed; they o \ly attempt to mi vimize dow ‘time, which ca  mea v a vythi \g from
20 seco \ds to hours of the database bei vg offli ve.

MySQL at scale requires shardi \g to efficie \tly ma vage the data, which leads us to the
'ext sectio \: pebbles, ‘ot boulders.
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Pebbles, Not Boulders

It’s sig vifica vtly easier to move pebbles tha v boulders. I belabor this a valogy because
it’s apt: MySQL at scale is achieved by usi g ma vy small i \sta \ces. (To refresh your
memory o \ the a valogy, read the i \troductory sectio s of Chapters 3 a \d 4.)

Small, i~ this co vtext, mea s two thi gs:

o The applicatio + workload ru s with acceptable performa vce o  the hardware.

o Stadard operatio s (i vcludi vg OSC) take a v acceptable amou 1t of time.

At first glace, that makes small seem so relative that it’s useless, but i+ practice
the limited ra ge of hardware capacity sig vifica vtly varrows the scope to a v almost
objective measure. For example, at the time of this writi \g, I advise e \gi veers to limit
the total data size of a si \gle MySQL i vsta \ce to 2 or 4 TB:

27TB
For average queries a\d access patter \s, commodity hardware is sufficie vt for
acceptable performa 1ce, a \d operatio \s complete i v reaso vable time.

4TB
For exceptio vally optimized queries a \d access patter s, mid- to high-e \d hard-
ware is sufficie vt for acceptable performa vce, but operatio vs might take slightly
lo vger tha v acceptable.

These limits o \ly reflect the hardware capacity that you ca \ readily purchase today
(December 2021). Years ago, the limits were sig vifica vtly lower. (Remember whe
disks would physically spi v a \d make crackli vg sou \ds? Weird.) Years from vow, the
limits will be sig vifica vtly greater.

O rce a database is sharded, the vumber of shards is trivial to the applicatio \ because
it accesses them programmatically. But to operatio ys—especially the e gi veers oper-
ati vg the MySQL i sta \ces—the size of shards is critically importa vt: it’s sig vifica vtly
easier to ma vage a 500 GB database thava 7 TB database. A \d si \ce operatio \s are
automated, it’s easy to ma vge a vy vumber of small databases.

MySQL performa vce is truly ulimited whe v sharded a \d operated as ma vy small
databases—pebbles, ‘ot boulders.
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Sharding: A Brief Introduction

The solutio v a\d impleme vtatio v of shardi g are vecessarily coupled to the appli-
catio v workload. This is true eve for the alter vative solutio s prese vted i+ the
'ext sectio v, “Alter vatives” o\ page 170. Co vseque vtly, Yo oe ca tell you how to
shard, ad there are ‘o fully-automated solutio \s. Prepare for a lo vg but worthwhile
jour vey.

Shardi g has two paths from idea to impleme +tatio v:

Designing a new application for sharding

The first a\d rarest path is whe v a v applicatio v is desig ved from the begi \vi g
for shardig. If youre developig a vew applicatio v, I highly e \courage you to
take this path if needed because it’s i \comparably easier to shard from the start
tha \ to migrate later.

To determi ve whether shardi g is ‘eeded, estimate data size a \d growth for the
vext four years. If the estimated data size i+ four years fits withi v the capacity
of your hardware foday, the+ shardig might ‘ot be ‘eeded. I call this the
four-year fit. Also try to estimate the four-year fit for the other two aspects of the
applicatio v workload: queries a \d access patter 1s. These are difficult to estimate
(ad likely to cha vge) for a vew applicatio v, but you should have some ideas a \d
expectatio \s because theyre a vecessary part of desig vi g a \d impleme tivg a
applicatio .

Also co vsider whether the data set is bou vded or ubouded. A bounded data
set has a ivtri vsic maximum size or i vtri vsically slow growth. For example, the
wumber of vew smart pho ves released every year is very small, a\d its growth
is ivtrisically slow because there’s 1o reaso v to believe that ma wufacturers will
ever release thousa vds of vew pho ves per year. A unbounded data set has o
ivtrivsic limits. For example, pictures are ubou vded: people ca post u \limi-
ted pictures. Sivce hardware capacity is bou vded, applicatio vs should always
defive a\d impose extri \sic limits o v ubou vded data sets. Never let data grow
usbouded. A+ ubou+ded data set strogly ivdicates the veed for sharding,
u\ess old data is freque tly deleted or archived (see “Delete or Archive Data” o
page 115).

Migrating an existing application to sharding

The seco \d a \d more commo  path is migrati \g a \ existi \g database a \d appli-
catio v to shardi vg. This path is sig vifica vtly more difficult, time-co \sumi g, a\d
risky because, by the time it’s required, the database is large—MySQL is haulig a
boulder uphill. With a team of experie vced developers, pla » for the migratio v to
take a year or lo \ger.
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I+ this book, I cavvot cover how to migrate a sivgle database to a sharded
database because it's a bespoke process: it depeds o the shardig solutio
ad applicatio + workload. But o e thi\g is certai\: you will copy data from the
origival (sigle) database to the vew shards—probably ma vy times—because the
ivitial migratio v is esse vtially the first reshardi vg, which is a challe \ge addressed
i+ “Reshardig” o\ page 168.

Four-Year Fit

Why estimate data size ad growth for the vext four years? O ve or two years is too
s00 \: it takes at least a year to impleme ‘t a big project like shardig. Three years is
reaso vable, ad four years is safe: better hardware is a safe bet i+ four years. Also,
stock gra vts commo \ly vest after four years, which causes tur vover. Read “Tours of
Duty: The New Employer-Employee Compact” by Reid Hoffma v, Be v Cas vocha, a \d
Chris Yeh. A respo ysible e \gi veer improves the system for future e gi veers. If the
database wo vt scale past o \e’s four-year te wure, they should fix it vow to e \sure that
future e \gi veers i ‘herit a scalable system.

Shardivg is a complex process for either path. To begi, choose a shard key ad
strategy, a \d u dersta \d the challe \ges that you will face. This k vowledge gives the
jour vey a destivatio \: a sharded database that you ca operate with relative ease.
The v chart a path from o ve database to that desti vatio .

Shard Key

To shard MySQL, the applicatio v must programmatically map data to shards. There-
fore, the most fu vdame vtal decisio v is the shard key: the colum  (or colum 1s) by
which the data is sharded. The shard key is used with a shardi \g strategy (discussed
i+ the vext sectio v) to map data to shards. The applicatio v, vot MySQL, is respo 1sible
for mappi \g a \d accessi \g data by shard key because MySQL has 1o built-i\ co cept
of shardi \g—MySQL is oblivious to shardi g.

The term shard is used itterchageably for the database or the
MySQL i \sta \ce where the database is stored.

A videal shard key has three properties:

High cardinality
A v ideal shard key has high cardi vality (see “Extreme Selectivity” o \ page 86) so
that data is eve \ly distributed across shards. A great example is a website that lets
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you watch videos: it could assig \ each video a u vique ide vtifier like dQw4w9WgXcQ.
The colum v that stores that ide ttifier is a v ideal shard key because every value is
uvique, therefore cardi vality is maximal.

Reference application entities
A v ideal shard key refere vces applicatio v e vtities so that access patter \s do not
cross shards. A great example is a v applicatio \ that stores payme 1ts: although
each payme 1t is uvique (maximal cardivality), the customer is the applicatio
e tity. Therefore, the primary access patter v for the applicatio v is by customer,
‘ot by payme ‘. Shardi g by customer is ideal because all payme ts for a sigle
customer should be located o 1 the same shard.

Small
A ideal shard key is as small as possible because it’s heavily used: most—if
ot all—queries iclude the shard key to avoid scatter queries—o ve of several
“Challe \ges” o  page 167.

It should go without sayi vg, but to e vsure that it has bee + said: a v ideal shard key, i v
combi vatio v with the shardi g strategy, avoids or mitigates the “Challe vges” o \ page
167, especially tra vsactio vs a \d joi 1s.

Spe \d ample time to ide +tify or create the ideal shard key for your applicatio . This
decisio v is half of the fou \datio \: the other half is the shardi \g strategy that uses the
shard key.

Strategies

A shardi g strategy maps data to shards by shard key value. The applicatio v imple-
me ‘ts the shardi \g strategy to route queries to the shard with the data correspo \di \g
to the shard key value. This decisio v is the other half of the fou \datio \. O \ce the
shard key a \d strategy are impleme vted, it’s exceedi vgly difficult to cha ge, so choose
very carefully.

There are three commo strategies: hash, rage, a\d lookup (or directory). All
three are widely used. The best choice depe \ds o v the applicatio v access patter \s—
especially row access (see “Row Access” o \ page 139), as me tio ved i \ the vext three
sectio vs.

Hash

Hash shardi \g maps hash key values to shards usi vg a hashi g algorithm (to produce
av ivteger hash value), the modulo operator (mod), ad the vumber of shards (N).
Figure 5-7 depicts the strategy starti \g with the hash key value at top a \d followi g
the solid arrows to a shard at bottom.
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Shard key value

l

Hash algorithm

75482

Hash value

Modulo (hash value, N)<----,

2 :

Shard number

Shard 0 Sha N=3

A hashig algorithm outputs a hash value usiyg the shard key value as ivput. The
hash value (which is a+ ivteger) mod the umber of shards (N) retur s the shard
wumber: a v ivteger betwee v zero axd N - 1, iclusive. I+ Figure 5-7, the hash value
75482 mod 3 = 2, so the data for the shard key value is located o \ shard 2.

Figure 5-7. Hash sharding

How to map shard vumbers to MySQL ista \ces is your choice.
For example, you could deploy a map of shard vumbers to MySQL
host vames with each applicatio v i1stace. Or, applicatio vs could
query a service like etcd to discover how shard vumbers map to
MySQL i sta vces.
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If you're thi ki g, “Wo vt chagi g the vumber of shards (N) affect the mappi g of
data to shards?” you are correct. For example, 75483 mod 3 = 0, but i\crease the
wumber of shards to five a \d the same shard key value maps to a vew shard vumber:
75483 mod 5 = 3. Luckily, this is a solved problem: a consistent hashing algorithm
outputs a co vsiste 1t hash value i vdepe \de 1t of N. The key word is consistent: it’s still
possible, but far less likely, that hash values will cha \ge whe v shards cha \ge. Si \ce
shards are likely to cha \ge, you should choose a co 1siste t hashi vg algorithm.

Hash shardivg works for all shard keys because it abstracts the value to a i vteger.
That does vt mea v it’s better or faster, o\ly that it’s easier because the hashi g algo-
rithm automatically maps all shard key values. However, automatically is also its
dow 1side because, as “Rebala vcig” o v page 169 discusses, it’s virtually impossible to
ma ‘ually relocate data.

Poi vt access (see “Row Access” o+ page 139) works well with hash shardi vg because
0 e row cay map to o\ly o e shard. By co vtrast, ra\ge access is probably i vfeasi-
ble with hash shardi \g—u vless the rages are very small—because of “Cross-shard
queries” o\ page 167 (o e of the commo 1 challe vges). Ra xdom access is probably
i feasible, too, for the same reaso .

Range

Rage shardi g defives co vtiguous key value rages ad maps a shard to each, as
depicted i Figure 5-8.

Shard key value

l

x<10  [10>=X<100[100>=X<500f X>=500 [Range
0 1 2 2 Shard number

Shard 0 ﬁ Shard 2

Figure 5-8. Range sharding

You must defive the key value rages i+ adva ce. This gives you flexibility whe
mappi g data to shards, but it requires a thorough k vowledge of data distributio
to e sure that the data is evely distributed across shards. Sice data distributio
cha vges, expect to deal with reshardi g (see “Reshardi\g” o v page 168). A be vefit to
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rage shardig is that, ulike hash shardi\g, you ca chage (redefie) the rages,
which helps to ma ually relocate data.

All data cav be sorted avd divided ito rages, but this does vt make sese for
some data, like ra vdom ide +tifiers. A \d some data appears ra \dom but, upo  closer
ispectio v, is actually closely ordered. For example, here are three UUIDs ge verated
by MySQL:

f15e7e66-b972-11ab-bc5a-62c7db17db19
f1e382fa-b972-11ab-bc5a-62c7db17db19
f25f1dfc-b972-11ab-bc5a-62c7db17db19

Ca you spot the differe vces? Those three UUIDs appear ra vdom but would most
likely sort ivto the same rage, depediyg o the ra\ge size. At scale, this would
map most data to the same shard, thereby defeati vg the purpose of shardig. (UUID
algorithms vary: some ite vtiovally ge verate closely ordered values, while others
i vte tio vally ge verate ra \domly ordered values.)

Ra vge shardi vg works best whe x:

o The rage of shard key values is bou vded
* You ca\ determi ‘e the ra \ge (mi \imum a \d maximum values)
 You k vow the distributio \ of values, a \d it'’s mostly eve

o The rage a\d distributio v are u \likely to cha ge

For example, stock data could be sharded by stock symbols ragig from AAAA to
z777. Although the distributio v is probably less i+ the Z rage, overall it will be
eve evough to ersure that oe shard is ‘ot sigifica vtly larger or accessed more
freque vtly tha  the other shards.

Poi 1t access (see “Row Access” o\ page 139) works well with ra \ge shardi g as lo g
as row access distributes eve\ly over the rages, avoidi \g hot shards—a commo v
challe vge discussed iy “Rebalacing” o page 169. Rage access works well with
rage shardi g as lo vg as the row ra \ges are withi v the shard ra vges; if vot, “Cross-
shard queries” o v page 167 become a problem. Ra vdom access is probably i vfeasible
for the same reaso : cross-shard queries.

Lookup

Lookup (or directory) shardi g is custom mappig of shard key values to shards.
Figure 5-9 depicts a lookup table that maps cou vtry code top-level domai s to shards.
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Shard key value

Lookup table (directory)
a 1
.us 1
.mx 2

Shard0 Shard 2

Figure 5-9. Lookup (directory) sharding

Lookup shardi g is the most flexible, but it requires mai vtai vi\g a lookup table. A
lookup table fu \ctio s as a key-value map: shard key values are the keys, a \d database
shards are the values. You ca impleme 1t a lookup table as a database table, a data
structure i+ a durable cache, a co ‘figuratio v file deployed with the applicatio v, axd
so forth.

The keys i+ the lookup table ca+ be sigular values (as show iy Figure 5-9) or
ra \ges. If the keys are ra \ges, the v it’s esse vtially ra vge shardi vg, but the lookup table
gives you more co vtrol of the rages. But that co vtrol has a cost: cha \gi \g ra \ges
mea s reshardi yg—o ve of the commo » challe vges. If the keys are sigular values,
the v lookup shardig is se sible whe v the wmber of uvique shard key values is
ma vageable. For example, a website that stores public health statistics i+ the Uited
States could shard by state ad couty vame because there are fewer thav 3,500
cou vties total, a \d they almost vever cha vge.! Lookup shardi vg has a v adva tage that
makes it a good choice for this example: it’s trivial to map all the cou ties with very
low populatio v to o ve shard, whereas this custom mappi \g is vt possible with hash or
rage shardig.

All three row access patter s (see “Row Access” o page 139) work with lookup
shardi g, but how well they work depe \ds o+ the size a \d complexity of the lookup
table you ‘eed to create a \d mai vtai v to map shard key values to database shards.
The rotable me vtio v is ravdom access: lookup shardig allows you to map (or
remap) shard key values to alleviate cross-shard queries caused by radom access,
which is vearly impossible with hash a \d ra \ge shardig.

1 Couty vames are u vique o \ly withi v a state, which is why the state vame is required.
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Challenges

If shardi g were perfect, you would shard oly o ce, ad every shard would have
equal data size a \d access. That might be the case whe v you first shard, but it wo vt
remai the case. The followi g challe vges will affect your applicatio v a\d sharded
database, so pla v ahead: k vow how you will avoid or mitigate them.

Transactions

Tra vsactio s do ‘ot work across shards. This is more of a blocker tha v a challe \ge
because there is esse vtially vo workarou \d short of impleme 1ti vg a two-phase com-
mit i v the applicatio v, which is perilous a \d far beyo d the scope of this book.

I stro \gly recomme \d that you avoid this blocker. Review your applicatio v tra \sac-
tio \s (see “Reportig” o+ page 286) a\d the data they access. The v choose a shard
key a \d strategy that work give v how the tra sactio \s access data.

Joins

A SQL stateme vt ca v vot joi v tables across shards. The solutio v is a cross-shard join:
the applicatio v joi \ results from multiple queries executed o v multiple shards. It’s vot
a trivial solutio v—it might eve v be complex depe \di \g o \ the joi v—but it’s feasible.
Apart from complexity, the mai co \cer v is co vsiste \cy: sivce travsactio s do ot
work across shards, the results from each shard are ‘ot a co 1siste 1t view of all data.

A cross-shard joi is a special-purpose cross-shard query (joi vi g the results is the
special purpose); therefore, it’s susceptible to the same challe vges.

Cross-shard queries

A cross-shard query requires the applicatio v to access more tha v o ve shard. The term
refers to applicatio v access, ‘ot literal queries, because a si gle query ca \ ot execute
o more thay ove MySQL i\stace. (A more accurate term would be cross-shard
application access.)

Cross-shard queries icur latecy: delay itheret to accessivg multiple MySQL
istaces. Shardivg is most effective whe v cross-shard queries are the exceptio v,
‘ot the vorm.

If shardi g were perfect, every applicatio \ request would access only one shard. That’s
the goal, but do vt drive yourself crazy tryi \g to achieve it because some applicatio s,
eve whe efficie \tly sharded, must access multiple shards to accomplish certai
requests. A peer-to-peer payme ‘t applicatio \ is a good example. Each customer is a
well deli veated applicatio v e rtity: all data related to a customer should be located o
the same shard, which e vtails that the data is sharded by customer. But customers
ivteract by sedivg ad receivi g mo vey. Ievitably, the applicatio v will access at
least two shards: o ve for the customer se \di \g mo vey, a \d a vother for the customer
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receivi \g the mo vey. Cross-shard queries should be mi vimized, but agai : do vt drive
yourself crazy tryi g to elimi vate them, especially if the applicatio v logic ‘ecessitates
them for certai \ requests.

A related challe vge is scatter queries (or scatter-gather queries): queries that require
the applicatio v to access ma vy (or all) shards. (Agai, the term refers to applicatio
access, ‘ot literal queries.) A moderate vumber of cross-shard queries is ivevitable
ad acceptable, but scatter queries are a ‘tithetical to the purpose ad be vefits of
shardivg. Therefore, you should both preve vt ad elimi vate scatter queries. If you
cavvot—if the applicatio \ requires scatter queries—the v shardi\g is probably 1ot
the correct solutio v, or the access patter v veeds to be chaged (see “Data Access
Patter \s” o \ page 131).

Resharding

Resharding (or a shard split) divides o ve shard i vto two or more ‘ew shards. Reshard-
ivgis vecessary to accommodate data growth, ad it ca v also be used to redistribute
data across shards. If ad whe  reshardi g is vecessary depe \ds o+ capacity pla -
\ivg: the estimated rate of data growth a \d how ma vy shards are created i vitially. For
example, I've see v a team split a database i vto four shards the v reshard less tha v two
years later because data size i \creased much faster tha v estimated. By co vtrast, I've
see \ a team split a database ito 64 shards to accommodate more tha \ five years of
estimated data growth. If you ca v afford extra shards at the begi v i \g (whe 1 you first
shard), the \ create e vough shards for at least four years of data growth—do vt wildly
overestimate, but estimate ge verously.

This is the dark secret of shardig: shardi g begets more shardig. If youre wo 1-
derivg, “Ca~ I shard oce axd be doe?” the aswer is “probably ‘ot” Sice your
database grew to the poit of eedi g to shard, it’s likely to keep growi g a \d keep
eedi \g more shards—u less you become ferve \t about the idea that less data is
better (see “Less Data Is Better” o v page 96).

Reshardig is a challe vge because it requires a data migratio v process from the old
shard to the vew shards. Describi \g how to migrate data is beyo \d the scope of this
book, but I will poi vt out three high-level requireme ts:

o A vinitial bulk data copy from old to vew shards
o Sycchanges o old shard to vew shards (duri g a \d after data copy)
« Cutover process to switch to ew shards
Deep MySQL expertise is required to migrate data safely ad correctly. Sice data

migratio s are specific to the applicatio v a \d i vfrastructure, you wo vt fi vd a vy books
or other resources that detail the process. If vecessary, hire a MySQL co sulta vt to
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help desig v a process. Also check out Ghostferry by the e \gi veers at Shopify who are
experts i v MySQL shardig.

Rebalancing

Rebalancing relocates data i+ order to distribute access more evely. Rebala \civg
is vecessary to hadle hot shards: shards with sig vifica \tly more access tha v other
shards. Although the shard key ad shardig strategy determite how data is dis-
tributed, the applicatio v ad its users determi ve how data is accessed. If o ve shard
(a hot shard) co vtais all the most freque tly accessed data, the v performa vce is
ot eve \ly distributed, which defeats the purpose of scali g out. The goal is equal
access—a \d equal performa vce—o v all shards.

Rebala vci vg depe \ds o v the shardi g strategy:

Hash
It’s virtually impossible to relocate data with hash shardi g because the hashi g
algorithm automatically maps data to shards. O ve solutio v (or workarou \d) is to
use a lookup table that co vtai s relocated shard keys. The applicatio v checks the
lookup table first: if the shard key is prese 1t, it uses the shard idicated by the
lookup table; otherwise, it uses the hashi g algorithm.

Range
Relocati vg data with ra \ge shardi g is possible (but o vtrivial) by redefi vi vg the
rayges to divide the hot shard i+to smaller, separate shards. This is the same
process as reshardig.

Lookup
Relocati vg data with lookup shardig is relatively easy because you co vtrol the
mappi g of data to shards. Therefore, you update the lookup table to remap the
shard key value correspo di g to the hot data.

Physically relocati'g the hot data requires the same (or similar) data migratio
process used for reshardi vg.

Online schema changes

Alteri g a table o v 0 ve database is easy, but how do you alter it o \ every shard? You
ru the OSC o+ each shard, but that’s ‘ot the challe vge. The challe vge is automati \g
the OSC process to ruy o+ multiple shards, ad keepivg track of which shards
have bee altered. For MySQL, there are o ope source solutio \s at the time of
this writi \g; you must develop a solutio \. (However, a couple of the alter vatives to
MySQL i~ the vext sectio v have a solutio \.) This is the least complex challe vge of
shardi g, but it’s a challe vge vevertheless. It ca ot be overlooked because schema
cha vges are routi ve.
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Alternatives

Shardi g is complex, a\d it’s ‘ot directly valuable to users or customers. It’s valuable
to the applicatio v to keep scali \g, but it’s exacti \g work for e \gi veers. U vsurprisi gly,
alter vative solutio s are i \creasi \gly popular a \d robust. However, do vt be too quick
to trust your data to vew tech vology. MySQL is emi e vtly reliable a \d deeply u vder-
stood—a very mature tech vology—which makes it a safe a vd reaso vable choice.

NewSQL

NewSQL refers to a relatio val, ACID-complia 1t data store with built-i v support for
scali vg out. I 1 other words, it's a SQL database that you do vt have to shard. If youre
thikivg, “Wow! The v why use MySQL at all?” the followi\g five poits explai
why MySQL—sharded or vot—is still the most popular ope  source database i the
world:

Maturity
SQL hails from the 1970s a \d MySQL from the 1990s. Database maturity mea s
two thigs: you can trust the data store ‘ot to lose or corrupt your data, axd
there is deep k vowledge about every aspect of the data store. Pay close atte ‘tio v
to the maturity of NewSQL data stores: whe ' was the first truly stable GA
(ge verally available) release? What has the cade vce ad quality of releases bee
si \ce the v? What deep a \d authoritative k vowledge is publicly available?

SQL compatibility
NewSQL data stores use SQL (it’s i 1 the vame, after all) but compatibility varies
sig vifica vtly. Do ‘ot expect a vy NewSQL data store to be a drop-i replaceme vt
for MySQL.

Complex operations
Built-iv support for scalivg out is achieved with a distributed system. That
usually e vtails multiple differe vt yet coordi vated compo ve ts. (If MySQL is as a
solo saxopho vist, the * NewSQL is as a five-piece ba vd.) If the NewSQL data store
is fully ma vaged, the v perhaps its complexity does vt matter. But if you have to
ma vage it, the v read its docume 1tatio v to u \dersta \d how it’s operated.

Distributed system performance
Recall the U viversal Scalability Law (Equatio v 4-1):

A]\\‘Y
X(N) =+ a(N - 1)/+ BN(N-1)

N represe \ts software load (co vcurre vt requests, ru v vi g processes, a \d forth),
or hardware processors, or nodes in a distributed system. If the applicatio v has
queries that require a respo \se time less tha v 10 milliseco \ds, a NewSQL data
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store might ‘ot work because of the late \cy ivheret iy distributed systems.
But that level of respo se time is ‘ot the bigger, more commo \ problem that
NewSQL solves: built-i v scale out to large data size (relative to a si vgle i \sta \ce)
with reaso vable respo vse time (75 ms, for example).

Performance characteristics

What accou 1ts for the respo vse time (performa \ce) of a query? For MySQL, the
high-level co \stitue ts are idexes, data, access patter s, a \d hardware—every-
thi~g i+ the previous four chapters. Add to those some lower-level details—like
“Leftmost Prefix Requireme \t” o v page 49, “Worki \g set size” o\ page 95, a\d
“MySQL Does Nothig” o \ page 124—a vd you u vdersta \d MySQL performa \ce
ad how to improve it. A NewSQL data store will have vew a \d differe 1t perfor-
ma ‘ce characteristics. For example, i vdexes always provide the most a \d the best
leverage, but they ca v work differe 1tly for a NewSQL data store because of how
the data is stored a \d accessed i\ the distributed system. Likewise, some access
patter s that are good o Y MySQL are bad o  NewSQL, a \d vice versa.

Those five poits are a disclaimer: NewSQL is a promisi g tech vology that you
should iwestigate as av alter vative to shardivg MySQL, but NewSQL is ‘ot a»
effortless drop-i  replaceme vt for MySQL.

At the time of this writi \g, there are o \ly two viable ope \ source NewSQL solutio \s
that are MySQL-compatible: TiDB ad CockroachDB. Both of these solutio \s are
exceptio vally vew for a data store: CockroachDB v1.0 GA released May 10, 2017; a \d
TiDB v1.0 GA released October 16, 2017. Therefore, be cautious ad dilige t usi g
TiDB ad CockroachDB u +til at least 2027—eve v MySQL was 10 years old by the
time it was mai \stream i\ the early 2000s. If you use TiDB or CockroachDB, please
write about what you lear v a\d, if possible, co vtribute to these ope v source projects.

Middleware

A middleware solutio v works betwee v the applicatio v axd the MySQL shards. It
attempts to hide or abstract the details of shardi vg, or at least make shardi g easier.
Whe v direct, ma wual shardi g is too difficult, a \d NewSQL is i vfeasible, a middle-
ware solutio v could help bridge the gap. The two leadi g ope v source solutio s are
Vitess a \d ProxySQL, a \d they are e vtirely differe vt. ProxySQL can shard a \d Vitess
is shardig.

ProxySQL, as its ‘ame suggests, is a proxy that supports shardi g by several mech-
avisms. To get av idea how it works, read “Shardig i ProxySQL” axd “MySQL
Shardi g with ProxySQL". Usiyg a proxy i+ fro 1t of MySQL is similar to the classic
Vim versus Emacs rift mi us all the vitriol: e \gi veers do a lot of great work with both
editors; it’s just a matter of perso val prefere \ce. Likewise, compa vies are successful
with a vd without a proxy; it’s just a matter of perso val prefere \ce.
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Vitess is a purpose-built MySQL shardi vg solutio . Si vce shardi g is complex, Vitess
is ‘ot without its ow v complexity, but its greatest adva tage is that it addresses all
challe vges, especially reshardi+g ad rebala \cig. Moreover, Vitess was created by
MySQL experts at YouTube who deeply u vdersta \d MySQL at massive scale.

Before you shard, be sure to evaluate ProxySQL a \d Vitess. A vy middleware solutio
e “tails additio val i vfrastructure to lear v a \d mai ‘tai v, but the be vefits ca v outweigh
the costs because ma wually shardi \g MySQL also costs sig vifica 1t e \gi veeri \g time,
effort, a \d sere vity.

Microservices

Shardig focuses o\ o e applicatio v (or service) ad its data, especially data size
avd access. But sometimes the real problem is the applicatio v: it has too much
data or access because it serves too ma vy purposes or busi vess fu \ctio vs. Avoidi g
mo volithic applicatio s is sta vdard e gi veeri \g desig v a \d practice, but that does vt
mea \ it’s always achieved. Before you shard, review the applicatio v desig+ ad its
data to e vsure that parts ca v ot be factored out i vto a separate microservice. This is a
lot easier tha v shardi \g because the ew microservice a \d its database are completely
ivdepe vde \t— vo shard key or strategy required. It might also be the case that the
'ew microservice has completely differe \t access patter \s (see “Data Access Patter 1s”
0 page 131) that allow it to use less hardware while stori \g more data—or perhaps
the ew microservice does vt veed a relatio val data store.

Don’t Use MySQL

Similar to “Do vt Use MySQL’ o\ page 147, a completely ho vest assessme vt of the
alter vatives to shardi g MySQL must co ‘clude with: do vt use MySQL if aother
data store or tech vology works better. If your path is desigvivg a ‘ew applicatio
for shardi g, the v defivitely evaluate other solutio vs. Shardi g MySQL is a solved
problem, but it's vever a quick or easy solutio \. If your path is migrati \g a v existi \g
applicatio v to shardig, the v you should still cosider the trade-offs of shardig
MySQL agai st migrati \g to aother solutio \. That sou \ds burde \some at scale—
ad it is—but compa vies do it all the time, a vd so ca \ you.
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Summary

This chapter ivtroduced the basic mecha vics of shardi g MySQL to achieve MySQL
at scale. The esse vtial takeaway poi vts are:

o MySQL scales out by shardi \g.
o Shardi \g divides o ve database i vto ma vy databases.

o A sivgle database does ‘ot scale primarily because the combi vatio v of queries,
data, ad access patter \s—the applicatio v workload—sig vifica \tly outpace the
speed a \d capacity of si \gle-server hardware.

o It’s sigvifica wtly easier to ma vage ma vy small databases (shards) tha+ o e huge
database—pebbles, ‘ot boulders.

o Data is sharded (divided) by a shard key, which you must choose carefully.

o The shard key is used with a shardi g strategy to map data (by shard key) to
shards.

o The most commo v shardi \g strategies are hash (a hashi \g algorithm), ra vge, a\d
lookup (directory).

o Shardi \g has several challe \ges that must be addressed.

o There are alter vatives to shardi \g that you should evaluate.

The rext chapter looks i vto MySQL server metrics.

Practice: Four-Year Fit

The goal of this practice is to determite the four-year fit of the data size. From
“Shardi vg: A Brief I vtroductio v’ o v page 160, the four-year fit is a v estimate of data
size or access i four years applied to the capacity of your hardware today. Shardi g
might ‘ot be required if the estimated data size or access fits (figuratively) withi
your hardware capacity today. (Refer back to “Applicatio + Workload” o \ page 152 for
the discussio v of hardware fit.)

You will veed historical data sizes to complete this practice. If youre ‘ot already
measurivg a \d recordi \g data sizes, the v jump ahead to “Data Size” o v page 203 to
lear v how.

The simplest possible calculatio v is sufficie \t. If, for example, a database has histori-
cally ivcreased by 10 GB every mo 1th, the \ the database will be 12 mo ths x 4 years
x 10 GB/mo th = 480 GB larger i four years—if ‘o data is deleted or archived (see
“Delete or Archive Data” o v page 115). If the database is 100 GB today, the + 580 GB
i four years fits: you do vt veed to shard a vy time soo v (four-year fit for access load
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rotwithsta vdi vg) because MySQL o v hardware today ca easily hadle 580 GB of
data.

If your four-year fit for data size i‘dicates that you might veed to shard, take it
seriously a \d dive deeper to determi ve for sure: is the database o\ a steady path to
becomi \g too large for a sisgle MySQL istace? If yes, the v shard early because
shardig is esse vtially a complex data migratio v process; therefore, the less data, the
easier the process. If vot, the v co \gratulatio \s: e vsuri \g that the system will co \ti vue
to scale for years to come is a v expert practice i v all fields of e gi veeri\g.
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CHAPTER 6
Server Metrics

MySQL metrics are closely related to MySQL performa vce—that’s obvious. After all,
the purpose of metrics i+ a vy system is to measure ad report how the system is
operati \g. What's ‘ot obvious is how they are related. It’s ‘ot ureaso vable if you
curre vtly see MySQL metrics as depicted i+ Figure 6-1: MySQL is a black box with
metrics i \side that, i v some way, i \dicate somethi vg about MySQL.

Figure 6-1. MySQL as a black box: metrics are not revealing

That view is ‘ot ureaso vable (or ucommo ) because MySQL metrics are ofte
discussed but vever taught. Eve i\ my career with MySQL, I have ‘ever read or
heard a v expositio v of MySQL metrics—a \d I have worked with people who created
them. The lack of pedagogy for MySQL metrics is due to a false presumptio v that
metrics do ot require uderstadivg or iterpretatio v because their meavig is
self-evide +t. That presumptio v has a sembla ce of truth whe v co vsideri g a si gle
metric iv isolatio v, such as Threads_running; it'’s the vumber of threads ruvivg—
what more is there to kyow? But isolatio v is the fallacy: MySQL performa ce is
revealed through a spectrum of MySQL metrics.
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Thik of MySQL as a prism. The applicatio v figuratively shies a workload ito
MySQL. That workload physically i vteracts with MySQL a vd the hardware o v which
it ru vs. Metrics are the spectrum revealed by the figurative refractio v of the workload
through MySQL, as depicted i+ Figure 6-2.

Metrics

Workload
MySQL

Figure 6-2. MySQL as a prism: metrics reveal workload performance

I\ the physical scie \ces, this tech vique is called spectrometry: udersta \di g matter
through its i vteractio v with light. For MySQL, this is more tha v a clever a valogy, it’s
the actual relatio vship betwee » MySQL metrics a \d MySQL server performa \ce, a \d
there are two proofs:

o Whe  you shi ve a light through a real prism, the resulti vg color spectrum reveals
properties of the light, ‘ot the prism. Likewise, whe \ you ru+ a workload o+
MySQL, the resulti vg metrics reveal properties of the workload, ot MySQL.

« Give v previous chapters—especially “MySQL Does Nothig” o \ page 124—per-
forma ce is directly attributable to workload: queries, data, a \d access patter 1s.
Without a workload, all metric values are zero (ge verally speaki \g).

Viewed this way, MySQL metrics ca \ be taught i v a vew light, a \d that is the focus of
this chapter.

This a valogy has a vother pedagogical utility: it separates MySQL metrics i vto spectra
(the plural of spectrum). This is very useful because MySQL metrics are vast ad
uvorgaized (several hudred metrics strew v throughout MySQL), but effective
teachi g requires focus ad orgavizatio\. As a result, the “Spectra” sectio v, which
illumi vates over 70 metrics divided i vto 11 spectra, makes up the bulk of this chapter.

A fival vote before we shi ve a light o v MySQL: o \ly a fractio v of metrics are esse vtial
for uderstadivg ad aralyzivg MySQL server performace. The relevace ad
importa vce of the remai vi g metrics varies widely:

» Some are ‘oise

 Some are historical

o Some are disabled by default
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o Some are very tech vically specific
o Some are o \ly useful i \ specific cases
o Some are i vformatio val, ‘ot proper metrics

« Some are i \scrutable by feeble mortal creatures

This chapter a valyzes the spectra of MySQL metrics that are esse vtial for u vdersta \d-
i'g how the workload i vteracts with ad affects MySQL server performa ce. There
are six major sectio vs. The first draws a disti \ctio \ betwee v query performa vce ad
server performa vce. Previous chapters focus o v the former, but this chapter focuses
o the latter. The seco \d is bori \g—you’ll see why. The third lists key performa ce
ivdicators (KPIs) that quickly gauge MySQL performa vce. The fourth explores the
field of metrics: a model to more deeply u vdersta \d how metrics describe a \d relate
to MySQL server performa vce. The fifth prese \ts the spectra of MySQL metrics: over
70 MySQL metrics orga vized i vto 11 spectra—a \ epic a \d exciti \g jour vey that tours
the i+ ver worki vgs of MySQL, after which you will see MySQL i+ a ‘ew light. The
sixth addresses importa vt topics related to mo vitori vg a \d alerti \g.

Query Performance Versus Server Performance

MySQL performa ce has two sides: query performace ad server performa ce.
Previous chapters address query performance: improvi \g respo 1se time by optimizi vg
the workload. This chapter addresses server performance: a valyzi \g the performa ce
of MySQL as a fu \ctio \ of executi \g the workload.

I this chapter, MySQL performance mea \s server performance.

I\ simplest terms, the workload is i yput a \d server performa \ce is output, as show
i\ Figure 6-3.

If you put av optimized workload ito MySQL, you get high performace out
of MySQL. Server performa \ce is almost always a v issue with the workload, ‘ot
MySQL. Why? Because MySQL is i \credibly good at executi \g a variety of workloads.
MySQL is a mature, highly optimized data store—decades of tu vi g by world-class
database experts. That'’s why the first five chapters of this book extol query perfor-
ma \ce, a \d 0 \ly o ve chapter (this o ve) a valyzes server performa vce.
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Workload:
Queries, data,
access patterns

Server performance

clele)

QPs IOPS  CPU%

Figure 6-3. Query and server performance

There are three reaso \s to a valyze server performa ce:

Concurrency and contention

Co vcurre \cy leads to co tevtio v that reduces query performace. A query
executed i+ isolatio v exhibits differe vt performa vce whe v executed with other
queries. Recall the U iversal Scalability Law i v Equatio v 4-1: co vte vtio v (a) is i
the divisor of the equatio v, which mea 1s it reduces throughput as load i \creases.
Unless you're livivg i+ a differe vt uviverse tha v the rest of us, co vcurre \cy a\d
co te vtio v are u vavoidable.

A valyzivg server performa \ce is most useful a \d most commo ly u vdertake + to
see how MySQL ha vdles the workload whe v all queries (co \curre \cy) are com-
peti g for shared ad limited system resources (co vte vtio v). Certai v workloads
have very little—if a vy—co vte tio v, while other workloads kill performa vce—
both query a\d server performa \ce—despite the best efforts of MySQL. The
access patter v trait “Co vcurre \cy” o \ page 138 is, u vsurprisi \gly, a major factor
iv covtetioy, but all the access patter v traits are importat, too. A valyzig
server performa \ce reveals how well the queries i the workload play together.
As egiveers respo sible for those queries, we veed to e vsure that they play well.

Tuning

Server performa vce is directly but not entirely attributable to workload. There are
three additio val factors i server performa ce: MySQL, operati vg system, ad
hardware. I+ query performa vce, it's presumed that MySQL, operati \g system,
ad hardware are properly co \figured a \d adequate for the workload. Problems
(like faulty hardware) a d bugs ‘otwithsta \di \g, these three affect performa vce
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far less tha v the workload because we're livivg i+ a v age of abu vda ce: MySQL
is very mature a \d highly optimized, operati vg systems are adva ced a \d sophis-
ticated, a \d hardware is fast a \d affordable.

Matters discussed i “MySQL Tu i g” o\ page 39 still hold true: tu i \g MySQL
is akiy to squeezig blood from a turvip. You most likely vever reed to tute
MySQL. But if you do, it requires a valyzi g server performa vce with a kow
ad stable workload; otherwise, you caxot be certai that avy performa ce
gai s are the result of tu vi \g—it’s basic scie vce: co vtrols, variables, reproducibil-
ity, a \d falsifiability.

Performance regressions
I praise MySQL throughout this book, but I would be remiss if I did vot, at least
o0 ce, clearly state: sometimes, MySQL is wro \g. But MySQL did ‘ot become
the most popular ope v source relatio val database i\ the world by bei g wro \g.
It is usually correct, ad suspectig a performa \ce regressio (or bug) is the
last resort of experts after e vsuri \g that query performa vce, MySQL tuvivg, ad
faulty hardware are ‘ot the problem.

The blog posts “Checkpoi i vg i+ MySQL ad MariaDB” ad “More o\ Check-
poits iy IvvoDB MySQL 8” by re vowved MySQL expert Vadim Tkache vko
covtaiv perfect examples of analyzivg server performavce to reveal a perfor-
ma ce regressio \. It's vormal for Vadim to be doi g this type of work; the rest
of us plod through much simpler problems, like i vdexi vg a \d whether or ot to
have a third cup of coffee before lu \ch.

Flawed Optics

Tuivg ad performa vce regressio \s are a\ exceptio v to the avalogy of MySQL as
a prism (Figure 6-2) that o\ly reveals properties of the workload, ‘ot MySQL. A
k vow v a \d stable workload is a valogous to shi vi \g a pure blue light through a prism:
presumig the ivput is correct, av icorrect output reveals somethi+g about the
prism.

Co vcurre ey ad co vte vtio v are the implicit focus of this chapter because they are
the respo \sibility of the e giveers who mai vtai v the applicatio v that executes the
queries. Tu i \g ad performa \ce regressio \s are the respo \sibility of MySQL DBAs
ad experts. Lear vi g to a valyze server performa \ce for the former (co vcurre vcy a \d
co e vtio v) is excelle vt traivivg for the latter because the differe vce is primarily a
matter of focus. I hope the former sparks a v i vterests i 1 the latter because the MySQL
ivdustry veeds more DBAs a \d experts.
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Normal and Stable: The Best Database
Is a Boring Database

For the most part, normal ad stable are i+tuitively uderstood by e \gi veers o \ce
they become familiar with the applicatio v ad how its workload rus oy MySQL.
Huma s are good at patter \ recog vitio v, so it’s easy to see whe v the charts for a vy
metric are uusual. Therefore, I wo vt belabor termivology that is ge verally well
uderstood, but I veed to make two clarifyi g poits to e sure that were o the
same page, a \d to address the rare times whe 1 e \gi veers ask “What is vormal?” with
respect to MySQL performa ce:

Normal
Every applicatio v, workload, MySQL co “figuratio v, a\d e wiro vme 1t are differ-
e t. Therefore, vormal is whatever performa vce MySQL exhibits for your appli-
catio v o v a typical day whe v everythi g is worki vg properly. That vormal—your
vormal—is the baseli e for determi vi vg if some aspect of performa vce is higher
or lower, faster or slower, better or worse tha v vormal. It’s as simple as that.

Whe I state a presumptive vorm like “It's vormal for Threads_running to be
less tha v 50,” it’s o\ly a v abbreviatio 1 of la \guage, short for “A stable value for
Threads_running is less thay 50 give my experie \ce, a\d give \ that curre vt
hardware typically has less tha \ 48 CPU cores, a \d give v that be \chmarks show
that MySQL performa ce does ‘ot curre vtly scale well past 64 ru v vig threads”
But if 60 threads ruvivg is vormal ad stable for your applicatio v, the v great:
you have achieved extraordi vary performa ce.

Stable

Do vt lose sight of stable performace i+ your quest for greater performa vce.
“Performa vce Destabilizes at the Limit” o v page 125 illustrates a \d explai vs why
squeezi g maximum performa ce from MySQL is ‘ot the goal: at the limit,
performa vce destabilizes, a \d the v you have bigger problems tha v performa vce.
Stability does ‘ot limit performa vce; it e \sures that performa \ce—at a vy level—
is sustai vable, because that’s what we really wa \t: MySQL fast all the time, ‘ot
sometimes.

At times, MySQL performa ce is glamorous—the highs, the lows, the screamig
favs ad packed stadiums—but the real art is optimizi \g the database ito pristie
boredom: all queries respo \d quickly, all metrics are stable a\d vormal, a \d all users
are happy.
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Key Performance Indicators
Four metrics quickly gauge MySQL performa vce:

Response time
Respo vse time is o surprise: as ‘oted iy “North Star” o page 3, it’s the o ly
metric a vyo ve truly cares about. Eve v if respo se time is great, you must factor i
other KPIs. For example, if every query fails with a v error, respo 1se time might
be amazi+g (ear zero), but thats ot vormal. The goal is vormal ad stable
respo se time, a \d lower is better.

Errors
Errors is the rate of errors. Which errors? At least query errors, but ideally
all errors: query, co vectioy, cliet, ad server. Do vt expect a zero error rate
because, for example, there’s vothi vg you, the applicatio v, or MySQL ca do if a
clie vt aborts a co vvectio \. The goal is a vormal a \d stable error rate, a\d lower
(vear zero) is better.

QPS
Queries per seco \d is also ‘o surprise: executi vg queries is the mai v purpose a \d
work of MySQL. QPS i dicates performa vce, but it does ‘ot equal performa vce.
Ab vormally high QPS, for example, ca v sig val problems. The goal is vormal a\d
stable QPS, a \d the value is arbitrary.

Threads running
Threads ruvivg gauges how hard MySQL is worki+g to achieve QPS. O e
thread executes o e query, so you must co vsider both metrics because theyre
closely related. The goal is vormal a \d stable threads ru  \i vg; lower is better.

I expou \d these metrics i\ “Spectra” o v page 187. Here, the poi vt is that these four
metrics are the KPIs for MySQL: whe v the values for all four are ‘ormal, MySQL
performa vce is practically guara vteed also to be ‘ormal. Always mo vitor respo se
time, errors, QPS, a \d threads ru v i \g. Whether or 1ot to alert o 1 them is discussed
later i v “Alert o v User Experie vce a \d Objective Limits” o \ page 226.

Simplifyi vg the performace of a complex system to a hadful of metrics is ‘ot
uique to MySQL or computers. For example, you have vital sig s (I hope): height,
weight, age, blood pressure, a\d heart rate. Five biological metrics succi ctly ad
accurately gauge your health. Likewise, four MySQL metrics succi ctly a \d accurately
gauge server performa vce. That’s nifty, but what’s really isightful is the field of
metrics i v which all metrics are situated.

Key Performance Indicators | 181



Four Golden Signals, et al.

KPIs are ‘ot a vew co vcept. I\ 2016, Site Reliability Engineering (O’Reilly) by Betsy
Beyer et al. made the term ad co vcept of golden signals a mai vstay of e \gi eerig:
late vcy, traffic, errors, ad saturatio v. Re vow ved system performa \ce expert Bre +-
da v Gregg created a similar methodology, The USE Method, with sigals o v usage,
saturatio \s, a\d errors. Tom Wilkie at Weaveworks created a vother methodology,
“The RED Method: Key Metrics for Microservices Architecture”, with sig vals o + rate,
errors, a \d duratio v. The terms vary, but the co cept is the same.

Field of Metrics

Every MySQL metric belo vgs to o e of six classes show 1 as boxes i+ Figure 6-4.
Collectively, I call it the field of metrics.

r

Response time

Increase Stall Timeout
Decrease

A\ A 4

\
>

Rate Utilization
(Throughput) | (Saturation)

\
>

Access pattern

\

Figure 6-4. Field of metrics

MySQL performa ce cavot be fully uderstood by aalyzi g metrics i+ isolatio v
because performa vce is ‘ot a v isolated property. Performa ce is the result of ma vy
factors for which there are ma vy related metrics. The field of metrics is a model to
udersta xd how metrics are related. The relatio vships co v vect the proverbial dots
(the metrics) to complete the i vtricate picture that is MySQL performa vce.

Response Time

Respo 1se time metrics i vdicate how long MySQL takes to respo \d. They are top level
i+ the field because they e vcompass (or hide) details from lower levels.

Query respo se time is, of course, the most importa vt o ve axd the o1ly o e com-
mo \ly mo vitored. MySQL executes stateme ‘ts i stages, a\d stages ca be timed.
These are respo se time metrics, too, but they measure arou \d query executio v, ‘ot
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withi v it. Actual query executio v is just o ‘e stage of ma vy. If you recall Example 1-3
i+ Chapter 1, executi g the actual UPDATE of a \ UPDATE stateme vt was oy 1 of 15
stages. Co vseque ‘tly, stage respo \se times are mostly used by MySQL experts to
i westigate deep server performa \ce issues.

Respo 1se time metrics are importa \t but also completely opaque: what was MySQL
doi \g that accou vts for the time? To a \swer that, we must dig deeper i vto the field.

Rate

Rate metrics ivdicate how fast MySQL completes a discrete task. Queries per seco \d
(QPS) is the ubiquitous ad uiversally k vow v database rate metric. Most MySQL
metrics are rates because— ‘o surprise—MySQL does ma vy discrete tasks.

Whe v a rate i \creases, it ca \ i \crease related utilizatio vs. Some rates are i\ vocuous
ad do vt icrease utilizatio v, but the importa vt a \d commo \ly mo vitored rates do
icrease utilizatio .

The rate-utilizatio v relatio \ship presumes ‘o other chages. That mea s you ca
icrease a rate without i \creasi \g utilizatio v 0 \ly if you cha \ge somethi vg about the
rate or the utilizatio v that it affects. It’s usually easier to cha \ge the rate rather tha
the utilizatio v because the rate is the cause i+ the relatio vship. For example, whe
QPS icreases across the board, CPU utilizatio v could i \crease because more queries
require more CPU time. (I \creasig QPS could icrease other utilizatio vs; CPU is
just o e example.) To avoid or reduce the ixcrease i+ CPU utilizatio v, you should
optimize the queries so they require less CPU time to execute. Or, you could i \crease
the vumber of CPU cores by scali vg up the hardware, but “Better, Faster Hardware!”
0\ page 37 ad “Better, Faster Hardware?” o\ page 148 address the shortcomi \gs of
this approach.

The rate-utilizatio v relatio \ship is ‘ot a vovel i sight—you probably already k vew
it—but it's importa 1t to highlight because it’s the begi \ vi \g of a series of relatio vships
that u vify the field. Do vt feel sorry for utilizatio : it pushes back.

Utilization

Utilizatio v metrics ivdicate how much MySQL uses a fivite resource. Utilizatio v
metrics are everywhere iy computers: CPU usage, memory usage, disk usage, a\d
s0 0 Y. Sivce computers are fi vite machi ves, almost everythi g ca  be expressed as a
utilizatio v because vothi vg has i +fi vite capacity— ‘ot eve \ the cloud.

Bounded rates cay be expressed as a utilizatio. A rate is bouded if there is a
maximum rate. Disk I/O, for example, is usually expressed as a rate (IOPS), but every
storage device has a maximum rate. Therefore, disk I/O utilizatio v is the curre \t
rate over the maximum rate. By co ‘trast, unbounded rates ca ot be expressed as a
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utilizatio v because there’s ‘o maximum rate: QPS, bytes se vt ad received, ad so
forth.

Whe v a utilizatio v i \creases, it ca v decrease related rates. I bet you've see v or expe-
rie ced somethi g like this before: a rogue query causes 100% disk I/O utilizatio v,
which causes QPS to drop precipitously, which causes a\ outage. Or, MySQL uses
100% of memory a\d is killed by the operati g system ker vel, which causes the
ultimate rate decrease: to zero. This relatio vship is a v expressio v of the USL (recall
Equatio v 4-1) because utilizatio v i \creases co ‘te \tio v (a) a \d cohere cy (B), which
are i\ the divisor of the equatio .

What happe 1s at or near 100% utilizatio ¢ MySQL waits. I v Figure 6-4, this is i \dica-
ted by the arrow betwee \ Utilization a \d Wait—the utilizatio v-wait relatio ship. The
arrow is labeled Stall because query executio v waits, the \ resumes—perhaps ma vy
times. I emphasize or near because, as discussed i+ “Performa ce Destabilizes at the
Limit” o v page 125, stalls ca v occur before 100% utilizatio .

Stalls are a vti-stable but u vavoidable for two reaso vs: MySQL load is usually greater
tha v hardware capacity; a \d late \cy is ivhere 1t i+ all systems, especially hardware.
The first reasov ca be ameliorated by reducig load (optimizi g the workload)
or ivcreasi\g hardware capacity. The seco\d reaso v is difficult to address but ‘ot
impossible. If, for example, you still use spi v vi vg disks, upgradi \g to NVMe storage
will dramatically reduce storage late \cy.

Wait
Wait metrics ivdicate idle time durig query executio v. Waits occur whe v query
executio v stalls due to co vte vtio v a \d cohere \cy. (Waits also occur due to MySQL

bugs or performa vce regressio s, but these are exceedi \gly rare e vough +ot to raise
Co \cer \.)

Wait metrics are calculated as rates or respo vse times (depe \di vg o v the metric), but
they merit a separate class because they reveal whe y MySQL is not working (idle),
which is the opposite of performa vce. Not working is why the wait class i v Figure 6-4
is darker: MySQL has go ve dark.

Waits are uvavoidable. Elimi vati vg waits is ‘ot the goal; the goal is reducig a\d
stabilizi \g them. Whe\ waits are stabilized a“d reduced to a acceptable level,
they effectively disappear, ble \di \g i vto respo 1se time as a ivhere 1t part of query
executio \.
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Event Waits
Waits are so importa vt that they co \stitute a class i\ the hierarchy of MySQL eve 1ts:

transactions
L— statements
L— stages
L— waits

The Performa vce Schema istrume ts ma vy wait eve \ts, but these metrics are ‘ot
commo \ly mo vitored because they are figuratively deep (i v u \dersta \di g what they
represe \t) a\d literally deep (i the eve 1t hierarchy). A small book could be writte v
about wait eve vts. U til someo ve writes that book, refer to “Performa vce Schema
Wait Eve vt Tables” i v the MySQL ma vual for more i \formatio .

Whe v MySQL waits too lo\g, it times out—the wait-error relatio vship. The most
importa v, high-level MySQL waits have co ‘figurable timeouts:

o MAX_EXECUTION_TIME (SQL stateme vt optimizer hi vt)
e max_execution_time

e lock_wait_timeout

o innodb_lock_wait_timeout

e connect_timeout

o wailt_timeout

Use these but do vt rely o them because, for example, take a guess at the default
value for lock_wait_timeout. The default value for lock_wait_timeout is 31,536,000
seco \ds—365 days. Establishi vg default values is ot easy, so we must give MySQL
some leeway, but wow—365 days. Co vseque vtly, applicatio \s should always employ
code-level timeouts, too. Lo vg-ru v vi \g tra vsactio \s a \d queries are a commo  prob-
lem because MySQL is fast but, perhaps, too patie 1t.

Error

Error metrics i vdicate errors. (I allow myself o ve tautological stateme vt i+ this book;
there it is.) Wait timeouts are o e type of error, a\d there are may more (see
“MySQL Error Message Refere vce” for more). I do vt reed to e vumerate MySQL
errors because, with respect to server performa ce a \d MySQL metrics, the poi vt is
simple a \d clear: a v ab vormal error rate is bad. Like waits, errors are also calculated
as rates, but they merit a separate class because they i‘dicate whe \ MySQL or the
clie vt (the applicatio v) has failed, which is why the error class i v Figure 6-4 is darker.
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To reiterate a poit about errors from “Key Performa vce Idicators” o+ page 181:
do vt expect a zero error rate because, for example, there’s vothi g you, the applica-
tio v, or MySQL ca + do if a clie vt aborts a co v vectio \.

Access Pattern

Access patter \ metrics i vdicate how the applicatio v uses MySQL. These metrics relate
to “Data Access Patter \s” o v page 131. For example, MySQL has metrics for each type

of SQL stateme t (Com_select, Com_1insert, a\d so 01) that relate to “Read/Write” o
page 133.

As ivdicated i+ Figure 6-4, access patter  metrics u \derlie higher level metrics. The
Com_select access patter v metric cou ts the vumber of SELECT stateme ts executed.
This cax be represe vted as a rate (SELECT QPS) or a utilizatio v (% SELECT); either
way, it reveals somethi vg deeper about server performa vce that helps explai v higher
level metrics. For example, if respo se time is abysmal a \d the access patter v metric
Select_full_jotin is high, that’s a smoki \g gu \ (see “Select full joi ¥’ o » page 21).

Internal

There’s a seve 1th class of metrics show vi1 Figure 6-5: i vter val metrics.
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Figure 6-5. Field of metrics with internal metrics

I did vt me vtio v this class at the begi v i \g of “Field of Metrics” o 1 page 182 because,
as e gieers ad users of MySQL, were ‘ot supposed to k vow or care about it. But
it’s the most i vteresti \g—if ‘ot arca ve—part of the field, ad I wat you to be fully
ivformed iy case you veed or wat to fathom the depths of MySQL. Dow \ here,
thi vgs are esoteric.
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Of course, esoteric is subjective. What I cosider to be a izter val metric might
be the most favorite ad useful rate metric for a vother e gieer. But metrics like
buffer_page_read_index_ibuf_non_leaf make a stro \g case for the i vter val class of
metrics. That metric i \dicates the vumber of 1o v-leaf i vdex pages read i\ the chage
buffer. Not exactly your daily bread.

Spectra

Prepare yourself for avother jour vey: ivto the pe yumbra of MySQL metrics. This
sectio v exami ves over 70 MySQL metrics divided i vto 11 spectra, some of which have
sub-spectra. I orga vize MySQL metrics i vto spectra for two reaso \s:

o Spectra give the jour vey waypoi \ts. Without them, we face a vast ad uorga \-
ized uviverse swirli g with vearly one thousand metrics from differe vt sources
that vary by MySQL versio v, distributio v, a \d co vfiguratio \.

o Spectra reveal importat areas of MySQL to uderstaxd axd movitor with
respect to performa vce.

Eve v with spectra illumi vati \g a path through the dark vess, we ‘eed a metric vam-
ivg cowentio to talk clearly ad precisely about the MySQL metrics ad system
variables that co \stitute each spectrum. The reaso 1 is simple: MySQL does ‘ot have a
metric ami g co we tio v, a\d there is o idustry sta \dard, either. Table 6-1 is the
MySQL metric vami g co we vtio v that I use i \ this book.

Table 6-1. MySQL metric naming convention
Threads_running Global status variables
var .max_connections Global system variables
innodb.log_lsn_checkpoint_age InnoDB metrics

replication lag Derived metrics

Most metrics are global status variables that you have likely see v or used by execut-
ivg SHOW GLOBAL STATUS: Aborted_connects, Queries, Threads_running, a\d so
forth. I MySQL a~d this book, global status variable ‘ames begi+ with a si\gle
uppercase letter followed by lowercase letters, eve v if the first word is a v acro ywym:
Ssl_client_connects, not SSL_client_connects. (This is o ‘e aspect of MySQL
metrics that is co siste \t.) By co trast, global system variables are lowercase; ad
to make them more disti\ct, I prefix them with var., which is importa vt give \ the
vext co we vtio v. I \\oDB metrics are also lowercase, like lock_timeouts. Si\ce that
ca look like a global system variable, I prefix I+ oDB metrics with innodb., like
innodb. lock_timeouts. Derived metrics are ubiquitous i v mo vitori vg but ‘ot vative
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to MySQL. Replication lag, for example, is a metric that ‘early every mo vitor
will emit, but the precise metric vame depe \ds o v the mo vitor, which is why I use
a descriptive vame without uderscore characters rather tha+ a specific tech vical
ame.

The IvvoDB metrics iv this sectiov require evablivg cer-
taiv courters or modules. For example, startiyg MySQL
with  innodb_monitor_enable=module_log,module_buffer,mod
ule_trx. See var.innodb_monitor_enable ad “IvoDB INFOR-
MATION_SCHEMA Metrics Table” i v the MySQL ma vual.

Secod to last bit of me tal equipme t: global refers to the e tire MySQL server:
all clie s, all users, all queries, ad so 0 v—combi ved. By co trast, there are session
ad summary metrics. Sessio \ metrics are global metrics scoped to a sivgle clie vt
co vvectio \. Summary metrics are usually a subset of global metrics scoped to a
variety of aspects: accou ¥, host, thread, tra vsactio v, a\d so o . This chapter looks
oly at global metrics sivce they uderlie all metrics. (Global metrics are also the
origival: iv a~ciet times, MySQL had oy global metrics; the v it added sessio
metrics; the it added summary metrics.)

Last bit of me vtal equipme 1t before we begi \ the jour vey: most MySQL metrics are
simple cou vters, axd oly a few are gauges. I explicitly ‘ote the gauges; otherwise,
cou vter is implied. Let’s begi \!

Query Response Time

Global query respo se time is oe of the four “Key Performa vce Idicators” o
page 181. Surprisi gly, MySQL did vot have this metric util versiov 8.0. As of
MySQL 8.0.1, you ca v obtai 1 the 95th perce vtile (P95) global query respo \se time i v
milliseco ds from the Performa vce Schema by executi vg the query i v Example 6-1.

Example 6-1. Global 95th percentile query response time

SELECT
ROUND(bucket_quantile * 160, 1) AS p,
ROUND(BUCKET_TIMER_HIGH / 1000000000, 3) AS ms
FROM
performance_schema.events_statements_histogram_global
WHERE
bucket_quantile >= 0.95
ORDER BY bucket_gquantile LIMIT 1;
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That query returs a perce vtile very close to—but ‘ot exactly—the P95: 95.2%
ixstead of 95.0%, for example.! The differevce is vegligible ad does ot affect
mo vitorig.

You ca replace 0.95 i the query to retur v a differe 1t perce vtile: 0.99 for P99, or
0.999 for P999. I prefer a \d advise P999 for the reaso s stated i v “Average, Perce rtile,
ad Maximum” o \ page 25.

The rest of this sectio v is for MySQL 5.7 a \d older—skip it if you're ru v vi \g MySQL
8.0 or vewer.

MySQL 5.7 and older
MySQL 5.7 axd older do vot expose a global query respo yse time metric. O \ly
query metrics iclude respose time (see “Query time” o\ page 12), but that
is per-query respo \se time. To calculate global respo \se time, you would ‘eed
to aggregate it from every query. That’s possible, but there are two better alter va-
tives: upgrade to MySQL 8.0; or, switch to Percova Server or MariaDB, which
have a plug-i \ to capture global respo 1se time.

Percona Server 5.7

Way back iv 2010, Percova Server ivtroduced a plug-iv to capture global
respo 1se time called Respo vse Time Distributio . It’s easy to istall the plug-iy,
but it takes work to co vfigure a \d use because it’s a histogram of respo 1se time
rages, which mea s you ‘eed to set var.query_response_time_range_base—
a global system variable that the plug-i creates—to co vfigure the histogram
bucket rages, the v compute a perce vtile from the bucket cou vts. MySQL 8.0
global respo vse time is also a histogram, but the bucket ra \ges a \d perce rtiles
are preset a \d precomputed, which is why the query i v Example 6-1 works out of
the box. It’s vot that difficult to set up; it o \ly sou \ds complicated. The be vefit of
havi \g global respo se time is well worth the effort.

MariaDB 10.0
MariaDB uses the same plug-i\ from Perco va but it has a slightly differe vt vame:
Query Respo 1se Time Plugi v. Although itroduced i+ MariaDB 10.0, it was ‘ot
marked stable u vtil MariaDB 10.1.

Before MySQL 8.0, obtai i \g global query respo 1se time is ot trivial, but it's worth
the effort if youre ruivg Percoa Server or MariaDB. If youre ru vvivg MySQL
iv the cloud, check the cloud provider metrics because some provide a respo \se
time metric (which the cloud provider might call latency). If vothi g else, freque \tly
review the query profile to keep a \ eye 0 1 respo 1se times.

1 The MySQL worklog 5384 explai s how respo se time qua vtiles are impleme vted i v the Performa \ce
Schema.
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Errors

Errors are o ve of the four “Key Performa vce I \dicators” o v page 181. As of MySQL
8.0.0, it’s easy to obtaiv a cout of all errors from the Performace Schema by
executi \g the query i \ Example 6-2.

Example 6-2. Global error count

SELECT
SUM(SUM_ERROR_RAISED) AS global_errors
FROM
performance_schema.events_errors_summary_global_by_error
WHERE
ERROR_NUMBER NOT IN (1287);

Error vumber 1287, excluded i+ the WHERE clause iy Example 6-2,
is for deprecatio v war vivgs: whe v a query uses a feature that is
deprecated, MySQL issues a war vi \g. I \cludi \g this error vumber
is likely to make the global error cout too “oisy, which is why I
exclude it.

Sivce MySQL has so ma vy errors ad war vigs, there’s o telli \g what your global
error rate will be. Do vt expect or try to achieve a zero error rate. Thats esse ‘tially
impossible because clie vts ca v cause errors, ad there’s vothi \g you, the applicatio v,
or MySQL ca do to preve vt that. The goal is to establish the vormal error rate for
the applicatio v. If the query i v Example 6-2 is too voisy—which mea 1s it produces a
high rate of errors but you are certai v the applicatio v is fu \ctio vi \g vormally—the
five tuve the query by excludivg additio val error vumbers. MySQL error codes are
docume vted i\ the “MySQL Error Message Refere ce”.

Before MySQL 8.0, you ca ot obtai a global error cout from MySQL, but you
ca obtai a cou vt of all query errors from the Performa vce Schema by executi g the
query i v Example 6-3.

Example 6-3. Query error count

SELECT
SUM(sum_errors) AS query_errors
FROM
performance_schema.events_statements_summary_global_by_event_name
WHERE
event_name LIKE 'statement/sql/%';
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Sice this works iv all distributio vs as of MySQL 5.6, there is ‘o reasoy ‘ot to
mo vitor all query errors. Gra vted, the applicatio v should report query errors, too;
but if it also retries o v error, it might hide a certai v amou vt of errors. By co vtrast, this
will expose all query errors, pote vtially reveali g a problem that applicatio v retries
are maski \g.

The last error metrics are clie 1t co \ vectio \ errors:

e Aborted_clients
e Aborted_connects

e Connection_errors_%

The first two metrics are commo \ly mo vitored to e vsure that there are ‘o issues
while connecting or already connected to MySQL. That wordi \g is precise: if the appli-
catio v ca v ot make a vetwork co v ectio v to MySQL, the v MySQL does vot see the
clie vt a~d does vot report a clie \t co v vectio v error because, from the MySQL poi 1t
of view, there is 1o clie vt co v vectio v yet. Low-level etwork co v vectio v issues should
be reported by the applicatio \. However, if the applicatio v ca vvot co vect, youre
likely to see a drop i v the other three KPIs (QPS, threads ru v vi g, a \d respo 1se time)
because the applicatio v is vt executi vg queries.

The % character iy Connection_errors_% is a MySQL wildcard;
several metrics exist with the prefix Connection_errors_. To list
them, execute SHOW GLOBAL STATUS LIKE Connection_errors_%;.

Before moviyg o+ to the vext spectrum, let’s address a problem that’s also ‘ot
a problem—at least ot for MySQL. If the applicatio v begi s to spew errors but
MySQL does ot ad the other three KPIs are ‘ormal, the v the problem is with the
applicatio v or the vetwork. MySQL has ma vy quirks, but lyivg is ‘ot o ‘e of them. If
MySQL KPIs are thumbs up (all okay a vd vormal), the v you ca v trust that MySQL is
worki \g ‘ormally.

Queries

Metrics related to queries reveal how fast MySQL is workivg axd what type of
work it’s doig—at a very high level. These metrics reveal two access patter  traits:
throughput a \d read/write (see “Throughput” a \d “Read/Write” o \ page 133).
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QpPs

QPS is o0 ve of the four “Key Performa vce I\dicators” o\ page 181. The u \derlyi g
metric is aptly ‘amed:

e Queries

That metric is a cou vter, but QPS is a rate, so tech vically QPS equals the differe vce of
two Queries measureme ‘ts divided by the vumber of seco \ds betwee v the measure-
me ts: QPS = (Queries @ T1 — Queries @ T0) / (T1 - TO), where TO is the time of the
first measureme vt ad T1 is the time of the seco \d measureme t. Metric graphi g
systems (like Grafa va) co wert cou ters to rates by default. As a result, you should
ot ‘eed to co wert Queries or a vy other cou vters to rates. Just be aware that most
MySQL metrics are cou vters, but they are co werted to a \d expressed as rates.

Metric graphi \g systems co wert cou vters to rates by default.

QPS receives a lot of atte vtio v because it i \dicates overall MySQL throughput—how
fast MySQL is executi vg queries—but do vt fixate o v it. As me vtio ved i\ “Less QPS Is
Better” o v page 96, QPS reveals vothi vg qualitative about the queries or performa vce
iv geveral. If QPS is icredibly high but respo se time is also i \credibly high, the v
QPS ivdicates a problem, ‘ot great performa vce. Other metrics reveal more about
MySQL performa vce tha v QPS.

Whe v everythig is ru vvivg vormally, QPS fluctuates with applicatio v usage. Whe
there is a problem, QPS fluctuatio \s correlate with other metrics. To a valyze perfor-
ma ce or diagrose a problem, I glace at QPS to see where (i a chart) its value is
ab vormal. The v I correlate that period (time alo \g the X axis of the chart) with other,
more specific metrics i+ the spectra. As a KPI, QPS idicates a problem, but other
metrics pi vpoi vt the problem.

All ab vormal chages i1 QPS are suspect a\d worth i westigati \g. Most, if ‘ot all,
e giveers krow that a drop iy QPS is bad, but a abvormal icrease i1 QPS can
be equally bad or worse. Also bad but more rare is flatli ve QPS—a early co \stat
QPS value—because mi vor fluctuatio \s are vormal. Whe v QPS cha vges ab vormally,
the first questio v is usually: what’s the cause? I address that later i+ this chapter (see
“Cause a \d Effect” o  page 228).

MySQL exposes a vother closely related metric: Questions. (The term question is o \ly
used for this metric; it's vot used for a vythi\g else i \side MySQL.) Questions cou ts
o \ly queries se vt by clie \ts, ‘ot queries executed by stored programs. For example,
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queries executed by a trigger do not cout iy Questions because a cliet did ot
se \d them; but they do cout iy Queries. Sivce Questions is a subset of Querties,
the differe \ce is o \ly i \formatio val, a \d mo vitori vg Questions is optio val. For QPS,
always use Querties.

TPS

If the applicatio  relies o v explicit, multistateme vt tra vsactio s, the v tra vsactio s per
seco \d (TPS) is as importa vt as QPS. For some applicatio vs, a database tra vsactio
represe \ts a uvit of work i v the applicatio v, so TPS is a better rate tha v QPS because
the applicatio v u it of work is all or vothi vg, which is why it’s executed i v a v explicit
tra vsactio \.

A~ implicit transaction is a si gle SQL stateme vt with autocommit
evabled, which is the default. A explicit transaction starts with
BEGIN or START TRANSACTION ad e ds with either COMMIT or ROLL
BACK, regardless of autocommit.

I+ MySQL, explicit tra vsactio \ throughput is revealed by three metrics:

e Com_begin
o Com_commit

e Com_rollback

Normally, the rate of Com_begin a \d Com_commit are the same because every tra \sac-
tio v must begi v ad successful tra vsactio s must commit. Whe v there’s a problem
that causes tra vsactio \s to stall (o ‘e of the “Commo  Problems” o v page 282), the
rate of Com_begin exceeds the other two metrics.

Use Com_commit to measure TPS because tra vsactio v throughput implies successful
tra vsactio vs.

A trasactio v rollback is supposed to ivdicate a v error—si \ce tra vsactio vs are all or
vothi \g—but the ROLLBACK stateme 1t is also commo \ly used for clea vup: it e vsures
that the previous tra vsactio v—if a wy—is closed before starti \g the vext tra vsactio \.
Co seque vtly, the rollback rate might ‘ot be zero. As with most metrics, vormal ad
stable is the goal (see “Normal ad Stable: The Best Database Is a Bori \g Database”
0\ page 180).

Aother gauge metric that ivdicates the curret vumber of active trasactio s is
innodb. trx_active_transactions.
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BEGIN starts a tra vsactio v, but a tra vsactio v is ‘ot active u +til, ge verally speaki g, a
query accesses a table. For example, BEGIN; SELECT NOW(); starts a tra ysactio v that
is ot active because ‘o query accesses a table.

SHOW ENGINE INNODB STATUS

I1v0DB metrics are exposed i\ the information_schema.innodb_metrics table. (See
“IvvoDB INFORMATION_SCHEMA Metrics Table” for details.) Before this table
was maistream, [1v0DB metrics were exposed usivg the SHOW ENGINE INNODB
STATUS commad, but the output is a lo+g blob of text. The text is divided ito
sectio vs, which makes it a little easier for huma \s to read, but it’s programmatically
uvorgavized: it requires parsivg avd patter v matchivg to extract specific metric
values. Some MySQL mo vitors still use SHOW ENGINE INNODB STATUS, but avoid this
if you ca\ because usi \g the I \formatio v Schema (a \d Performa ce Schema) is the
best practice.

I o lovger cosider SHOW ENGINE INNODB STATUS authoritative. For example,
with respect to active tra vsactio s, BEGIN; SELECT col FROM tbl; does not show
as active iy SHOW ENGINE INNODB STATUS, but it correctly shows as active is
innodb. trx_active_transactions.

Read/write

There are vi ve read/write metrics vamed accordi\g to a type of SQL stateme vt

e Com_select

e Com_delete

e Com_delete_multi

e Com_1insert

e Com_insert_select
e Com_replace

e Com_replace_select
« Com_update

e Com_update_multi

For example, Com_select is a cou vter for the vumber of SELECT stateme vts. The
_multi suffix iy Com_delete_multi a'd Com_update_multi refers to queries that
refere vce multiple tables. A multitable DELETE i \creme vts 0 \ly Com_delete_multti,
whereas a si \gle-table DELETE o \ly updates Com_delete. The same is true for UPDATE
stateme vts with respect to Com_update_multi a \d Com_update.
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Read/write metrics reveal the importa vt types a \d throughputs of queries that co vsti-
tute Queries. These metrics do ot fully accou vt for Queries; they are o \ly the most
importa t metrics with respect to performa vce.

Mo vitor these metrics as i vdividual rates a \d perce vtages of Queries:

o Com_select i dicates the read perce vtage of the workload:
(Com_select / Queries) x 100.

o The sum of the other eight metrics idicates the write percetage of the
workload.?

The read ad write perce vtages will not equal 100% because Queries accou vts for
other types of SQL stateme ts: SHOW, FLUSH, GRANT, a d ma vy more. If the remai vi \g
perce ‘tage is suspiciously high (more thav 20%), it probably wo vt affect perfor-
ma \ce, but it's worth i westigati vg: exami e other Com_ metrics to accou vt for other
types of SQL stateme vts.

Admin

Admi metrics refer to commands that, typically, oly database admi vistrators
i woke:

Com_flush
e Com_kill
e Com_purge

e Com_admin_commands

The first three metrics refer to FLUSH, KILL, a \d PURGE, respectively. These comma \ds
could affect performa vce, but they should be very rare. If vot, ask your DBA or cloud
provider what they’re doi \g.

The last metric, Com_admin_commands, is a v oddity. It refers to other admi+ com-
ma \ds for which there are vot specific Com_ status variables. For example, the MySQL
protocol has a pivg comma d that is commo \ly used by MySQL clie vt drivers to
test the co vvectio v. This is harmless i v moderatio v, but problems ca \ result from a
lack of moderatio v. Do vt expect Com_admin_commands to i \dicate a vy problems, but
mo vitori vg it is still a best practice.

2 Com_insert_select ad Com_replace_select are tech vically both reads a \d writes, but for simplicity I cou vt
them as writes.
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SHOW
MySQL has over 40 SHOW stateme ts, most of which have a correspo \di \g Com_show_

metric. SHOW comma \ds vever cha vge MySQL or modify data, so i\ that se \se they’re
harmless. But they are queries, which mea \s they use a thread, time, a \d resources i 1
MySQL. SHOW comma \ds ca v stall, too. SHOW GLOBALS STATUS, for example, ca \ take
a full seco \d or more o \ a busy server. Co vseque vtly, it’s a best practice to mo vitor at
least the followi vg 10 metrics:

e Com_show_databases

e Com_show_engine_status

e Com_show_errors

e Com_show_processlist

e Com_show_slave_status

e Com_show_status

e Com_show_table_status

e Com_show_tables

e Com_show_variables

e Com_show_warnings

As of MySQL 8.0.22, mo vitor Com_show_replica_status i\stead
of Com_show_slave_status.

Do vt expect SHOW metrics to i vdicate a vy problems, but do vt be surprised if o ve does
because it would vt be the first time.

Threads and Connections

Threads_running is oe of the four “Key Performace Idicators” o+ page 181.
It ivdicates how hard MySQL is workig because it’s directly co vvected to active
query executio v (whe v a cliet covvectio is ‘ot executivg a query, its thread is
idle), a~d it’s effectively limited by the wumber of CPU cores. Lets come back to
Threads_running after looki vg at related metrics.

Threads ad co v ectio \s are o0 ve spectrum because they are directly related: MySQL
rus o ‘e thread per clie vt co v vectio \. The four most importa vt metrics for threads
ad co vvectio \s are:
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e Connections
¢ Max_used_connections
e Threads_connected

e Threads_running

Connections is the vumber of co v rectio v attempts to MySQL, both successful a \d
failed. It reveals the stability of the applicatio v co v vectio v pool to MySQL. Usually,
applicatio \ co v vectio \s to MySQL are lo \g-lived, where long is at least a few seco \ds,
if ot mi wtes or hours. Lo vg-lived co vectio \s avoid the overhead of establishi \g
a covvectio. Whe the applicatioy axd MySQL are o+ the same local ‘etwork,
the overhead is vegligible: 1 milliseco \d or less. But ‘etwork late \cy betwee \ the
applicatio v a \d MySQL adds up quickly whe v multiplied by hu vdreds of co v vectio s
ad multiplied agai \ by the co 1 vectio 1 rate. (Connections is a cou vter but expressed
as a rate: co \ectio vs/seco vd.) MySQL ca easily ha \dle hu vdreds of co v vectio \s
per seco \d, but if this metric reveals a v ab vormally high rate of co v vectio vs, find axd
fix the root cause.

Max_used_connections as a perce vtage of var.max_connections reveals co ¥ vectio 1
utilizatio v. The default value for var.max_connections is 151, which is probably too
low for most applicatio 1s but not because the applicatio v veeds more co \ vectio s for
performa vce. The applicatio v veeds more co v vectio \s 0 \ly because each applicatio
ista vce has its ow 1 co v vectio \ pool. (I presume the applicatio v is scaled out.) If the
co v vectio Y pool size is 100 a \d there are 3 applicatio v i \sta vces, the 1 the applicatio v
(all ivstaces) cav create 300 co vvectio s to MySQL. That is the mai reaso v why
151 max co \ vectio vs is ‘ot sufficie t.

A commo v misco \ceptio v is that the applicatio v veeds thousa \ds of co v ectio \s
to MySQL for performa \ce or to support thousads of users. This is pate \tly ‘ot
true. The limiti \g factor is threads, ‘ot co vectio \s—more o Threads_running i+
a momet. A sivgle MySQL iistace cav easily hadle thousads of co v rectio vs.
I've see 4,000 co v vectio \s i productio v ad more i+ be \chmarks. But for most
applicatio vs, several hudred covvectio s (total) is more tha sufficievt. If your
applicatio v demo strably requires several thousad co v1ectio \s, the v you ‘eed to
shard (see Chapter 5).

The real problem to mo vitor ad avoid is 100% co ectio v utilizatio v. If MySQL
russ out of available co vvectio s, av applicatio v outage is esse ‘tially guara vteed.
If covrectio v utilizatio v rises sudde \ly, approachig 100%, the cause is always a
exter val problem, or bug, or both. (MySQL ca ot co vvect to itself, so the cause
must be exterval.) I+ respose to av exterval problem—Ilike a ‘etwork issue, for
example—the applicatio \ creates more co v vectio s tha v vormal. Or, a bug causes the
applicatio v ‘ot to close co v vectio \s—commo \ly k vow \ as a connection leak. Or, a
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exter \al problem triggers a bug i\ the applicatio v—I've see v it happe \. Either way,
the u derlyi \g cause is always exter val: somethi vg outside MySQL is co v vecti g to
MySQL a \d usi vg all the co v vectio 1s.

As clievts covvect axd discovvect, MySQL ivcremetts ayd decremets the
Threads_connected gauge metric. The vame of this metric is a little misleadi \g si \ce
clients are co vvected, ‘ot threads, but it reflects that MySQL rus o ve thread per
clie vt co v vectio .

Threads_running is a gauge metric ad a implicit utilizatio v relative to the wum-
ber of CPU cores. Although Threads_running ca+ spike ito the hudreds ad
thousa vds, performa vce will degrade sharply at much lower values: arou \d twice the
wmber of CPU cores. The reaso v is simple: 0 ve CPU core ru s o e thread. Whe
the vumber of threads ruvivg is greater tha the vumber of CPU cores, it mea s
that some threads are stalled—waiti \g for CPU time. This is a valogous to rush hour
traffic: thousads of cars i+ gridlock o+ the highway, e gives ruvivg but barely
movig. (Or, for electric cars: batteries ru v viyg but barely movig.) Co seque vtly,
its vormal for Threads_running to be quite low: less tha v 30. Bursts lasti \g seco \ds
or less are possible with good hardware ad a optimized workload, but sustai ved
(vormal ad stable) Threads_running should be as low as possible. As iy “Less QPS
Is Better” o v page 96, less Threads_running is better too.

High throughput (QPS) with very low threads ruvvivg is a strog itdicatio v of
efficie 't performa vce because there is 0 \ly o ve way to achieve both: very fast query
respo vse time. Table 6-2 lists threads ru v vivg axd QPS from five real (a d differe 1t)
applicatio vs.

Table 6-2. Threads running and QPS

Threads running QPS

4 8,000
8 6,000
8 30,000
12 23,000
15 33,000

The seco \d a \d third rows highlight how profou \dly the applicatio » workload affects
performa vce: with o e workload, 6,000 QPS ‘eeds 8 threads ru vi\g; but a vother
workload achieves 5x QPS (30,000) with the same ‘umber of threads. For the last
row, 33,000 QPS is ‘ot exceptio vally high, but that database is sharded: total QPS
across all shards exceeds o ve millio \. Empirically, high throughput is possible with
few threads ru v vivg.
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Temporary Objects

Temporary objects are temporary files a \d tables that MySQL uses for various pur-
poses: sortivg rows, large joivs, axd so o. Three metrics cout the vumber of
temporary tables o 1 disk, temporary tables i  memory, a \d temporary files (o 1 disk)
created:

e Created_tmp_disk_tables
e Created_tmp_tables
e Created_tmp_files

These metrics are rarely zero because temporary objects are commo v a \d harmless as
lo g as the rates are stable. The most impactful metric is Created_tmp_disk_tables,
which is the reciprocal of Created_tmp_tables. Whe v MySQL ‘eeds a temporary
table to execute a query (for GROUP BY, for example), it starts with a+ iv-memory
temporary table ad ivcreme ‘ts Created_tmp_tables. This should vt impact per-
forma ce because it's i1 memory. But if that temporary table grows larger tha
var.tmp_table_size—the system variable that determies the iy-memory tempo-
rary table size—the MySQL writes the temporary table to disk ad icreme vts
Created_tmp_disk_tables. I\ moderatio v, this probably wo vt impact performa ce,
but it certai \ly does vt help, either, because storage is sig vifica \tly slower tha v mem-
ory. The same is true for Created_tmp_files: acceptable i+ moderatioy, but ot
helpi vg performa ce.

As of MySQL 8.0, Created_tmp_disk_tables does not cou t tem-
porary tables created o disk. This is due to the ‘ew storage
e give used for iiter val temporary tables: TempTable. The corre-
\. spo \di g metric is a Performace Schema memory i‘strume t:
memory/temptable/physical_disk. (A related istrume \t is mem
ory/temptable/physical_ram, which tracks TempTable memory
allocatio + for i \-memory temporary tables.) If you're usi \g MySQL
8.0, talk with your DBA to e \sure that this metric is collected a d
reported correctly.

Sice temporary objects are side effects of queries, these metrics are most reveal-
i'g whev a chayge i+ ove correlates to a chasge i+ KPIs. For example, a sudde
ivcrease iy Created_tmp_disk_tables coupled with a sudde icrease iy respo \se
time screams “Look at me!™

3 “I'm Mr. Meeseeks, look at me!”
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Prepared Statements

Prepared stateme vts are a double-edged sword: used properly, they ircrease effi-
cie \cy; but used improperly (or u vk vowi \gly), they i \crease waste. The proper ad
most efficie \t way to use prepared stateme vts is to prepare o \ce a \d execute ma vy
times, which is cou vted by two metrics:

e Com_stmt_prepare

¢ Com_stmt_execute

Com_stmt_execute should be sig vifica vtly greater tha v Com_stmt_prepare. If it is vt,
the v prepared stateme \ts are i\creasi \g waste due to extra queries to prepare ad
close the stateme t. The worst case is whe \ these metrics are o ve-to-o ve, or close to
it, because a sivgle query i vcurs two wasted rou \dtrips to MySQL: o e to prepare a \d
avother to close the stateme \t. Whe + MySQL ad the applicatio v are o v the same
local vetwork, two extra rou \dtrips might ot be voticeable, but they are pure waste
multiplied by QPS. For example, a+ extra 1 milliseco\d at 1,000 QPS is a wasted
seco \d—a seco \d duri \g which a vother 1,000 queries could have bee 1 executed.

Aside from the performa vce implicatio 1s, you should mo vitor these prepared state-
me t metrics because the applicatio v might be usi g prepared stateme \ts u i vte -
tio vally. For example, the MySQL driver for the Go programmi \g la vguage defaults
to usig prepared stateme vts for security: to avoid SQL i vjectio v vul verabilities. At
first glace (or avy umber of gla ces), you would vot thi k that the Go code i
Example 6-4 uses a prepared stateme 1t, but it does.

Example 6-4. Hidden prepared statement

id := 75
db.QueryRow("SELECT col FROM tbl WHERE id = ?", id)

Check the docume vtatio v for the MySQL driver that the applicatio v uses. If it does
‘ot explicitly me vtio v if a \d whe v it uses prepared stateme vts, the v verify ma wually:
0 a developme 1t ista vce of MySQL (your laptop, for example), e vable the ge veral
query log ad write a test program to execute SQL stateme ‘ts usi \g the same meth-
ods ad furctiov calls that the applicatio v uses. The ge veral log i‘dicates whe
prepared stateme 1ts are used:

2022-03-01T00:06:51.164761Z 32 Prepare  SELECT col FROM tbl WHERE id=?
2022-03-01T00:06:51.164870Z 32 Execute  SELECT col FROM tbl WHERE id=75
2022-03-01T00:06:51.165127Z 32 Close stmt

Finally, the vumber of ope prepared stateme vts is limited to var.max_prepared_
stmt_count, which is 16,382 by default. (Eve v 1,000 prepared stateme ‘ts is a lot for
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0 e applicatio v, uless the applicatio v is programmatically ge verati \g stateme ts.)
This gauge metric reports the curre t yumber of ope \ prepared stateme 1ts:

e Prepared_stmt_count

Do vt let Prepared_stmt_count reach var.max_prepared_stmt_count, else the appli-
catio v will stop worki vg. If this happe 1s, it’s a v applicatio v bug due to leaki g (ot
closi \g) prepared stateme ts.

Bad SELECT

Four metrics cou vt the occurre vce of SELECT stateme ‘ts that are usually bad for
performa vce:*

e Select_scan
e Select_full_join
e Select_full_range_join

e Select_range_check

Select_scan ad Select_full_join are described iv Chapter 1: “Select scav’ o
page 20 ad “Select full joi v’ o v page 21, respectively. The o ly differe vce here is that
these two metrics apply globally (all queries).

Select_full_range_join is the lesser evil of Select_full_join: i‘stead of a full
table sca to joiv a table, MySQL uses a+ ivdex to do a ra‘ge sca\. It's possible
that the rage is limited a \d respo \se time for the SELECT is acceptable, but it’s bad
e vough to warra vt its ow \ metric.

Select_range_check is similar to but worse tha v Select_full_range_join. It’s easi-
est to explai v with a simple query: SELECT * FROM t1, t2 WHERE tl1.id > t2.id.
Whe v MySQL joins tables t1 axd t2 (iv that order), it does range checks o\ t2:
for every value from t1, MySQL checks if it cax use avivdex o+ t2 to do a rage
sca or i vdex merge. Rechecki g every value from t1 is ‘ecessary because, give v the
query, MySQL ca ot kvow t1 values ahead of time. But rather tha+ do the worst
possible executio v plav—Select_full_join—MySQL keeps tryiyg to use a ivdex
o t2. I\ the EXPLAIN output, the Extra field for t2 lists “Rage checked for each
record,” a\d Select_range_check is i \creme vted o \ce for the table. The metric is not
icreme vted for each rage chage; it’s i \creme vted o vce to sighal that a table was
joi ved by doi vg ra vge checks.

4 See my blog post “MySQL Select a \d Sort Status Variables” for a v i v-depth expla vatio v of all Select_%ad
Sort_% metrics.
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Bad SELECT metrics should be zero or virtually zero (if you rouxd dowv). A
few Select_scan or Select_full_range_join are i‘evitable, but the other two—
Select_full_join a‘d Select_range_check—should be foud a\d fixed immedi-
ately if vot zero.

Network Throughput

The MySQL protocol is very efficie vt a~d rarely uses avy roticeable amout of
vetwork ba vdwidth. Usually, it’s the vetwork affecti \g MySQL rather tha v MySQL
affectig the etwork. Nevertheless, it's good to movitor ‘etwork throughput as
recorded by MySQL:

e Bytes_sent
e Bytes_received
Sice these metrics cou vt vetwork bytes se vt a\d received, respectively, co wert the

values to ‘etwork units: Mbps or Gbps, whichever matches the lik speed of the
server ru v vi g MySQL. Gigabit li vks are most commo v, eve vi the cloud.

Metric graphi g systems co wert cou ters to rates by default, but
you probably ‘eed to multiply these metrics by eight (8 bits per
byte) a \d set the graph u vit to bits to display as Mbps or Gbps.

I have see v MySQL saturate a vetwork o \ly o \ce. The cause was related to a system
variable that’s ‘ot usually a problem: var.binlog_row_image. This system variable is
related to replicatio v that Chapter 7 addresses i more detail, but the short versio
is: this system variable co vtrols whether or ‘ot BLOB a \d TEXT colum s are logged i
the bivary logs ad replicated. The default value is full, which logs ad replicates
BLOB a \d TEXT colum rs. Normally, that’s ‘ot a problem, but o e applicatio \ created a
perfect storm by havi \g all of the followi \g attributes at o vce:

o Usig MySQL as a queue
o Huge BLOB values

o Write-heavy

« High throughput

These access patter \s combived to replicate a small flood of data, causi g major
replicatio v lag. The solutio v was cha \gi \g var.binlog_row_image to noblob to stop
replicati g the BLOB values, which did vt veed to be replicated. This true story leads to
the vext spectrum: replicatio .
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Replication

Lag is the bave of replicatio v: the delay betwee a write o\ the source MySQL
ista vce a \d whe v that write is applied o v a replica MySQL i \sta \ce. Whe v replica-
tio v (a \d the vetwork) is worki vg ‘ormally, replicatio v lag is subseco \d, limited o \ly
by ‘etwork late cy.

Before MySQL 8.0.22, the replica lag metric ad comma \d were
Seconds_Behind_Master ad SHOW SLAVE STATUS, respectively.
As of MySQL 8.0.22, the metric ad comma+d are Seconds_
Behind_Source ad SHOW REPLICA STATUS. I use the curre \t met-
ric a \d comma \d i v this book.

MySQL has a ivfamous gauge metric for replicatio v lag: Seconds_Behind_Source.
This metric is i vfamous because it's ‘ot wro \g but it’s also ‘ot what you expect. It
cay jump betwee zero ad a high value, which is as amusig as it is co ‘fusi\g.
Co vseque tly, the best practice is to ig vore this metric a \d, istead, use a tool like
pt-heartbeat to measure true replicatio v lag. The you have to co figure your
MySQL mo vitor software (or service) to measure a \d report replication lag from pt-
heartbeat. Sice pt-heartbeat has bee v arou \d for so lo vg, some MySQL mo vitors
support it vatively; ad there’s a good cha \ce that the e \gi veers who ma vage your
MySQL i \sta \ces are already usi g it.

MySQL exposes o‘e metric related to replicatiov that is ot ifamous: Bin
log_cache_disk_use. Chapter 7 clarifies the followi g details; for vow, a high level
expla vatio v is sufficie vt. For each clie vt co vvectio v, a i v-memory bivary log cache
buffers writes before theyre writte v to the bivary log files—from which the writes
replicate to replicas. If the bivary log cache is too small to hold all the writes
for a travsactio, the chasges are writte to disk a‘d Binlog_cache_disk_use is
ivcreme vted. I+ moderatio v, this is acceptable, but it should vt be frequet. If it
becomes freque \t, you ca v alleviate it by i \creasi \g the bi vary log cache size: var.bin
log_cache_size.

From the example i+ the previous sectioy, we krow that var.binlog_row_image
affects the bi vary log cache, too: full row images ca 1 require a lot of space if the table
has BLOB or TEXT colum xs.

Data Size

Chapter 3 explai \s why less data is more performa vce. Mo vitori vg data size is impor-
ta 1t because it's commo \ for databases to grow larger tha v expected. If data growth
is due to applicatio v growth—the applicatio v is becomi vg i \creasi vgly popular—the
it’s a good problem to have, but it’s a problem +evertheless.
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It's also easy to overlook because MySQL performa ce scales effortlessly as data
grows, but ‘ot forever. A database ca  grow from 10 GB to 300 GB—a 30x i \crease—
axd ot ecou vter performa vce issues if queries a \d access patter \s are optimized
well. But a vother 30x i \crease to 9 TB? Not possible. Eve v a 3x i \crease to 900 GB is
aski vg too much—it could happe v if the access patter s are exceptio vally favorable,
but do vt bet o vit.

MySQL exposes table sizes (a‘d other table metadata) iy a~ I \formatio v Schema
table: information_schema.tables. The query i\ Example 6-5 retur s the size of
each database i \ gigabytes.

Example 6-5. Database sizes (GB)

SELECT

table_schema AS db,

ROUND(SUM(data_length + index_length) / 1073741824 , 2) AS 'size_GB'
FROM

information_schema.tables
GROUP BY table_schema;

The query i v Example 6-6 retur \s the size of each table i \ gigabytes.

Example 6-6. Table sizes (GB)

SELECT

table_schema AS db,

table_name as tbl,

ROUND((data_length + index_length) / 1073741824 , 2) AS 'size_GB'
FROM

information_schema.tables
WHERE

table_type = 'BASE TABLE'
AND table_schema != 'performance_schema';

There is o sta vdard for database a \d table size metrics. Query a \d aggregate values
from information_schema.tables to suit your ‘eeds. At a bare miimum, collect
database sizes (Example 6-5) every hour. It’s better to be more precise ad collect
table sizes every 15 mi wutes.

Be sure that, wherever you store or se \d MySQL metrics, you ca retai v data size
metrics for at least a year. Near-term data growth tre \di g is used to estimate whe v
the disk will ru+ out of space; or, i+ the cloud, whe more storage will ‘eed to
be provisio ved. Lo \g-term data growth tre \di g is used to estimate whe \ shardi g
(Chapter 5) becomes vecessary, as covered i v “Practice: Four-Year Fit” o \ page 173.
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InnoDB

I110DB is complex.

However, sice it is the default MySQL storage e \gi e, we must steel ourselves to
embrace it. A deep dive is ‘ot ‘vecessary—or eve v possible withi v the limits of this
book. Although this sectio v is lo vg, it barely breaks the surface of I 1 1oDB i vter vals.
Nevertheless, the followi \g I 1 voDB metrics reveal some of the i\ ver worki \gs of the
storage e \gi ve respo 1sible for readi g a \d writi g data.

History list length (metric)

History list legth (HLL) is a curious metric because every egi‘eer that uses
MySQL lear xs what it means, but very few kvow what it is. Whe v HLL i \creases
sig vifica vtly over a period of mi vutes or hours, it mea s that I110DB is keepi g a
sig vifica vt vumber of old row versio s i vstead of purgi vg them because o e or more
lo vg-ru v vi\g tra vsactio v has ‘ot committed or was aba vdo ved without bei g rolled
back due to a v udetected lost clie vt co v vectio . All of that, which I explai v later i+
“History List Le vgth” o  page 280, is revealed by o e gauge metric:

e innodb.trx_rseg_history_len

A ~ormal value for innodb.trx_rseg_history_len is less tha+ 1,000. You should
mo vitor ad alert if HLL is greater tha+ 100,000. Co vtrary to “Wild Goose Chase
(Thresholds)” a \d “Alert o v User Experie \ce a \d Objective Limits” later i v this chap-
ter, this is a reliable threshold a \d actio vable alert. The actio v: fi \d a \d termi vate the
lo vg-ru vvivg or aba vdo ved tra vsactio .

History list legth does vot directly affect performa vce, but it is a harbiger of
trouble—do ot ighore it. The trouble relates to the fact that, sivce Iv1oDB is
a trasactio val storage e give, every query oy ay I11oDB table is a travsactio .
Tra vsactio \s ivcur overhead, a\d the HLL metric reveals whe v a log-ruisg or
abado ved trasactio is causivg I1voDB to ha+dle av ureaso vable amou 1t of
overhead. Some overhead is vecessary—eve 1 be veficial —but too much amou ‘s to
waste, a \d waste is a ‘tithetical to performa vce.

There’s so much more to say about tra vsactio vs a \d HLL that it wo v its ow v chapter:
Chapter 8. For vow, lets stay focused o+ metrics because we've o1ly begu v with
IvvoDB.

Deadlock

A deadlock occurs whe \ two (or more) tra vsactio vs hold row locks that the other
tra vsactio v veeds. For example, trasactioy A holds a lock o\ row 1 axd ‘eeds a
lock 0\ row 2, ad trasactio \ B holds a lock o\ row 2 axd veeds a lock o\ row 1.
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MySQL automatically detects a \d rolls back o ve tra vsactio 1 to resolve the deadlock,
ad i creme 1ts 0 ve metric:

e innodb.lock_deadlocks

Deadlocks should vot occur. A prevale vce of deadlocks is related to the co \curre ¢y
access patter 1 trait (see “Co vcurre \cy” o\ page 138). Highly co vcurre 1t data access
must be desigved (i the applicatio v) to avoid deadlocks by e \suri g that differe vt
tra vsactio s accessi \g the same rows (or ‘earby rows) exami ve the rows i+ roughly
the same order. I\ the earlier example of tra vsactio v A a \d tra \sactio v B, they access
the same two rows i\ opposite order, which ca v lead to a deadlock whe 1 the tra vsac-
tio s execute at the same time. To lear » more about deadlocks, read “Deadlocks i
IvvoDB” i the MySQL ma vual.

Row lock

Row lock metrics reveal lock contention: how quickly (or vot) queries acquire row
locks to write data. The most fu \dame tal row lock metrics are:

¢ innodb.lock_row_lock_time
¢ innodb.lock_row_lock_current_waits
e innodb.lock_row_lock_waits

o innodb.lock_timeouts

The first metric, innodb.lock_row_lock_time, is a rare type: the total vumber of
milliseco ds spe t acquiri \g row locks. It’s i v the class of respo \se time metrics (see
“Respo se Time” o 1 page 182), but u \like “Query Respo se Time” o 1 page 188, it is
collected as a ruvving total rather tha v a histogram. Co seque tly, it'’s ot possible
to report innodb.lock_row_lock_time as a perce vtile, which would be ideal. Ad
reporti\g it as a rate (see “Rate” o \ page 183) is ‘o vse vsical: milliseco vds per seco d.
I \stead, this metric must be reported as a differe \ce: if 500 milliseco \ds at time T1
ad 700 milliseco \ds at time T2, the v report T2 value - T1 value = 200 ms. (Use
maximum for the chart rollup fuctiov. Do vt average the data poits because it’s
better to see the worst case.) As a respo se time metric, lower is better. The value of
innodb.lock_row_lock_time ca ot be zero (uless the workload is read-oly a~d
ever ‘eeds to acquire a sigle row lock) because it takes a 1o \zero amou t of time
to acquire locks. The goal, as always, is that the metric is vormal a \d stable. Whe v it’s
ot, the other row lock metrics will vot be vormal either.

innodb. lock_row_lock_current_watits is a gauge metric for the curre vt vumber of
queries waiti \g to acquire a row lock. innodb.lock_row_lock_watits is a cou 1t of the
wumber of queries that waited to acquire a row. The two variables are esse ‘tially the
same: the former is a curre vt gauge, ad the latter is a historical cou ter ad rate.
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Whe 1 the rate of row lock waits i \creases, it’s a sure sig v of trouble because MySQL
does ot wait by accide 1t: somethi g must cause it to wait. I + this case, the cause will
be co \curre 1t queries accessi \g the same (or ‘earby) rows.

innodb.lock_timeouts is i \creme vted whe v a row lock wait times out. The default
row lock wait timeout is 50 seco ds, co vfigured by var.innodb_lock_wait_timeout,
ad applies per row lock. This is far too lo g for a vy vormal applicatio v to wait; I
advise a much lower value: 10 seco \ds or less.

I+ oDB locki g is sophisticated axd wuaced. As a result, lock co vte tio v is not a
commo \ problem u vless the workload exhibits three particular access patter \s:

o Write-heavy (“Read/Write” o \ page 133)

« High throughput (“Throughput” o \ page 133)

« High co vcurre ¢y (“Co vcurre \cy” o 1 page 138)
That would be a very particular applicatio v a \d workload. But lock co te vtio v ca

become a problem for a vy applicatio v a \d workload (eve v with low throughput a\d
co \curre \cy), so always mo vitor rock lock metrics.

Data throughput

Data throughput i \ bytes per seco \ds is measured by two metrics:

e Innodb_data_read

¢ Innodb_data_written

Data throughput is rarely a v issue: SSD is fast; PCle a \d NVMe made it eve 1 faster.
Regardless, mo vitori vg data throughput is a best practice because storage through-
put is limited, especially i+ the cloud. Do ‘ot expect to achieve published storage
throughput rates because published rates are measured u \der ideal co \ditio \s: data
straight to (or from) disk. Iv1oDB is super fast a \d efficie t, but it’s still a complex
layer of software betwee v the data ad the disk that i vhere vtly precludes achievig
published storage throughput rates.

Be careful about throughput iy the cloud: storage is u likely to
be locally attached, which limits throughput to ‘etwork speeds. 1
Gbps equals 125 MB/s, which is throughput similar to spiyvisg
disks.
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10PS

I+ voDB has a deep a'd sometimes complicated relatio \ship with storage I/O
capacity, measured i+ IOPS. But first, the easy part: I1\10DB read ad write IOPS
are cou ‘ted by two metrics, respectively:

« innodb.os_data_reads

¢ innodb.os_data_writes

These metrics are cou ters, so like other couters, they are co werted to ad
expressed as rates by metric graphi vg systems. Be sure to set the graph u it to IOPS
for each.

The performa vce raiso détre of I1v0DB is to optimize a\d reduce storage I/O.
Although high IOPS are impressive from a v e \gi veeri g poi 1t of view, they are the
ba e of performa ce because storage is slow. But storage is required for durability—
persistivg data chages to disk—so I11oDB goes to great le gths to be fast and
durable. Co vseque 1tly, as i1 “Less QPS Is Better” o  page 96, fewer IOPS are better.

But do vt uderutilize IOPS, either. If your compa vy russ its ow hardware, the
maximum ‘umber of storage IOPS is determi ved by the storage device—check the
device specificatio \s, or ask the e \gi veers who ma vage the hardware. I the cloud,
storage IOPS are allocated or provisio ved, so it’s usually easier to tell the maximum
because you purchase the IOPS—check the storage settigs, or ask the cloud pro-
vider. If I vnoDB rever uses more tha v 2,000 IOPS, for example, the v do vt purchase
(or provisio v) 40,000 IOPS: I110DB simply wo vt use the excess IOPS. By co vtrast,
if I\ oDB co \sta \tly uses the maximum umber of storage IOPS, the v either the
applicatio v workload eeds to be optimized to reduce storage I/O (see Chapters 1-5),
or I vvoDB legitimately ‘eeds more IOPS.

I1voDB I/O capacity for background tasks is largely cofigured by var.innodb_
1o_capacity a“d var.innodb_io_capacity_max, two system variables that default
to 200 ad 2,000 IOPS, respectively. (There are other variables, but I must gloss
over them to stay focused o \ metrics. To lear v more, read “Co vfiguri \g I v voDB I/O
Capacity” i+ the MySQL ma wal.) Backgrou \d tasks i+clude page flushi g, chage
buffer mergi vg, a \d more. I+ this book, I cover o ly page flushi vg, which is arguably
the sigle most importa vt backgrou \d task. Limiti \g backgrou \d task storage I/O
e \sures that I11oDB does ‘ot overwhelm the server. It also allows I1voDB to opti-
mize ad stabilize storage I/O rather thay bombard the storage device with erratic
access. By co vtrast, foregrou \d tasks do vot have a vy co vfigurable I/O capacities or
limits: they use as ma vy IOPS as ‘ecessary ad available. The primary foregrou d
task is executi \g queries, but this does ‘ot mea v queries use high or excessive IOPS
because, remember, the performa yce raiso\ détre of I1v1oDB is to optimize ad
reduce storage I/O. For reads, the buffer pool purposefully optimizes a\d reduces
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IOPS. For writes, page flushivg algorithms ad the trasactio log purposefully
optimize a \d reduce storage I/O. The followi g sectio \s reveal how.

I1\0DB ca v achieve high IOPS, but ca + the applicatio v? Probably ‘ot because there
are ma vy layers betwee » the applicatio v a \d the IOPS that preclude the former from
achievi g a high wumber of the latter. I\ my experie \ce, applicatio \s use hu \dreds
to thousa \ds of IOPS, a \d exceptio vally optimized applicatio \s that are “goi \g viral”
push arou d 10,000 IOPS o v a si vgle MySQL i sta vce. Rece vly, I was be chmarki vg
MySQL i+ the cloud ad hit a ceili vg at 40,000 IOPS. The cloud provider publishes
80,000 IOPS as the maximum a\d allows me to provisio v that, but their storage
system is capped at 40,000 IOPS. Poi 1t beig: I110DB ca achieve high IOPS, but
everythi g arou\d it is a differe vt questio .

Millions of IOPS

High e \d storage is capable of over o ve millio + IOPS. This class of storage is used i
bare metal (physical) servers desig ved to host ma vy virtual servers. The same is true
for high-e \d CPUs a \d memory: it’s too much hardware for o ve applicatio .

This sectio v is oly a primer o I1voDB I/O because it uderlies the fival three
I+ voDB spectra that cosume IOPS: “Buffer pool efficie \cy” o+ page 209, “Page
flushi \g” o v page 212, a \d “Tra vsactio 1 log” o v page 219.

To lear v more I 110DB I/O, start by readi g “Co figuri vg I110DB I/O Capacity” i+
the MySQL ma wal. To really dive ito the vitty-gritty details of I vvoDB I/O, read
a illumi vati \g three-part blog post by re vow ved MySQL experts Yves Trudeau a \d
Fra cisco Borde vave: “Give Love to Your SSDs: Reduce i+ vodb_io_capacity_max!”,
“InvoDB Flushig i+ Actio v for Perco va Server for MySQL’, axd “Tu vi g MySQL/
IvvoDB Flushivg for a Write-I vte vsive Workload”. But fivish this chapter first
because it’s a great fou datio  for those blog posts.

IvvoDB works with data iy memory, ‘ot o+ disk. It reads data from disk whe
recessary, ad it writes data to disk to make chages durable, but these are lower
level operatio s i vto which the vext three sectio \s delve. At a higher level, I+ voDB
works with data i v memory because storage is too slow—eve \ with a millio + IOPS.
Co vseque vly, there is ‘ot a direct correlatio v betwee v queries, rows, ad IOPS.
Writes always co vsume IOPS (for durability). Reads ca v execute without co \sumi \g
a vy IOPS, but it depe \ds o v buffer pool efficie \cy.

Buffer pool efficiency

The I+ voDB buffer pool is a v in-memory cache of table data ad other i vter val data
structures. From “I v voDB Tables Are I \dexes” o \ page 41, you k vow that the buffer
pool co vtais ivdex pages—more o\ pages iy the vext sectiov. Iv1oDB certainly
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udersta \ds rows, but i vter vally it’s far more co \cer ved with pages. At this depth of
MySQL performa vce, the focus cha vges from rows to pages.

At a high level, I1voDB accesses (reads ad writes) all data by pages i+ the buffer
pool. (Low-level writes are more complicated ad addressed i the last I+vvoDB
sectio v: “Trasactio v log” o+ page 219.) If data is ‘ot iy the buffer pool whe
accessed, I 1 voDB reads it from storage a \d saves it i + the buffer pool.

Buffer pool efficiency is the perce vtage of data accessed from memory, calculated from
two metrics:

e Innodb_buffer_pool_read_request

¢ Innodb_buffer_pool_reads

Innodb_buffer_pool_read_request couts all requests to access data i+ the buffer
pool. If the requested data is not iv memory, IvvoDB i\cremets Innodb_buf
fer_pool_reads a‘d loads the data from disk. Buffer pool efficie cy equals
(Innodb_buffer_pool_read_request / Innodb_buffer_pool_reads) x 100.

The word read i+ these metrics does ‘ot mea+ SELECT. IvvoDB
reads data from the buffer pool for all queries: INSERT, UPDATE,
DELETE, a\d SELECT. For example, o\ UPDATE, I11oDB reads the
row from the buffer pool. If ot i\ the buffer pool, it loads the row
from disk i vto the buffer pool.

Buffer pool efficie \cy will be very low whe « MySQL starts. This is vormal; it’s called
a cold buffer pool. Loadi vg data warms the buffer pool—Ilike throwi vg logs o v a fire. It
usually takes several mi vutes to fully warm the buffer pool, which is i vdicated whe
buffer pool efficie \cy reaches its vormal a \d stable value.

Buffer pool efficie \cy should be extremely close to 100%—ideally 99.0% or greater—
but do vt fixate o 1 the value. Tech vically, this metric is a cache hit ratio, but that’s 1ot
how it’s used. A cache hit ratio reveals little beyo \d the metric: values are cached, or
they’re vot. O\ the co vtrary, buffer pool efficie \cy reveals how well I+110DB is able
to keep freque vtly accessed data—the worki vg set—i v memory while bala \ci vg speed
ad durability. To put it colorfully, buffer pool efficie \cy is how well I+v0DB ca
keep a match lit i v a hurrica ve. The worki g set is the flame; durability is the rai v (it
dampe s throughput);® the applicatio v is the wi \d.

5 You ca \ disable durability, but that’s a terrible idea.
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I\ a bygo ve era, performa ce equated to cache hit ratios. Today,
that is vo lo vger true: performa vce is query respo se time. If buffer
pool efficie \cy is extremely low but respo \se time is great, the
performa ce is great. That probably wo vt happe v, but the poi \t is
vot to lose focus—recall “North Star” o v page 3.

If total data size is less thay available memory, the v all data ca+ fit i+ the buffer
pool at o vce. (Buffer pool size is co vfigured by var.innodb_buffer_pool_size. Or,
as of MySQL 8.0.3, e vabli vg var.innodb_dedicated_server automatically co vfigures
buffer pool size a \d other related system variables.) I this case, buffer pool efficie \cy
is a vovissue ad performa vce bottle vecks—if a wy—will occur iy CPU or storage
(sivce all data is i v memory). But this case is the exceptio, ‘ot the vorm. The orm
is total data size bei \g far greater tha v available memory. I v this ( vormal) case, buffer
pool efficie \cy has three primary i vflue ces:

Data access
Data access bri vgs data i vto the buffer pool. The data age access patter \ trait (see
“Data Age” o\ page 134) is the primary i \flue \ce because o0 \ly vew data veeds to
be loaded i vto the buffer pool.

Page flushing
Page flushi+g allows data to be evicted from the buffer pool. Page flushig is
vecessary for vew data to be loaded ito the buffer pool. The rext sectio v goes
i vto more detail.

Available memory
The more data that I+10DB keeps i\ memory, the less it ‘eeds to load or flush
data. I \ the exceptio val case previously me ‘tio ved, whe v all data fits i v memory,
buffer pool efficie \cy is a 1o vissue.

Buffer pool efficie \cy reveals the combived effect of those three i+flue vces. As a
combi ved effect, it ca\vot pipoit o ve cause. If its value is lower tha v vormal, the
cause could be o ve, two, or all three i ‘flue \ces. You must a valyze all three to deter-
mi ve which is the greatest or the most feasible to cha vge. For example, as detailed
i+ Chapter 4, chagi g access patter s is a best practice for improvi \g performa ce,
but if youre page-deep i+ MySQL performa \ce, you've probably already do ve that.
I that case, more memory or faster storage (more IOPS) might be more feasible—
ad more justified siice you've already optimized the workload. Although buffer
pool efficie vcy ca v vot give you aswers, it tells you where to look: access patter \s
(especially “Data Age” o  page 134), page flushi vg, a \d memory size.

I+ voDB buffer pool efficie \cy is the tip of the iceberg. Uder veath, page flushig is
the i vter val machi very that keeps it afloat.
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Page flushing

This spectrum is large a\d complicated, so it’s further subdivided ito Pages ad
Flushing, which are i vextricable.

Pages. As metioved iy the previous sectio v, the buffer pool co vtai vs ivdex pages.
There are four types of pages:

Free pages
These co vtaiy ‘o data; I 1 voDB ca \load ‘ew data i vto them.

Data pages
These co vtai v data that has ‘ot bee v modified; also called clean pages.

Dirty pages
These co ‘tai y modified data that has ot bee \ flushed to disk.

Misc pages
These co ‘tai y miscella veous i vter val data ‘ot covered i \ this book.

Sivce IvvoDB keeps the buffer pool full of data, mo vitori g the vumber of data
pages is ‘ot ‘ecessary. Free ad dirty pages are the most reveali vg with respect to
performa ce, especially whe v viewed with flushi \g metrics i+ the vext sectio v. Three
gauges ad o e cou ter (the last metric) reveal how ma vy free ad dirty pages are
sloshi vg arou \d i v the buffer pool:

¢ innodb.buffer_pool_pages_total
— innodb.buffer_pool_pages_dirty
— innodb.buffer_pool_pages_free

— innodb.buffer_pool_wait_free

innodb.buffer_pool_pages_total is the total vumber of pages i+ the buffer
pool (total page cout), which depexds o+ the buffer pool size (var.innodb_
buffer_pool_size). (Tech vically, this is a gauge metric because, as of MySQL 5.7.5,
the I\ voDB buffer pool size is dy vamic. But freque vtly cha \gi \g the buffer pool size
is ot commo \ because it’s sized accordi vg to system memory, which ca v ‘ot cha\ge
quickly—eve v cloud iistaces require a few miutes to resize.) Total page cou t
calculates the perce vtage of free ad dirty pages: innodb.buffer_pool_pages_free
axd innodb.buffer_pool_pages_dirty divided by total pages, respectively. Both
perce vtages are gauge metrics, a \d the values cha \ge freque vtly due to page flushi \g.

To esure that free pages are available whe v veeded, I110DB mai vtais a ‘o \zero
bala ce of free pages that I call the free page target. The free page target is equal to the
product of two system variables: the system variable var.innodb_lru_scan_depth
multiplied by var.innodb_buffer_pool_instances. The vame of the former system
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variable is somewhat misleadi g, but it co \figures the wumber of free pages that
I+ voDB mai vtais i+ each buffer pool ista vce; the default is 1024 free pages. U +til
vow, I have writte v about the buffer pool as o e logical part of I\ oDB. Uder the
hood, the buffer pool is divided i+to multiple buffer pool instances, each with its
ow \ iter val data structures to reduce co vte vtio v u vder heavy load. The default for
var.innodb_buffer_pool_instances is 8 (or 1 if the buffer pool size is less tha 1
GB). Therefore, with defaults for both system variables, I v voDB mai tai \s 1024 x 8 =
8192 free pages. Free pages should hover arou \d the free page target.

Reduci g var.innodb_lru_scan_depth is a best practice because,
with default values, it yields 134 MB of free page size: 8192 free
pages x 16 KB/page = 134 MB. That is excessive give \ that rows are
typically hu dreds of bytes. It's more efficie 1t for free pages to be as
low as possible without hitti g zero a\d icurri g free page waits
(explai ved i+ the vext paragraph). It's good to be aware of this, but
its MySQL tuvivg, which is beyo \d the scope of this book. The
default does ‘ot hivder performa yce; MySQL experts just abhor
i vefficie vcy.

If free pages are co \siste wtly vear zero (below the free page target), that’s five as
lo vg as innodb.buffer_pool_wait_free remaits zero. Whey I110DB reeds a free
page but o ve is available, it i \creme ts innodb.buffer_pool_wait_free ad waits.
This is called a free page wait ad it should be exceptio vally rare—eve v whe v the
buffer pool is full of data—because I110DB actively mai vtai \s the free page target.
But uder very heavy load, it might 1ot be able to flush a \d free pages fast e vough.
Simply put: I vvoDB is readi g ‘ew data faster tha v it ca flush old data. Presumi g
that the workload is already optimized, there are three solutio 1s to free page waits:

Increase free page target
If your storage ca provide more IOPS (or you ca provisio v more IOPS i+ the
cloud), the i vcreasi vg var.innodb_lru_scan_depth causes I 1 voDB to flush a \d
free more pages, which requires more IOPS (see “IOPS” o » page 208).

Better storage system
If your storage cavot provide more IOPS, upgrade to better storage, the
icrease the free page target.

More memory
The more memory, the bigger the buffer pool, ad the more pages ca fit i+
memory without veedi g to flush ad evict old pages to load vew pages. There’s
o e more detail about free page waits that I clarify later whe v explai vi\g LRU
flushivg.
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Remember from “Buffer pool efficie \cy” o v page 209: read does vt
mea SELECT. I1voDB reads ‘ew data from the buffer pool for
all queries: INSERT, UPDATE, DELETE, ad SELECT. Whe data is
accessed but ot i+ the buffer pool (i memory), I1voDB reads it
from disk.

If free pages are co vsiste vtly much higher tha v the free page target, or vever decrease
to the target, the \ the buffer pool is too large. For example, 50 GB of data fills o \ly
39% of 128 GB of RAM. MySQL is optimized to use o \ly the memory that it veeds,
so givig it av overabu vda ce of memory will ‘ot iycrease performa vce—MySQL
simply wo vt use the excess memory. Do vt waste memory.

Dirty pages as a perce vtage of total pages varies betwee v 10% ad 90% by default.
Although dirty pages co “tai v modified data that has vot bee flushed to disk, the
data chayges have bee flushed to disk iy the trasactio ' log—more o this i
the vext two sectio s. Eve v with 90% dirty pages, all data chages are guara vteed
durable—persisted to disk. It's completely vormal to have a high perce tage of dirty
pages. I fact, it’s expected uless the workload is exceptio vally read-heavy (recall
access patter v trait “Read/Write” o v page 133) a \d simply does ‘ot modify data very
ofte \. (I + this case, I would co \sider whether a vother data store is better suited to the
workload.)

Sice a high perce vtage of dirty pages is expected, this metric is used to corroborate
other metrics related to page flushi g (ext sectio V), the tra vsactio v log (“Tra vsac-
tio log” o page 219), axd disk I/O (“IOPS” o+ page 208). For example, writi g
data causes dirty pages, so a spike i\ dirty pages corroborates a spike i\ IOPS ad
tra vsactio v log metrics. But a spike i+ IOPS without a correspo \di \g spike i+ dirty
pages cavot be caused by writes; it must be a‘other issue—maybe a egieer
ma wally executed a~ ad hoc query that dredged up a mass of old data that had vt
see \ the light of day i+ eo \s, a d vow I 110DB is readi\g it from disk i v a maelstrom
of IOPS. Ultimately, dirty pages rise a \d fall with the ge vtle tides of page flushi \g.
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Page flushing. Page flushing cleas dirty pages by writi g the data modificatio \s to
disk. Page flushi g serves three closely related purposes: durability, checkpoi \ti g,
ad page evictio \. For simplicity, this sectio v focuses o v page flushi \g with respect
to page evictio v. “Tra vsactio v log” o\ page 219 clarifies how page flushi g serves
durability a vd checkpoi vti vg.

From “Buffer pool efficie \cy” o 1 page 209, you k vow that page flushi \g makes space
for vew data to be loaded i vto the buffer pool. More specifically, page flushi \g makes
dirty pages clea v, a \d clea \ pages ca \ be evicted from the buffer pool. Thus, the circle
of page life is complete:

o A free page becomes a clea 1 (data) page whe  data is loaded
o A clea page becomes a dirty page whe v its data is modified
o A dirty page becomes a clea \ page agai \ whe  the data modificatio vs are flushed

o A clea page becomes a free page agai v whe v it’s evicted from the buffer pool

The impleme vtatio v of page flushig is complex ad varies amo \g distributio \s
(Oracle MySQL, Perco va Server, a \d MariaDB Server), so you might wa 1t to reread
the followig ivformatio+ to fully absorb the may i+tricate details. Figure 6-6
depicts the high-level compo e 1ts a \d flow of Iv10DB page flushi vg from commit-
tivg tra vsactio vs i the tra vsactio  log (at top) to flushivg ad evictivg pages from
the buffer pool (at bottom).

Figuratively, I\ voDB page flushi g works top to bottom i+ Figure 6-6, but 'm goi g
to explai v it from the bottom up. I 1 the buffer pool, dirty pages are dark, clea \ (data)
pages are white, a \d free pages have a dotted outli ve.
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Figure 6-6. InnoDB page flushing

Dirty pages are recorded i v two i vter val lists (for each buffer pool i sta ce):

Flush list
Dirty pages from writes committed i v the tra vsactio v log.

LRU list
Clea v ad dirty pages i \ the buffer pool ordered by data age.

Strictly speaki g, the LRU list tracks all pages with data, a\d that just happe \s to
ivclude dirty pages; whereas the flush list explicitly tracks oly dirty pages. Either
way, MySQL uses both lists to fi \d dirty pages to flush. (I \ Figure 6-6, the LRU list is
co vected to [trackig] oy o ve dirty page, but this o\ly a simplificatio v to avoid a

clutter of li ves.)

O \ce every secod, dirty pages are flushed from both lists by backgrou \d threads
aptly vamed page cleaner threads. By default, I\ 10DB uses four page clea ver threads,
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co vfigured by var.innodb_page_cleaners. Each page clea ver flushes both lists; but
for simplicity, Figure 6-6 shows o e page clea ver flushi vg o e list.

Two flushi g algorithms are primarily respo sible for flush list flushi vg a \d LRU list
flushi vg, respectively:

Adaptive flushing
Adaptive flushi g determi ves the rate at which page clea vers flush dirty pages
from the flush list.° The algorithm is adaptive because it varies the page flush rate
based o v the rate of tra vsactio v log writes. Faster writes, faster page flushi vg. The
algorithm respo \ds to write load, but it’s also fi vely tu ved to produce a stable rate
of page flushi vg u \der varyi vg write loads.

Page flushi vg by page clea vers is a backgrou \d task, therefore the page flush rate
is limited by the co vfigured I1+oDB I/O capacity explai ved i+ “IOPS” o\ page
208, specifically: var.innodb_io_capacity a“d var.innodb_io_capacity_max.
Adaptive flushi vg does a fa vtastic job of keepi vg the flush rate (i \ terms of IOPS)
betwee 1 these two values.

The purpose of adaptive flushivg is to allow checkpoitivg to reclaim space
iv the travsactio v logs. (Actually, this is the purpose of flush list flushivg i+
ge veral; algorithms are just differe t methods of accomplishig it.) I explai
checkpoi vtivg iy “Tra vsactio v log” o v page 219, but I me vtio v it here to clarify
that, although flushi \g makes pages clea v a \d ca \didates for evictio v, that is ‘ot
the purpose of adaptive flushi \g.

The itricate details of the adaptive flushi vg algorithm are beyo \d the scope of
this book. The importa vt poi +t is: adaptive flushi vg flushes dirty pages from the
flush list i v respo 1se to tra vsactio  log writes.

LRU flushing
LRU flushi g flushes dirty pages from the tail of the LRU list, which co “tai \s
the oldest pages. Simply put: LRU flushi vg flushes a \d evicts old pages from the
buffer pool.

LRU flushi vg happe s i+ the backgrou \d a d the foregrou \d. Foregrou \d LRU
flushi g happe s whe+ a user thread (a thread executivg a query) reeds a
free page but there are vove. This is ‘ot good for performa vce because it’s
a wait—it i\creases query respo \se time. Whe v it occurs, MySQL i \creme ts
innodb.buffer_pool_wait_free, which is the “o ve more detail about free page
waits” me vtio ved earlier.

6 The MySQL adaptive flushi vg algorithm was created i 1 2008 by re vow ved MySQL expert Yasufumi Ki voshita
while worki g at Perco va. See his blog post “Adaptive checkpoi \ti \g”.
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Page clea vers ha vdle backgrou \d LRU flushi g (because page clea vers are back-
grou \d threads). Whe v a page clea ver flushes a dirty page from the LRU list, it
also frees the page by addivg it to the free list. This is primarily how I+voDB
mai vtai\s the free page target (see “Pages” o page 212) ad avoids free page
waits.

Although backgroud LRU flushi g is a backgroud task, it is not limited by
the co vfigured I+ oDB I/O capacity explaived (var.innodb_io_capacity a\d
var.innodb_1io_capacity_max).” It’s effectively limited (per buffer pool i sta \ce)
by var.innodb_lru_scan_depth. For various reaso s beyo \d the scope of this
book, this is ot a problem i\ terms of excessive backgrou \d storage I/O.

The purpose of LRU flushi \g is to flush a \d free (evict) the oldest pages. Old, as
detailed i+ “Data Age” o page 134, mea s the least rece vtly used pages, he \ce
LRU. The i vtricate details of LRU flushi vg, the LRU list, a \d how it all relates to
the buffer pool are beyo \d the scope of this book; but if you're curious, start by
readi g “Buffer Pool” i+ the MySQL ma wal. The importa vt poit is that LRU
flushi vg frees pages ad its maximum rate is the free page target (per seco \d),
‘ot the co vfigured I 1 voDB I/O capacity.

Idle Flushing and Legacy Flushing

There are two more flushi g algorithms i+ additio v to adaptive flushig ad LRU
flushi vg: idle flushi vg a \d legacy flushi g.

Idle flushing occurs whe v I1v0DB is ‘ot processi g a vy writes (the tra vsactio \ log is
‘ot bei vg writte v to). I + this rare situatio v, I 1 voDB flushes dirty pages from the flush
list at the co ‘figured I/O capacity (see “IOPS” o \ page 208). Idle flushi vg also flushes
the cha vge buffer a \d ha \dles flushi vg whe » MySQL shuts dow .

Legacy flushing is my term for the simple algorithm that I+voDB employed before
adaptive flushivg became the stadard.® IvvoDB flushes dirty pages whe the
perce vtage of dirty pages is betwee v var.innodb_max_dirty_pages_pct_lwm ad
var.innodb_max_dirty_pages_pct. Although this algorithm is still active i v MySQL
8.0, it’s esse tially vever used, a \d you ca v ig vore it.

With that crash course oy I1voDB flushivg, the followig four metrics are ‘ow
i vtelligible:

7 For proof a \d a deep dive, read my blog post “MySQL LRU Flushi vg a \d I/O Capacity”.

8 Legacy flushing is also called dirty pages percentage flushing, but I prefer my term because it’s simpler a vd
frames it more accurately: legacy implies that it's vo lo \ger curre \t, which is true.
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e innodb.buffer_flush_batch_total_pages

¢ innodb.buffer_flush_adaptive_total_pages

« innodb.buffer_LRU_batch_flush_total_pages
¢ innodb.buffer_flush_background_total_pages

All four metrics are cou ters that, whe v co werted to rates, reveal page flush rates
for each algorithm. innodb.buffer_flush_batch_total_pages is the total page flush
rate for all algorithms. It’s a high-level rate that’s useful as a KPI for I voDB: the total
page flush rate should be vormal a \d stable. If vot, o ‘e of the metrics i \dicates which
part of I\ voDB is ‘ot flushi vg vormally.

innodb.buffer_flush_adaptive_total_pages is the wumber of pages flushed by
adaptive flushig. innodb.buffer_LRU_batch_flush_total_pages is the vumber of
pages flushed by backgroud LRU flushig. Give the earlier explaatio v of these
flushi g algorithms, you k vow which parts of I 1 v0DB they reflect: the tra \sactio ' log
ad free pages, respectively.

innodb.buffer_flush_background_total_pages is icluded for complete vess: it is
the vumber of pages flushed by other algorithms described i+ “Idle Flushiyg ad
Legacy Flushi vg” o\ page 218. If the rate of backgrou \d page flushi \g is problematic,
you will veed to co vsult a MySQL expert because that’s ot supposed to happe .

Although differe vt flushi vg algorithms have differe vt rates, the storage system u vder-
lies all of them because flushi vg requires IOPS. If you're ru v i \g MySQL o v spi vvi g
disks, for example, the storage system (both the storage bus a\d the storage device)
simply do vot provide ma vy IOPS. If you ruy MySQL o high-e \d storage, the
IOPS may rever be a~ uderlyi g issue. A d if youre ru i g MySQL i+ the cloud,
you ca \ provisio v as ma vy IOPS as you ‘eed, but the cloud uses ‘etwork-attached
storage, which is slow. Also remember that IOPS have late \cy—especially iy the
cloud—ra vgi \g from microseco \ds to milliseco ds. This is deep k vowledge vergi \g
o\ expert-level i vter vals, but let’s keep goi g because it's powerful k vowledge worth
lear vivg.

Transaction log

The fival ad perhaps most importa vt spectrum: the tra vsactio v log, also k vow 1 as
the redo log. For brevity, it’s called the log whe » the co vtext is clear a \d u vambiguous,
as it is here.

The trasactio v log guara vtees durability. Whe v a tra vsactio v commits, all data
chages are recorded i+ the tra sactio v log ad flushed to disk—which makes the
data cha vges durable—a d correspo \di \g dirty pages remai v i\ memory. (If MySQL
crashes with dirty pages, the data chages are ‘ot lost because they were already
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flushed to disk i+ the tra vsactio  log.) Tra vsactio  log flushi vg is not page flushig.
The two processes are separate but i vextricable.

The I110DB trasactio log is a fixed-size ri+g buffer o+ disk, as show i+ Fig-
ure 6-7. By default, it comprises two physical log files. The size of each is co vfigured
by var.innodb_log_file_size. Or, as of MySQL 8.0.3, e vabli g var.innodb_dedi
cated_server automatically co ‘figures the log file size a‘d other related system
variables.

The trasactio v log co vtaivs data chages (tech vically, redo logs), ‘ot pages; but
the data chages are livked to dirty pages i+ the buffer pool. Whe a tra vsactio
commits, its data cha vges are writte \ to the head of the tra sactio v log a \d flushed
(syced) to disk, which adva vces the head clockwise, ad the correspo \dig dirty
pages are added to the flush list show v earlier i\ Figure 6-6. (I \ Figure 6-7, the head
avd tail move clockwise, but this is o\ly a~ illustratio v. Unless you have spiivg
disks, the tra sactio v log does ot literally move.) Newly writte v data cha vges over-
write old data cha vges for which the correspo \di \g pages have bee 1 flushed.

Head

Checkpoint age
(Pages not flushed)

Pages flushed

Tail

Figure 6-7. InnoDB transaction log

A simplified illustratio v a \d expla vatio v of the I v \oDB tra vsactio v
log makes it appear serialized. But that is o \ly a v artifact of simpli-
fyivg a complex process. The actual low-level impleme tatio v is
highly co vcurre vt: ma vy user threads are committi vg cha ges to
the tra vsactio v log i \ parallel.

Checkpoint age is the le vgth of the tra vsactio v log (i » bytes) betwee 1 the head a \d the
tail. Checkpointing reclaims space i+ the tra vsactio v log by flushi \g dirty pages from
the buffer pool, which allows the tail to adva vce. O vce dirty pages have bee 1 flushed,
the correspo \di g data cha vges i\ the tra \sactio v log ca v be overwritte v with ew
data cha vges. Adaptive flushi vg impleme ts checkpoi ti vg i v I v v0DB, which is why
the checkpoi 1t age is a v i put to the adaptive flushi vg algorithm show i \ Figure 6-6.
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By default, all data chages (redo logs) i+ the tra vsactio v log are
durable (flushed to disk), but correspodivg dirty pages i+ the
buffer pool are ‘ot durable u il flushed by checkpoi vti \g.

Checkpoi vti vg adva \ces the tail to e vsure that the checkpoi 1t age does ‘ot become
too old (which really mea s foo large because it's measured i v bytes, but too old is the
more commo \ phrase). But what happe 1s if the checkpoi 1t age becomes so old that
the head meets the tail? Sice the tra vsactio  log is a fixed-size ri \g buffer, the head
ca wrap arou \d a \d meet the tail if the write rate co vsiste vtly exceeds the flush rate.
I+ voDB wo vt let this happe v. There are two safeguard poi vts called async ad sync,
as show v i Figure 6-7. Async is the poit at which I1voDB begi s asy \chro vous
flushi vg: writes are allowed, but the page flushi \g rate is i \creased to ‘ear maximum.
Although writes are allowed, flushi \g will use so much I vv0DB I/O capacity that you
ca (ad should) expect a voticeable drop i+ overall server performa vce. Sync is the
poi t at which I vvoDB begi 1s sy \chro vous flushi \g: all writes stop, a \d page flushi \g
takes over. Needless to say, that’s terrible for performa vce.

I+ voDB exposes metrics for the checkpoivt age ad the asyxc flush poitt,
respectively:

¢ innodb.log_lsn_checkpoint_age

« innodb.log_max_modified_age_async

innodb.log_lsn_checkpoint_age is a gauge metric measured i\ bytes, but the raw
value is mea vivgless to huma s (it rages from zero to the log file size). What is
mea \i vgful to huma s ad critical to mo vitor is how close the checkpoi 1t age is to
the asy vc flush poi t, which I call transaction log utilization:

(ivvodb.log_lIs_checkpoi vt_age /i v vodb.log_max_modified_age_asy \c) x 100

Tra vsactio v\ log utilizatio v is co \servative because the asyc flush poitt is at 6/8
(75%) of the log file size. Therefore, at 100% tra \sactio v log utilizatio v, 25% of the log
is free to record vew writes, but remember: server performa vce drops ‘oticeably at
the asy \c flush poi vt. It’s importa vt to mo vitor a \d k vow whe v this poi 1t is reached.
If you wat to live dagerously, I+ 10DB exposes a metric for the sy ¢ flush poit
(which is at 7/8 [87.5%] of the log file size) that you ca v substitute for the asy \c flush
poi 't metric (or mo vitor both): innodb.log_max_modified_age_sync.

There’s 0 ve small but importa vt detail about how queries log data chages to the
tra vsactio \ log: data cha vges are first writte v to a v i --memory log buffer (1ot to be
co “fused with the log file that refers to the actual o v-disk tra vsactio v log), the v the
log buffer is writte v to the log file, a \d the log file is sy \ced. I'm glossi \g over myriad
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details, but the poi vt is: there’s a v i -memory log bufter. If the log buffer is too small
ad a query has to wait for free space, I v \oDB i \creme 1ts:

e innodb.log_waits

innodb.log_waits should be zero. If it is vt, the log buffer size is cofigured by
var.innodb_log_buffer_size. The default 16 MB is usually more tha v sufficie ‘.

Sivce the travsactio v log comprises two physical files o+ disk (two files, but oe
logical log), writivg axd sy\civg data chages to disk are the most fudame vtal
tasks. Two gauge metrics report how ma vy of those tasks are pe \di \g—waiti \g to be
completed:

¢ innodb.os_log_pending_writes

¢ innodb.os_log_pending_fsyncs

Sivce writes axd sy \cs are supposed to happe \ extremely quickly— early all write
performa vce depe \ds o v it—these metrics should always be zero. If vot, they i \dicate
a low-level problem with either I 1 voDB or, more likely, the storage system—presum-
i\g other metrics are vormal or were ‘ormal before pe \di vg writes a \d sy cs. Do vt
expect problems at this depth, but mo vitor it.

Last but vot least, a simple but importa \t metric that cou ts the vumber of bytes
writte 1 to the tra sactio  log:

¢ innodb.os_log_bytes_written

It's best practice to mo vitor total log bytes writte v per hour as a basis for deter-
mivivg log file size. Log file size is the product of system variables var.innodb_
log_file_size a“d var.innodb_log_files_in_group. Or, as of MySQL 8.0.14, e va-
bli vg var.innodb_dedicated_server automatically co \figures both system variables.
The default log file size is 0 \ly 96 MB (two log files at 48 MB each). As a e \gi \eer
usi \g MySQL, ‘ot a DBA, I presume whoever is ma vagi \g your MySQL has properly
co ‘figured these system variables, but it’s wise to verify.

We made it: the e d of I+ voDB metrics. The spectrum of IvvoDB metrics is much
wider ad deeper tha prese ted here; these are oly the most esse vtial I1voDB
metrics for a valyzi \g MySQL performa ce. Moreover, sig vifica 1t cha \ges were made
to IvvoDB from MySQL 5.7 to 8.0. For example, the i \ter val impleme tatio v of the
travsactio v log was rewritte v avd improved as of MySQL 8.0.11. There are other
parts of I\ voDB 1ot covered here: double-write buffer, cha vge buffer, adaptive hash
ivdex, axd so o . I e \courage you to lear v more about I 10DB, for it is a fasci vati vg
storage e \gie. You ca begi that jour vey at “The I+1voDB Storage Egive” i+ the
MySQL ma wual.
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Monitoring and Alerting

MySQL metrics reveal the spectrum of MySQL performa \ce, a \d theyre also great
for waki vg e vgi veers i + the middle of the vight—otherwise k vow v as mo vitorivg ad
alerting.

Mo itorivg avd alertivg are exter val to MySQL, so they ca ot affect its perfor-
ma ce, but I am compelled to address the followi g four topics because they are
related to metrics a \d importa 1t to success with MySQL.

Resolution

Resolution mea s the freque \cy at which metrics are collected a\d reported: 1 sec-
0d, 10 seco \ds, 30 seco \ds, 5 mi wutes, a \d so o \. Higher resolutio v e ‘tails higher
freque vcy: 1 seco \d is higher resolutio v tha v 30 seco \ds. Like a televisio v, the higher
the resolutio v, the more detail you see. A \d sice “seei g is believi g, let’s see three
charts of the same data over 30 seco \ds. The first chart, Figure 6-8, shows QPS values
at maximum resolutio v: 1 seco \d.

300
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Figure 6-8. QPS at 1-second resolution

I+ the first 20 secovds, QPS is vormal ad stable, bou \ci g betwee v 100 ad 200
QPS. From 20 to 25 seco \ds, there is a 5-seco \d stall (the 5 data poi \ts below 100
QPS i+ the box). For the last five seco vds, QPS spikes to a v ab vormally high value,
which is commo v after a stall. This chart is ¥t dramatic, but it’s realistic a \d it begi \s
to illustrate a poi vt that the vext two charts bri g i vto focus.

The seco d chart, Figure 6-9, is the exact same data but at 5-seco \d resolutio .
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Figure 6-9. QPS at 5-second resolution

At 5-seco \d resolutio v, some fi e detail is lost, but critical details remai v: vormal a\d
stable QPS i+ the first 20 seco \ds; the stall aroud 25 seco \ds; a\d the spike after
the stall. This chart is acceptable for daily mo vitori \g—especially co vsideri vg that
collectivg, stori g, a \d charti \g metrics at 1-seco \d resolutio v is so difficult that it’s
almost ever do ve.

The third chart, Figure 6-10, is the exact same data but at 10-seco \d resolutio .

At 10-seco \d resolutio v, vearly all detail is lost. Accordi g to the chart, QPS is stable
ad vormal, but it’s misleadi vg: QPS destabilized a \d was ‘ot ‘ormal for 10 seco ds
(five seco vd stall a \d five seco \d spike).

At the very least, collect KPIs (see “Key Performa vce I\dicators” o+ page 181) at
5-seco \d resolutio v or better. If possible, collect most of the metrics i v “Spectra” o v
page 187 at 5-seco \d resolutio 1 too, with the followi vg exceptio vs: Admi v, SHOW, a \d
bad SELECT metrics ca 1 be collected slowly (10, 20, or 30 seco \ds), a \d data size ca
be collected very slowly (5, 10, or 20 mi wutes).

Strive for the highest resolutio v possible because, ulike query metrics that are
logged, MySQL metrics are either collected or go ve for all eter vity.
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Figure 6-10. QPS at 10-second resolution

Wild Goose Chase (Thresholds)

A threshold is a static value past which a mo vitori \g alert triggers, ofte \ times pagi \g
the e vgi veer who's o v-call. Thresholds seem like a good a \d reaso vable idea, but they
do vt work. That’s a very stro \g claim, but it’s closer to the truth tha  the opposite—
claimi vg that thresholds work.

The problem is that a threshold also eeds a duration: how lo \g the metric value must
remai\ past the threshold util the alert triggers. Co vsider the chart i+ Figure 6-8
from the previous sectio v (QPS at 1-seco \d resolutio v). Without a duratio v, a thres-
hold at QPS less tha v 100 would trigger seve \ times i+ 30 seco \ds: the five seco\d
stall, ad the third a+d thirtee vth data poivts. That’s “too voisy” i+ the parla \ce of
mo vitori vg a \d alerti vg, so what about a threshold at QPS less tha v 50? Surely, a 50%
drop i+ QPS—from 100 QPS to 50 QPS—sig vals a problem worth alerti \g a huma .
Sorry, the alert vever triggers: the lowest data poit is 50 QPS, which is ot less than
50 QPS.

This example seems co vtrived but it's vot, a\d it gets worse. Suppose you add a
5-seco \d duratio \ to the alert, a \d reset the threshold to QPS less tha x 100. Now the
alert o ly triggers after the five-seco \d stall. But what if the stall was vt a stall? What
if there was a vetwork blip that caused packet loss duri g those five seco \ds, so the
problem was either MySQL vor the applicatio ¢ The poor o v-call huma v who was
alerted is o v a wild goose chase.
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I kvow it seems like I'm tailori vg the example to suit my poi t, but all joki vg aside:
thresholds are votoriously difficult to perfect, where perfect mea vs that it alerts o \ly
o\ truly legitimate problems— vo false-positives.

Alert on User Experience and Objective Limits

There are two prove v solutio s that work i + lieu of thresholds:

o Alert o v what users experie \ce

o Alert 0 v objective limits

From “North Star” o page 3 a\d “Key Performa ce I dicators” o \ page 181, there
are o\ly two MySQL metrics that users experie \ce: respo \se time a \d errors. These
are reliable sigvals ‘ot 0 \ly because users experie \ce them, but because they ca v 1ot
be false-positive. A chage i1\ QPS might be a legitimate cha vge i+ user traffic. But
a chage i\ respo \se time ca\ oly be explai ved by a chage i+ respo \se time. The
same is true for errors.

With microservices, the user might be a‘other applicatio. I+
that case, vormal respo \se times could be very low (te \s of milli-
seco \ds), but the mo vitori vg a \d alerti \g pri \ciples are the same.

Thresholds a \d duratio v are simpler for respo 1se time ad errors, too, because we
ca\ imagi ‘e the ab vormal co \ditio \s past the thresholds. For example, presume the
vormal P99 respo 1se time for a applicatio v is 200 milliseco \ds, a \d the vormal
error rate is 0.5 per seco \d. If P99 respo \se time icreased to 1 secod (or more)
for a full a mi wute, would that be a bad user experie \ce? If yes, the v make those the
threshold ad duratio v. If errors i\creased to 10 per seco\d for a full 20 seco \ds,
would that be a bad user experie \ce? If yes, the make those the threshold ad
duratio .

For a more co \crete example, let’s clarify the impleme vtatio v of the previous example
where 200 milliseco \ds is the vormal P99 respo se time. Measure ad report P99
respo 1se time every five seco \ds (see “Query Respo vse Time” o 1 page 188). Create a
rolli vg 0 ve mi vute alert o  the metric that triggers whe v the last 12 values are greater
thay o e secod. (Sice the metric is reported every five seco \ds, there are 60 / 5
seco \ds = 12 values/mi vute.) From a tech vical poi ‘t of view, a sustai ved 5x i \crease
iv query respose time is drastic ad merits i westigatio v—it’s probably a early
war i g that a larger problem is brewig ad, if ig vored, will cause a v applicatio
outage. But the ite vtio v of the alert is more practical tha v tech vical: if users are
used to subseco \d respo yses from the applicatio v, the v 0 ve-seco \d respo \ses are
‘oticeably sluggish.
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Objective limits are mi \imum or maximum values that MySQL ca v vot pass. These
are commo \ objective limits exter val to MySQL:

Zero free disk space

o Zero free memory

100% CPU utilizatio

100% storage IOPS utilizatio

e 100% etwork utilizatio

MySQL has ma vy max system variables, but these are the most commo \ o0 ves that
affect applicatio vs:

e max_connections
e max_prepared_stmt_count

o max_allowed_packet

There’s 0 ve more object limit that has surprised more tha v o ve e \gi veer: maximum
AUTO_INCREMENT value. MySQL does vot have a vative metric or method for checki\g
if a v AUTO_INCREMENT colum v is approachi g its maximum value. I \stead, commo
MySQL mo vitori vg solutio s create a metric by executig a SQL stateme 1t similar
to Example 6-7, which was writte v by re vow ved MySQL expert Shlomi Noach i+
“Checki vg for AUTO_INCREMENT capacity with si \gle query”.

Example 6-7. SQL statement that checks maximum AUTO_INCREMENT

SELECT
TABLE_SCHEMA,
TABLE_NAME,
COLUMN_NAME,
DATA_TYPE,
COLUMN_TYPE,
IF(
LOCATE( 'unsigned', COLUMN_TYPE) > 0,
1:
0
) AS IS_UNSIGNED,
(
CASE DATA_TYPE
WHEN 'tinyint' THEN 255
WHEN 'smallint' THEN 65535
WHEN 'mediumint' THEN 16777215
WHEN 'int' THEN 4294967295
WHEN 'bigint' THEN 18446744073709551615
END >> IF(LOCATE('unsigned', COLUMN_TYPE) > 0, 0, 1)
) AS MAX_VALUE,
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AUTO_INCREMENT,
AUTO_INCREMENT / (
CASE DATA_TYPE
WHEN 'tinyint' THEN 255
WHEN 'smallint' THEN 65535
WHEN 'mediumint' THEN 16777215
WHEN 'int' THEN 4294967295
WHEN 'bigint' THEN 18446744073709551615
END >> IF(LOCATE('unsigned', COLUMN_TYPE) > 0, 0, 1)
) AS AUTO_INCREMENT_RATIO
FROM
INFORMATION_SCHEMA.COLUMNS
INNER JOIN INFORMATION_SCHEMA.TABLES USING (TABLE_SCHEMA, TABLE_NAME)
WHERE
TABLE_SCHEMA NOT IN ('mysql', 'INFORMATION_SCHEMA', 'performance_schema')
AND EXTRA='auto_increment'

B

What about the other two key performa vce ivdicators: QPS ad threads ru vvig?
Mo vitori vg QPS axd threads ruvvivg is a best practice, but alertirg o+ them is
ot. These metrics are pivotal whe i westigati \g a legitimate problem sig valed by
respo \se time or errors, but otherwise they fluctuate too much to be reliable sig vals.

If this approach seems radical, remember: these are alerts for e giveers usi\g
MySQL, ot DBAs.

Cause and Effect

I wo ¥t mi vce words: whe Y MySQL is slow to respo \d, the applicatio v is the cause the
vast majority (maybe 80%) of the time—i+ my experie \ce—because the applicatio
drives MySQL. Without it, MySQL is idle. If the applicatio v is vt the cause, there
are a few other commo v causes of slow MySQL performa vce. A vother applicatio \—
avy applicatioy, vot just MySQL—is a likely culprit maybe 10% of the time, as
I discuss later iy “Noisy Neighbors” o+ page 301. Hardware, which iicludes the
etwork, causes problems a mere 5% of the time because moder v hardware is quite
reliable (especially e vterprise-grade hardware, which lasts lo vger [ad costs more]
tha v co vsumer-grade hardware). Last ad least: I estimate o+ly a 1% chace that
MySQL is the root cause of its ow 1 slow vess.

O ce ide vtified, the cause is presumed to be the root cause, ‘ot a side effect of some
prior, u \see \ cause. For example, applicatio 1 causes presume somethi \g like a poorly
writte v query that, o ce deployed i+ productio v, immediately causes a problem i
MySQL. Or, hardware causes presume somethig like a degraded storage system
that’s worki vg but sig vifica \tly slower tha v usual, which causes MySQL to respo \d
slowly. Whe v this presumptio v is false—the ide vtified cause is not the root cause—a
especially per vicious situatio v occurs. Co vsider the followi vg seque vce of eve ts:
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1. A etwork issue lastig 20 secods causes sigvifica 1t packet loss or low-level
‘etwork retries.

2. The vetwork issue causes query errors or timeouts (due to packet loss or retries,
respectively).

3. Both the applicatioy axd MySQL log errors (query errors a‘d cliet errors,
respectively).

The applicatio  retries queries.

While retryi g old queries, the applicatio v co \ti wues executi \g ‘ew queries.
QPS ixcreases due to executi \g vew a \d old queries.

Utilizatio v i vcreases due to QPS i \creasi \g.

Waits i vcrease due to utilizatio v i \creasig.

Y X N Uk

Timeouts i \crease due to waits i \creasi\g.

10. The applicatio v retries queries agai v, which creates a feedback loop.

By the time you step i to this situatio v, the problem is appare 1t but the root cause is
vot. You k vow that everythi vg was vormal a \d stable before the problem: vo applica-
tio v cha vges or deployme vts; MySQL key performa vce i dicators were vormal a \d
stable; a \d DBAs co vfirm that o work was do ve o+ their side. That's what makes
this situatio v especially per vicious: as far as you ca tell, it should vt be happe vi g,
but there’s vo de vyi \g that it is.

Tech vically speakiyg, all causes are kvowable because computers are fivite ad
discrete. But practically speakig, causes are o\ly as kvowable as mo vitorig ad
loggi vg allow. I+ this example, if you have exceptio vally good vetworki \g mo vitori \g
ad applicatio v loggi \g (a \d access to the MySQL error log), you ca  figure out the
root cause: the 20-seco vd retwork blip. But that’s a lot easier said tha v do e because
i+ the midst of this situatio v—your applicatio v is dow v, customers are callig, axd
it’s 4:30 p.m. o v a Friday—e 1gi veers are focused o  fixi \g the problem, ‘ot elucidat-
ivg its root cause. Whe focused o fixig the problem, it's easy to see MySQL
as the cause that veeds to be fixed: make MySQL ru faster ad the applicatio v
will be OK. But there is o way to fix MySQL i this se vse—recall, “MySQL Does
Nothivg” o page 124. Sice everythig was ‘ormal before the problem, the goal
is to retur to that vormal, starti g with the applicatio v because it drives MySQL.
The correct solutio v depe \ds o 1 the applicatio v, but commo 1 tactics are: restarti vg
the applicatio v, throttli vg i \comi g applicatio v requests, a \d disabli vg applicatio
features.

I'm ot favori vg MySQL. The simple reality is that MySQL is a mature database with
more tha v 20 years i\ the field. Moreover, as a\ ope \ source database, it has bee
scruti vized by e vgi veers from all over the world. At this ju \cture i+ the storied life of
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MySQL, i ‘here 1t slow vess is ‘ot its weak vess. Rather tha v ask why MySQL is slow,
a more powerful a \d effective questio v that leads to a root cause or immediate fix is
“What is causi \g MySQL to ru + slowly?”

Summary

This chapter avalyzed the spectra of MySQL metrics that are the most importa vt for
udersta \di vg the vature of the workload, which accou vts for MySQL performa vce.
The illumi vati vg takeaway poi \ts are:

MySQL performa vce has two sides: query performa vce a \d server performa vce.
Query performa ce is i Yput; server performa ce is output.

Normal ad stable are whatever performa vce MySQL exhibits for your applica-
tio v o v a typical day whe v everythi \g is worki \g properly.

Stability does vot limit performa vce; it e \sures that performa \ce—at a vy level—
is sustai vable.

MySQL KPIs are respo 1se time, errors, QPS, a \d threads ru vvivg.

The field of metrics comprises six classes of metrics: respo \se time, rate, utiliza-
tio v, wait, error, a \d access patter v (seve v, if you cou vt i vter val metrics).

Metric classes are related: rate i\creases utilizatio v; utilizatio v pushes back to
decrease rate; high (maximum) utilizatio v i vcurs wait; wait timeout i vcurs error.

The spectra of MySQL metrics are vast; see “Spectra” o \ page 187.
Resolution mea \s the freque \cy at which metrics are collected a \d reported.

High resolutio v metrics (5 seco \ds or less) reveal importa vt performa ce details
that are lost i v low resolutio \ metrics.

Alert o v what users experie vce (like respo vse time) a \d objective limits.

Applicatio v issues (your applicatio v or a vother) are the most likely cause of slow
MySQL performa xce.

MySQL server performa \ce is revealed through a spectrum of metrics that are
the figurative refractio v of the workload through MySQL.

The rext chapter i westigates replicatio \ lag.
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Practice: Review Key Performance Indicators

The goal of this practice is to k vow the vormal ad stable values of the four KPIs
for MySQL, as addressed i+ “Key Performa vce Idicators” o+ page 181. To make
this practice i vteresti \g first, write dow \ what you thi vk the KPI values are for your
applicatio \. You probably have a good idea about QPS; what about respo \se time
(P99 or P999), errors, a \d threads ru v vi \g?

Start collecti g the four “Key Performa \ce I+dicators” o+ page 181, if youre ‘ot
already. Your method depe \ds o the software (or service) that you use to collect
MySQL metrics. A vy dece t MySQL mo vitor should collect all four; if your curre t
solutio v does Hot, seriously co \sider a better MySQL mo vitor because if it does vt
collect key performa vce i \dicators, it’s u \likely to collect ma vy of the metrics detailed
iv “Spectra” o v page 187.

Review at least o ve full day of KPI metrics. Are the real values close to what you
thought? If respo vse time is higher tha v you thought, the » you k vow where to begi v:
“Query profile” o+ page 9. If the rate of errors is higher tha+ you thought, the
query table performance_schema.events_errors_summary_global_by_error to see
which error wumbers are occurrig. Use “MySQL Error Message Refere vce” to look
up the error code. If threads ru vvig is higher tha v you thought, diag vosis is tricky
because a sigle thread executes differe vt queries (presumi g the applicatio v uses a
co vrectio v pool). Start with the slowest queries i+ the query profile. If your query
metric tool reports query load, focus o\ queries with the highest load; otherwise,
focus o v queries with the highest total query time. If vecessary, i westigate usi\g the
Performa vce Schema threads table.

Review the KPIs for differe t periods throughout the day. Are the values stable all
day, or do they decrease i the middle of the vight? Are there periods whe the
values are ab vormal? Overall, what are the vormal ad stable KPI values for your
applicatio v?
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Practice: Review Alerts and Thresholds

The goal of this practice is to help you sleep at vight. Whereas charts for MySQL
metrics are frot avd ce ter, alerts—ad co vfiguratio v of those alerts—are usually
hidde v away. Co \seque vtly, e gi veers—especially ‘ewly hired egiveers—do rot
kvow what alerts lurk i+ the dark vess, waiti vg to page them while they sleep. Take
a mor i g or after voo v to shi e a light o v all your alerts a \d how they are co ‘fig-
ured—their thresholds, if a vy. A vd while you're at it: docume 1t the alerts (or update
the curre \t docume vtatio v). Review “Wild Goose Chase (Thresholds)” o\ page 225
avd “Alert o+ User Experie vce ad Objective Limits” o1 page 226, ad adjust or
remove superfluous alerts.

The goal for alerti g is simple: every page is legitimate a\d actio vable. Legitimate
mea s that somethi vg is already broke v, or certai 1 to break very soo v, a \d it requires
fixi vg right vow. Actionable mea \s that the e \gi veer (who was paged) has the k vowl-
edge, skills, a \d access to fix it. This is possible with MySQL. Say #o to the wild goose
chase ad yes to a good vight’s sleep.
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CHAPTER 7
Replication Lag

Replication lag is the delay betwee 1 the time whe v a write occurs o v a source MySQL
istavce avd the time whe that write is applied o a replica MySQL i sta \ce.
Replicatio v lag is i vhere vt to all database servers because replicatio v across a vetwork
ivcurs ‘etwork late \cy.

I'm glad that, as a\ egiveer usi'g MySQL, you do vt have to set up, co figure,
ad mai tai v a MySQL replicatio \ topology because MySQL replicatio v has become
complex. I1stead, this chapter iwestigates replicatio v lag with respect to perfor-
ma ce: what it is, why it happe vs, what risk it poses, a \d what you ca 1 do about it.

Simple Replication Won the Internet

Simple replicatio v is 0 ve reaso v that MySQL became the most popular ope v source
relatio val database server i+ the world. I+ the early 2000s, the i vter vet was reemerg-
ivg from the dot-com bubble of the 90s ad olive compa vies were growi g fast.
Sice replicatio v is required for high availability ad also used to scale out reads,
simple replicatio v iy early versio s of MySQL (v3.23 through v5.5) helped it wix
the ivter vet i+ those heedless days. Early versio vs of MySQL used si \gle-threaded
statement-based replication (SBR): the source MySQL i \sta xce would log the SQL
stateme ‘ts that it executed—yes, the actual SQL stateme vts—a \d replica i \sta vces
would simply re-execute those SQL stateme vts. Replicatio v does vt get simpler tha
that. Yes, it worked, a \d yes, it had problems a \d gotchas. But sometimes the simplest
solutio v really is the best. Now, more tha+ 20 years later, MySQL replicatio v is
complex, but it still supports stateme vt-based replicatio .

Tech vically, yes, replicatio v decreases performa vce, but you do vt wa 1t to ru » MySQL
without it. It’s ‘ot hyperbole to say that replicatio \ preve \ts busi vesses from faili \g—
from data loss so catastrophic that, if replicatio v did ‘ot preve vt it, the compa vy
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would go out of busiess. MySQL ru s everywhere from hospitals to ba ks, axd
replicatio \ keeps i waluable data safe despite i evitable failures. Although replicatio
decreases performa vce a \d lag is a risk, these costs are ca celled by the overwhelm-
i g be vefits of replicatio .

This chapter i westigates replicatio \ lag. There are six major sectio 1s. The first i vtro-
duces basic MySQL replicatio v termi vology a \d traces the tech vical origi \s of repli-
catio v lag—why it happe s despite fast databases a \d ‘etworks. The seco \d discusses
the mai v causes of replicatio v lag. The third explai \s the risk of replicatio \ lag: data
loss. The fourth provides a co \servative co ‘figuratio  for e vabli \g a multithreaded
replica, which dramatically reduces lag. The fifth looks at mo vitori \g replicatio v lag
with high precisio v. The sixth explai s why replicatio \ lag is slow to recover.

Foundation
MySQL has two types of replicatio v:

Source to replica
Source to replica replication is the fu vdame vtal type of replicatio v that MySQL
has used for more tha v 20 years. Its ve verable status mea s that MySQL replica-
tion implies source to replica replicatio . MySQL replicatio v is old, but make vo
mistake: it’s fast, reliable, a \d still widely used today.

Group Replication
Group Replication is the vew type of replicatio v that MySQL has supported as of
MySQL 5.7.17 (released December 12, 2016). Group Replicatio \ creates a MySQL
cluster of primary a\d seco vdary i1sta ces that use a group co vse \sus protocol
to sy \chro vize (replicate) data chages a\d mavage group membership. That’s
a lo g way of sayi g that Group Replicatio v is MySQL clusterig, ad it is the
future of MySQL replicatio v a \d high availability.

This chapter covers oy traditio val MySQL replicatio v: source to replica. Group
Replicatio v is the future, but I defer coverage to the future because, at the time of this
writivg, veither I vor a vy DBAs that I k vow have sig vifica vt experie \ce operati\g
Group Replicatio v at scale. Moreover, aother i+ovatio v built o+ top of Group
Replicatio v is becomi \g the sta \dard: I v voDB Cluster.

Additio vally, Percova XtraDB Cluster axd MariaDB Galera Cluster are database
cluster solutio vs similar to MySQL Group Replicatio v i\ purpose but differe vt i+
impleme vtatio v. I defer coverage of these solutio s, too, but keep them iy mid
if youre ruvvivg a Percova or MariaDB distributio v of MySQL ad looki g for a
database cluster solutio .
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MySQL source to replica replicatio v is ubiquitous. Although the i+ er worki vgs of
replicatio v are beyo \d the scope of this book, u vdersta \di \g the fou vdatio v illumi-
\ates the causes of replicatio \ lag, the risk that it poses, a \d how to reduce both.

Replicatio v termi vology cha vged as of MySQL 8.0.22 ad 8.0.26-
released iy 2020 ad 2021, respectively. For a summary of the
chages, see “MySQL Termi vology Updates”. I use the curre vt
termi vology, metrics, variables, a \d comma \ds i \ this book.

Source to Replica

Figure 7-1 illustrates the fou vdatio v of MySQL source to replica replicatio .

N\

[Source MySQL instance

e /0 thread
| Binary logs

-| Database

SOLE | (writable)
SQL thread (applier) Binlog dump thread
(Replica MySQL instance 2. Dump )
v

3 Write /0 thread
| Binary logs

Binlog dump thread

Database
(read-only)

SQL thread (applier)

Figure 7-1. Foundation of MySQL source to replica replication

A source MySQL instance (or source for short) is a vy MySQL server to which clie vts
(the applicatio v) write data. MySQL replicatio v supports multiple writable sources,
but this is rare due to the difficulty of ha \dli vg write co \licts. Co seque 1tly, a sigle
writable source is the vorm.
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A replica MySQL instance (or replica for short) is a vy MySQL server that replicates
data chages from a source. Data changes are modificatio \s to rows, i vdexes, sche-
mas, a\d so forth. Replicas should always be read-o-ly to avoid split-braiv (see
“Split-Brai v Is the Greatest Risk” o\ page 297). Usually, a replica replicates from a
si \gle source, but multisource replicatio v is a v optio .

Arrows i Figure 7-1 represe ‘t the flow of data cha ges from the source to a replica:

1. Duri g tra vsactio v commit, data cha ges are writte \ to binary logs (or binlogs for
short) o\ the source: o v-disk files that record data cha \ges i+ binary log events
(see “Bivary Log Eve \ts” o v page 237).

2. A I/O thread o the replica dumps (reads) bivary log eve \ts from the source
bivary logs. (A binlog dump thread o v the source is dedicated to this purpose.)

3. The I/O thread o the replica writes the biary log eve ts to relay logs o the
replica: o \-disk files that are a local copy of the source bi vary logs.

4. A SQL thread (or applier thread) reads bivary log eve vts from the relay log.
5. The SQL thread applies the bi vary log eve vts to the replica data.
6. The replica writes the data cha \ges (applied by the SQL thread) to its bi vary logs.

By default, MySQL replicatio v is asy \chro vous: o v the source, the tra vsactio  com-
pletes after step 1 ad the remai i \g steps happe v asy \chro vously. MySQL supports
semisy ‘chro vous replicatio v: o\ the source, the tra vsactio v completes after step 3.
That is ‘ot a typo: MySQL semisy vchro vous replicatio y commits after step 3; it does
not wait for step 4 or 5. “Semisy vchro vous Replicatio v’ o \ page 244 goes i to more
detail.

Replicas are ‘ot required to write bivary logs (step 6), but its stadard practice
for high availability because it allows a replica to become the source. This is how a
database failover works: whe \ the source dies or is take v dow v for mai vte va \ce, a
replica is promoted to become the vew source. Let’s call the i sta vces old source a \d
new source. Eve vtually, a DBA will restore the old source (or cloe a vew i\stace
to replace it) a'd make it replicate from the vew source. I+ the old source, the
previously idle I/O thread, relay logs, a \d SQL threads (shaded darkly i\ Figure 7-1)
start workig. (The I/O thread i+ the old source will coviect to the ew source,
which activates its previously idle bi \log dump thread.) From the ‘ew source bi vary
logs, the old source replicates writes that it missed while it was offli ve. While doi \g
so, the old source reports replicatio v lag, but this is a special case addressed i+
“Post-Failure Rebuild” o+ page 241. Thats failover i+ a \utshell; but of course, it’s
more complex i\ practice.
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Binary Log Events

Bivary log evets are a low-level detail that you probably wo vt e cou vter (eve
DBAs do vt ofte v mess arou \d i\ bi vary logs), but they are a direct result of tra \sac-
tio vs executed by the applicatio v. Therefore, it's importa \t to u \dersta \d what the
applicatio v is tryi \g to flush through the plumbi g of replicatio .

The followi \g presumes row-based replicatio v (RBR), which is the
default binlog_format as of MySQL 5.7.7.

Replicatio v focuses o+ trasactio s avd bivary log evets, ‘ot ivdividual writes,
because data chages are committed to bivary logs durig trasactio v commit, at
which poi \t writes have already completed. At a high level, the focus is tra vsactio \s
because they are mea vi \gful to the applicatio \. At a low level, the focus is bi vary log
eve \ts because they are mea vigful to replicatio v. Tra vsactio s are logically repre-
se vted a \d deli veated i+ bivary logs as eve \ts, which is how multithread replicas ca
apply them i\ parallel—more o\ this i v “Reduci \g Lag: Multithreaded Replicatio v’
0\ page 246. To illustrate, let’s use a simple tra vsactio :

BEGIN;

UPDATE t1 SET c='val' WHERE id=1 LINMIT 1;

DELETE FROM t2 LIMIT 3;

COMMIT;
The table schemas a‘d data do ‘ot matter. What's importat is that the UPDATE
chages ove row i\ table t1, a\d the DELETE deletes three rows from table t2.
Figure 7-2 illustrates how that tra vsactio \ is committed i v a bi vary log.

Four co tiguous eve vts co vstitute the tra vsactio v

o A event for BEGIN
o A evet for the UPDATE stateme vt with o ve row image
o A evet for the DELETE stateme vt with three row images

o A evet for COMMIT

At this low level, SQL stateme vts esse vtially disappear ad replicatio v is a stream
of evets axd row images (for eve \ts that modify rows). A row image is a bivary
s vapshot of a row before ad after modificatio v. This is a v importa t detail because
a sigle SQL statemet cay geverate cou ‘tless row images, which yields a large
tra vsactio \ that might cause lag as it flows through replicatio .
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Figure 7-2. Binary log events for a transaction

Let’s stop here because we're a little deeper ivto MySQL i vter vals tha v we should
be for this book. Although brief, this i vtroductio v to bivary log eve \ts makes the
followi g sectio vs more i ‘telligible because vow you k vow what's flowi vg through
the plumbi g of replicatio v a \d why the foci are tra vsactio \s a \d bi vary log eve ts.

Replication Lag

Referrig back to Figure 7-1, replicatio v lag occurs whe v applyig chasges oy a
replica (step 5) is slower tha v committi \g cha \ges o \ the source (step 1). The steps
iv betwee v are rarely a problem (whe the ‘etwork is workig properly) because
MySQL bi vary logs, the MySQL retwork protocol, a \d typical etworks are very fast
ad efficie t.

Apply changes is short for apply transactions or apply events,
depe di g o\ the co vtext.

The I/O thread o v a replica ca v write bivary log eve 1ts to its relay logs at a high rate
because this is a relatively easy process: read from ‘etwork, write seque vtially to disk.
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But a SQL thread has a much more difficult a \d time-co vsumi \g process: applyi \g
the chages. Co seque tly, the I/O thread outpaces the SQL thread, a \d replicatio
lag looks like Figure 7-3.

[Source MySQL instance
Database ;
(writable) || Binary logs
. QO
Binlog dump thread

High transaction

'Replica MySQL instance

throughput

\

1/0 thread

Database
|| Relay logs (read-only)
1 Low transaction
: throughput (single
) SQL thread)
SQL thread (applier)

. J

Figure 7-3. MySQL replication lag

Strictly speakitg, a sivgle SQL thread does “ot cause replicatio v lag, its o\ly the
limiti vg factor. The cause, i+ this case, is high tra vsactio v throughput o v the source,
which is a good problem if the applicatio v is busy, but a problem 1o vetheless. More
0 causes i\ the vext sectio \. The solutio v is more SQL threads, which is covered
later i v “Reduci \g Lag: Multithreaded Replicatio v’ o 1 page 246.

Semisy vchro vous replicatio v does ‘ot solve or preclude replicatio v lag. Whe 1 semi-
sy \chro vous replicatio v is e vabled, for each tra vsactio v, MySQL waits for a replica
to ack vowledge that it has writte v the bivary log eve ts for the tra sactio\ to its
relay logs—step 3 iy Figure 7-1. O a local vetwork, replicatio v lag as depicted
iv Figure 7-3 can still occur. If semisy \chro vous reduces replicatio \ lag, it'’s oy
a side-effect of vetwork late \cy throttlivg tra sactio v throughput o the source.
“Semisy chro vous Replicatio v* o \ page 244 goes i yto more detail.

Lag is i vhere vt to replicatio v, but make ‘o mistake: MySQL replicatio v is very fast.
A sivgle SQL thread ca  easily ha vdle thousa \ds of tra \sactio vs per seco \d. The first
reaso \ is simple: replicas do ‘ot execute the full workload that the source executes.
Notably, replicas do ‘ot execute reads (presumi \g replicas are vt used to serve reads).
The seco \d reaso v requires a few li ves to explai v. As voted i+ “Bivary Log Eve ts” 0 1
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page 237, this chapter presumes row-based replicatio v (RBR). Co seque tly, replicas
do ot execute SQL stateme vts: they apply bivary log eve ts. That saves replicas
a lot of time because theyre give v the ed result—data chages—ad told where
to apply them. That ca~ be sighifica vtly faster tha fidi+g the matchi g rows to
update, which is what the source had to do. As a result of these two reaso s, replicas
ca be vearly idle eve v while the source is very busy. Nevertheless, three causes ca
overwhelm replicatio .

Causes

Replicatio v lag has three mai v causes: tra vsactio v throughput, post-failure rebuilds,
ad retwork issues. A sectio  for each follows.

Transaction Throughput

Tra vsactio \ throughput causes replicatio v lag whe  the rate o 1 the source is greater
tha v the rate at which SQL (applier) threads o \ the replica ca v apply cha \ges. Whe
this happe s because the applicatio v is legitimately busy, it’s usually vot feasible to
reduce the rate o v the source. I \stead, the solutio v is to i \crease the rate o v the rep-
lica by ru vvi g more SQL (applier) threads. Focus o v improvi \g replica performa vce
by tuig multithreaded replicatio, as outlived iy “Reduci g Lag: Multithreaded
Replicatio v’ o  page 246.

Large tra vsactio \s—o ves that modify a v i vordi vate wumber of rows—have a greater
impact o replicas tha the source. O the source, a large trasactio v that takes
two seco \ds to execute, for example, most likely does ‘ot block other tra vsactio \s
because it ru s (a \d commits) i v parallel. But o v a si \gle-threaded replica, that large
tra vsactio vs blocks all other tra vsactio s for two seco \ds (or however lo \g it takes to
execute o\ the replica—it might be less due to less co vte vtio v). O v a multithreaded
replica, other tra vsactio \s co i wue to execute, but that large tra vsactio v still blocks
o0 e thread for two seco \ds. The solutio \ is smaller tra vsactio vs. More o\ this i+
“Large Tra vsactio vs (Tra vsactio v Size)” o \ page 282.

Tra vsactio \ throughput is ‘ot always drive \ by the applicatio \: backfilli vg, deleti \g,
avd archiviyg data are commo \ operatio \s that ca\ cause massive replicatio v lag
if they do vt co vtrol the batch size, as forewar ved iy “Batch Size” o page 115. I
additio v to proper batch size, these operatio vs should mo vitor replicatio v lag ad
slow dow \ whe » replicas begi \ to lag. It’s better for a v operatio  to take o ve day tha
to lag a replica by o ve seco \d. “Risk: Data Loss” o \ page 241 explai \s why.

At some poi t, trasactio v throughput will exceed the capacity of a sigle MySQL
ista vce—source or replica. To icrease tra vsactio v throughput, you must scale out
by shardi \g the database (see Chapter 5).
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Post-Failure Rebuild

Whe v MySQL or hardware fails, the ista \ce is fixed ad put back i vto the replica-
tio v topology. Or a vew i\sta vce is clo ved from a v existi\g i1stace ad takes the
place of the failed i+sta \ce. Either way, the replicatio v topology is rebuilt to restore
high availability.

Replicas are used for several purposes, but this chapter discusses
0 \ly replicas used for high availability.

The fixed (or vew) ista vce will take mi vutes, hours, or days to catch up: to replicate
all the bi vary log eve 1ts that it missed while it was offli ve. Tech vically, this is replica-
tio v lag, but i v practice you ca v ig vore it u 1til the fixed i \sta vce has caught up. O \ce
caught up, a vy lag is legitimate.

Sice failure is i vevitable a \d catchi \g up takes time, the o \ly solutio v is to be aware
that the replicatio v lag is due to a post-failure rebuild a vd wait.

Network Issues

Network issues cause replicatio 1 lag by delayi vg the tra sfer of bi vary log eve ts from
source to replica—step 2 i\ Figure 7-1. Tech vically, the vetwork— vot replicatio \—is
laggi g, but quibbli vg about sema vtics does vt cha vge the e \d result: the replica is
behind the source—a lo \g way of sayi g lagged. I this case, you must e \list vetwork
e gi veers to fix the root cause: the vetwork.

The risk caused by a ‘etwork issue is mitigated by commu vicatio v a\d teamwork:
talk with the vetwork egiteers to esure that they kow what’s at stake for the
database whe v there’s a vetwork issue—it’s quite possible they do vt k vow because
they’re vot DBAs or e \gi eers usi \g MySQL.

Risk: Data Loss

Replication lag is data loss.

This is true by default for MySQL because the default is asy vchro vous replicatio .
Fortu vately, semisy vchro vous replicatio v is a v optio v that will ‘ot lose a vy commit-
ted trasactio vs. Let’s first exami ve the risk with asy vchro vous replicatio v, the v it
will be clear how semisy \chro vous replicatio \ mitigates the risk.

Risk: Dataloss | 241



As oted i+ “Foudatio ¥’ o\ page 234, I defer Group Replicatio 1
to the future. Moreover, the sy \chro vicity of Group Replicatio 1
requires careful expla vatio \.!

Asynchronous Replication

Figure 7-4 shows the poi vt i » time at which the source crashed.

) )
Binary log Relay log

Transaction 2

Figure 7-4. Crash on MySQL source with asynchronous replication

Transaction 1

Transaction 2

Transaction 3

Replical/O

Source

Before crashi \g, the source committed five tra vsactio \s to its bi vary logs. But whe v it
crashed, the replica I/O thread had o \ly fetched the first three tra vsactio \s. Whether
or ‘ot the last two tra vsactio vs are lost depe vds o \ two factors: the cause of the crash,
ad whether a DBA must failover.

If MySQL is the cause of the crash (most likely due to a bug), the v it will automat-
ically restart, perform crash recovery, a\d resume ‘ormal operatios. (By default,
replicas automatically reco vvect a \d resume replicatio v, too.) A \d sice MySQL is
truly durable whe v properly co figured, the committed tra vsactio vs 4 a\d 5 are ‘ot
lost. There’s just o ve problem: crash recovery ca take several mi vutes or hours to
complete—it depe \ds o\ several factors outside the scope of this book. If you ca
wait, crash recovery is the ideal solutio \ because ‘o committed tra vsactio vs are lost.

If hardware or operati g system is the cause of the crash, or if the crashed MySQL
istace cavvot be recovered quickly e vough for a vy reaso v, the v a DBA will fail-
over—promote a replica to the source—a d tra vsactio vs 4 a\d 5 are lost. This is ‘ot
a ideal solutio v, but it’s stavdard practice because the alter vative is worse: a lo g

1 “MySQL Group Replicatio 1...Sy vchro vous or Asy vchro vous Replicatio 1?” by re vow ved MySQL expert
Frédéric Descamps explai vs the sy chro vicity of Group Replicatio .
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outage (dow ‘time) while recoverig the crashed MySQL istace, which requires
exacti vg data fore vsics that could take hours or days.

No data is lost whe v DBAs failover for mai vte va vce (operatio s).
A d sivce vothig has failed, some DBAs call this successover.

This example is ‘ot co vtrived to prove the poi vt that replication lag is data loss; it’s
ievitable with asy \chro vous replicatio v because all hardware a \d software (i vclud-
i'g MySQL) fails eve vtually.

The o \ly mitigatio v is a strict adhere vce to mi \imizi \g replicatio v lag. Do vot, for
example, disregard 10 seco \ds of replicatio v as “ ‘ot too far behid” I \stead, treat it
as “we’re at risk of losi vg the last 10 seco ds of customer data” The odds are i \ your
favor that MySQL or the hardware wo vt fail at the worst possible mome t—whe  the
replica is laggi \g—but let me relate a cautio vary tale about hardware failure.

O ve week whe v I was o v-call, I received a v alert arou \d 9 a.m. That’s vot too early; I
was already do e with my first cup of coffee. O ve alert quickly tur ved i vto thousa ds.
Database servers everywhere—i\ multiple, geographically distributed data ce vters—
were faili vg. It was so bad that I immediately k vew: the problem was ‘ot hardware or
MySQL, because the odds of that ma vy simulta veous but u vrelated failures was i \fi +-
itesimal. Lo vg story short, o ve of the most experie vced e \gi veers i \ the compa vy had
vot had his coffee that mor vi \g. He had writte v axd ru+ a custom script that we t
terribly awry. The script did vt simply reboot servers at ra \dom, it tur ved them off.
(I\ data ce vters, server power is programmatically co vtrolled through a backpla e
called I vtellige vt Platform Ma vageme vt I vterface.) Killi vg power is aki v to hardware
failure.

The moral of that story is: failure ca \ be caused by huma v error. Be prepared.

Asy chro vous replicatio v is ‘ot a best practice because virtually u vmitigated data
loss is atithetical to the purpose of a persiste vt data store. Cou vtless compa vies
arou \d the world have bee v successful with asy vchro vous replicatio  for more tha
20 years. (But “commo  practice” does vt vecessarily mea “best practice”) If you
ru v asy chro vous replicatio v, MySQL DBAs a vd experts will ‘ot scoff as lo vg as the
followi vg three co ditio s are true:

» You mo vitor replicatio v lag with a heartbeat (see “Mo vitori vg” o \ page 250).

« You are alerted a vy time ( ‘ot just duri g busi vess hours) whe  replicatio v lag is
too high.

 You treat replicatio v lag as data loss a \d fix it immediately.
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Ma vy successful compa vies use asy vchro vous MySQL replicatio v, but there’s a higher
sta vdard to strive for: semisy ‘chro vous replicatio .

Semisynchronous Replication

Whe \ semisy chro vous (or semisync) replicatio v is e vabled, the source waits for at
least o ve replica to ack vowledge each tra vsactio . Acknowledge mea s that the replica
has writte v the bivary log evets for the traisactio to its relay logs. Therefore,
the tra vsactio v is safely o\ disk o+ the replica, but the replica has vt applied it yet.
(Co seque ly, replicatio v lag still occurs with semisy \c replicatio v, as me vtio ved i v
“Replicatio v Lag” o v page 238.) Ack vowledgme 1t whe 1 received, ‘ot whe v applied,
is why it’s called semisy \chro vous, ot fully sy chro vous.

Let’s replay the source crash from “Asy chro ous Replicatio v’ o \ page 242, but ow
with semisy \chro vous replicatio v e vabled. Figure 7-5 shows the poit iy time at
which the source crashed.

Binary log Relay log
Transaction 1

’
i Transaction4
J I

Transaction 2

Transaction 3

Replical/O

N~—

Transaction not complete
(Client waiting on COMMIT)

Figure 7-5. Crash on MySQL source with semisynchronous replication

With semisy \chro vous replicatio \, every committed tra sactio v is guara vteed to
have replicated to at least o ve replica. Committed transaction i~ this co vtext mea s
that the COMMIT stateme 't executed by the clie vt has retur ved—the tra vsactio v is
complete from the clie \t’s poit of view. That’s the usual, high-level u dersta \di g
of a committed tra vsactio v, but dow \ i+ the plumbi g of replicatio v, the tech vical
details differ. The followi g four steps are a \ extreme simplificatio v of how a tra vsac-
tio v commits whe  bi vary loggi vg a \d semisy ‘chro ous replicatio v are e vabled:

1. Prepare tra vsactio \ commit
2. Flush data cha vges to bivary log

3. Wait for ack vowledgme vt from at least o ve replica
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4. Commit tra vsactio v

A Ivv0oDB trasactio v commit is a two-phase commit. I+ betwee 1 the two phases
(steps 1 ad 4), data cha vges are writte v ad flushed to the bivary logs, a \d MySQL
waits for at least o ve replica to ack vowledge the tra vsactio v.?

I\ Figure 7-5, the dashed outli e of the fourth tra vsactio v i \dicates that at least o ve
replica has not ack vowledged it. The source crashed after step 2, so the tra vsactio v
is i the bivary logs, but the commit did ‘ot complete. The clie vt COMMIT stateme vt
will retur va v error (ot from MySQL because it has crashed; it will probably receive
a ‘etwork error).

Whether or ot the fourth tra sactio v is lost depe vds o\ the same two factors as
before (“Asy chro vous Replicatio ¥’ o 1 page 242): the cause of the crash, a \d whether
a DBA must failover. The importa vt differe \ce is that 0 \ly 0 ve u \committed tra \sac-
tio v per co v vectio v ca v be lost whe 1 semisy \chro vous replicatio v is e vabled. Si \ce
the tra vsactio v did ot complete a \d the clie vt received a v error, the pote vtial loss
of the ucommitted tra vsactio v is less worrisome. The keyword is less worrisome:
there are edge cases that mea v you ca v ot simply disregard the lost tra vsactio . For
example, what if a replica ack vowledges the tra vsactio  but the source crashes before
it receives the ack vowledgme 1t? The a \swer would desce \d further i vto replicatio
plumbi vg tha ' we reed to go. The poi vt is: semisy chro vous replicatio  guara vtees
that all committed tra vsactio \s have replicated to at least o ve replica, axd oly o e
u vcommitted tra vsactio \ per co v vectio  ca 1 be lost o + failure.

The fu vdame vtal purpose of a persiste 1t data store is to persist data, ‘ot lose it. So
why is vt semisy vchro vous the default for MySQL? It's complicated.

There are successful compa vies that operate MySQL at scale usi \g semisy \chro vous
replicatioy. O ve rotable compa vy is GitHub, the former employer of re vow ved
MySQL expert Shlomi Noach who wrote a blog post about their use of semisy vchro-
vous replicatio v: “MySQL High Availability at GitHub”.

Semisy chro vous replicatio v reduces availability—that’s ot a typo. Although it safe-
guards travsactio vs, that safeguard meas that the curret traisactio for every
co v vectio Y might stall, timeout, or fail o ¥ COMMIT. By co vtrast, COMMIT with asy chro-
ous replicatio v is esse vtially ivsta vt ad guara vteed as lo g as the storage o the
source is worki \g.

By default, semisy \chro vous replicatio 1 reverts to asy \chro vous whe » there are ‘ot
e vough replicas or the source times out waiti vg for a v ack vowledgme +t. This ca \ be
effectively disabled by co ‘figuratio v, but the best practice is to allow it because the
alter vative is worse: a complete outage (the applicatio \ ca ot write to the source).

2 I presume sync_binlog = 1.
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Performa vce with semisy \chro vous replicatio v requires that the source a \d replicas
are o a fast, local vetwork because ‘etwork late vcy implicitly throttles tra vsactio v
throughput o+ the source. Whether or vot this is a\ issue depeds o the local
retwork where you ruy MySQL. A local vetwork should have submilliseco d late xcy,
but that must be verified a \d mo vitored, else tra vsactio v throughput will suffer the
whims of vetwork late \cy.

Whereas asy \chro vous replicatio y works without a vy special co vfiguratio v, semisy +-
chro vous requires specific co figuratio v ad tuvig. Neither is burde ysome for a
DBA, but they are careful work vevertheless.

I thik semisy chro vous replicatio v is the best practice because
data loss is vever acceptable—full stop. I advise you to lear v more
about semisy ‘¢ replicatio v, test axd verify it o your ‘retwork,
ad use it if possible. Start by readi vg “Semisy \chro vous Replica-
tio v’ i+ the MySQL ma wal. Or, if you wat to be truly prepared
for the future, look ivto Group Replicatioy avd I+voDB Cluster:
the future of MySQL replicatio v a“d high availability. Although
semisy chro vous replicatio v ad Group Replicatio v elicit debate
amo g MySQL experts, ove poitt garers uviversal agreeme it:
preve ti vg data loss is a virtue.

Reducing Lag: Multithreaded Replication

By default, MySQL replicatio v is asy \chro vous and si \gle-threaded: o ve SQL thread
o the replica. Eve \ semisy vchro vous replicatio v is si vgle-threaded by default. The
sivgle SQL thread does vot cause replicatio v lag—“Causes” o \ page 240 are the three
mai causes—but it is the limiti g factor. The solutio v is multithreaded replication
(or parallel replication): multiple SQL threads applyi \g tra vsactio vs i\ parallel. O v a
multithreaded replica, the SQL threads are called applier threads.’ You ca still call
them SQL threads if you wa vt—the terms are sy vo yymous—but the MySQL ma wal
uses applier i \ the co vtext of multithreaded replicatio .

The solutio v is simple for us as e gieers usig MySQL, but it's ‘ot simple for
MySQL. As you ca\ imagie, trasactioys cavvot be applied iy ravdom order:
there might be depe \de \cies amo g tra vsactio \s. For example, if o ‘e tra sactio
ivserts a ew row, a\d secod trasactio v updates that row, obviously the secod
tra vsactio v must ru v after the first. Transaction dependency tracking is the art axd
scie vce (a“d magic) of determivivg which tra sactio \s—from a serialized record
(the bivary logs)—ca v be applied i\ parallel. It's both fasci vati \g a \d impressive, but

3 I the MySQL ma wual, the full term is applier worker thread, but I thi \k worker is redu da 1t si \ce every
thread is a worker of some type.
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it’s beyo \d the scope of this book, so I e \courage you to watch the video “MySQL
Parallel Replicatio + (LOGICAL_CLOCK): all the 5.7 (a \d some of the 8.0) details” by
re Yow Yed MySQL expert Jea v-Fra vgois Gag \é.

Strictly speaki \g, o ‘e system variable e vables multithreaded replicatio v, but I suspect
that you are ‘ot goivg to be surprised whe I tell you: it's more complicated i
practice. Co vfiguri \g MySQL replicatio v is beyo \d the scope of this book, but multi-
threaded replicatio v is too importa 1t ‘ot to give you a conservative starting point. A
co servative starti \g poit mea s that the followi g co figuratio v might ‘ot yield
the full performa vce of multithreaded replicatio v. Co vseque vtly, you (or DBAs) must
tu ve multithreaded replicatio v—as iy “MySQL Tuvivg” o\ page 39—to maximize
its pote vtial while at the same time taki vg i vto accou vt the various ramificatio \s of
parallel replicatio .

The rest of this sectio v is vo vtrivial MySQL co vfiguratio v that

should o1ly be do e by av egieer with experie vce co figuri vg

1 MySQL i+ high performa vce, high availability e wiro yme ts. The

\ system variables i+ Table 7-1 will not affect data i vtegrity or dura-
bility iy a vy way, but they will affect performa vce o\ source axd
replica i \sta vces. Be aware that:

« Replicatio v affects high availability.

o Global tra vsactio v ide vtifiers a \d log-replica-updates must

be e vabled.

« Co figuri \g MySQL requires elevated MySQL privileges.

o System variables chage betweev MySQL versioys ad
distributio s.

o MariaDB uses differe t system variables: see “Parallel Replica-
tio v’ i+ the MariaDB docume vtatio .

Be very careful whe  co \figuri \g MySQL, a \d thoroughly read the
releva vt sectio vs of the ma wual for your versio v a \d distributio v of
MySQL.

Table 7-1 lists three system variables as a co vservative starti \g poi vt for e vabli vg a \d
co ‘figuri \g multithreaded replicatio \. Variable vames cha ged as of MySQL 8.0.26,
so the table lists old a\d vew variable vames, followed by a recomme vded value. I do
ot recomme \d usi \g multithreaded replicatio v i v MySQL older tha v 5.7.22 because
certai  replicatio v features from 8.0 were backported i vto this versio .
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Table 7-1. System variables to enable multithreaded replication

MySQL 5.7.22 through 8.0.25 MySQL 8.0.26 and newer
slave_parallel_workers replica_parallel_workers 4
slave_parallel_type replica_parallel_type LOGICAL_CLOCK

slave_preserve_commit_order replica_preserve_commit_order 1

Set all three variables o v all MySQL i vsta vces i \ the replicatio  topology that are used
for high availability (that ca v be promoted to source).

Settig replica_parallel_workers greater tha zero is the o \e system variable that
e vables multithreaded replicatio v. Four applier threads is a good start; you must tu e
to fivd the optimized vumber of applier threads for your workload ad hardware.
But, like a magic spell, it must be i woked with replica_parallel_type to co vjure
the full performace of multithreaded replicatio . Eve as of MySQL 8.0.26, the
default for replica_parallel_type is DATABASE, which o ly applies tra vsactio vs i+
parallel for differe vt databases—effectively, o1ly o e applier thread per database.
This is historical: it was the first type of parallelizatio v. But today, the best practice
is replica_parallel_type = LOGICAL_CLOCK because it has ‘o drawbacks whe
replica_preserve_commit_order is evabled, a\d it provides better parallelizatio v
because it applies tra vsactio vs i \ parallel regardless of database.

replica_preserve_commit_order is disabled by default, but I do vot thik that is
a best practice because it allows a multithreaded replica to commit out of order:
commit tra vsactio vs i a differe vt order tha they were committed o+ the source.
For example, traisactioys 1, 2, 3 committed i+ that order o\ the source might
commit iv order 3, 1, 2 o the replica. Multithreaded replicatio v oly commits
out of order whe safe (whe\ there are ‘o ordered depe \de \cies amo g tra \sac-
tiovs), ad table data is (evetually) the same, but committi \g out of order has
co seque ‘ces that you ad especially the DBAs ma vagi \g¢ MySQL must u dersta \d
ad ha\dle. “Replicatio v ad Trasactio v I co vsiste \cies” iy the MySQL ma wal
docume vts the co seque vces. Whe replica_preserve_commit_order is eabled,
tra vsactio \s are still applied i+ parallel, but some tra vsactio \s might wait for earlier
tra vsactio \s to commit first—this is how commit order is preserved. Although rep
lica_preserve_commit_order reduces the effective vess of parallelizatio v, it’s the best
practice util you axd the DBAs verify that its co vseque \ces are acceptable ad
ha vdled.

Multithreaded replicatio v works the same for Group Replicatio .
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Sivce Table 7-1 is a coservative startivg poitt for eabli'g multithreaded repli-
catioy, it does ‘ot evable the latest trasactio depede cy trackig: WRITESET.
MySQL trasactioy depedecy trackivg is determived by the system variable
binlog_transaction_dependency_tracking. The default is COMMIT_ORDER, but the
latest is WRITESET. Be \chmarks show that WRITESET achieves greater parallelizatio
tha \ COMMIT_ORDER. At the time of this writi vg, WRITESET is less tha v four years old:
it was ivtroduced i+ MySQL 8.0 which became GA o~ April 19, 2018. As a matter
of tech vology, you should use WRITESET because it achieves better performa vce o+
multithread replicas. But as a matter of policy, it’s up to you (or your DBA) to decide
whe v a feature has matured e vough to be used i+ productio v. To use WRITESET o
MySQL 5.7, you must e vable system variable transaction_write_set_extraction.
O+ MySQL 8.0 this system variable is e vabled by default but deprecated as of MySQL
8.0.26.

Create a vew replica to test a \d tu ve multithreaded replica. A vew
replica poses little to vo risk si vce it does ‘ot serve the applicatio v
or high availability.

There’s ove more system variable that you should experimet with: binlog_
group_commit_sync_delay. By default, this variable is disabled (zero) because, as
its vame suggests, it adds a artificial delay to group commit. Delays are usually
bad for performace, but group commit delay is a rare exceptio \—sometimes.
O the source, traysactio vs are committed to a bivary log i+ groups, which is ax
iter val optimizatio v aptly vamed group commit. Addi~g a delay to group commit
creates larger groups: more tra vsactio \s committed per group. Multithreaded repli-
catioy does ‘ot deperd o+ group commit, but it cav be efit from larger group
commits because more tra vsactio \s at o vce helps tra vsactio v depe de \cy tracki\g
find more opportu vities for parallelizatio . To experime \t with binlog_group_com
mit_sync_delay, start with a value of 10000: the u it is microseco \ds, so that’s 10
milliseco vds. This will i vcrease tra vsactio Y commit respo se time by 10 milliseco vds
o the source, but it should also ixcrease trasactio v throughput o the replica.
Tu i g group commit size with respect to multithreaded replica applier tra vsactio
throughput is ‘ot easy due to a lack of MySQL metrics. If you go this route, read “A
Metric for Tuivg Parallel Replicatio v i+ MySQL 5.7” by re vow ved MySQL expert
Jea \-Fra \¢ois Gag +é.

Multithreaded replicatio v is a best practice, but it requires vo vtrivial MySQL co +fig-
uratio v ad possibly tuvivg to achieve maximum performa vce. Be \chmarks ad
real-world results vary, but multithreaded replicatio \ ca \ more tha v double tra \sac-
tio v throughput o » replicas. For performa vce gai s like that, it's well worth the effort.
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But most importa tly: multithreaded replicatio v sig vifica tly reduces replicatio  lag,
which is critical whe v usi vg asy \chro vous replicatio .

Monitoring

The best practice for mo vitorig replicatio lag is to use a purpose-built tool.
But first, let’s exami e the ivfamous MySQL metric for replicatio v lag: Seconds_
Behind_Source, as reported by SHOW REPLICA STATUS.

Before MySQL 8.0.22, the replica lag metric a d commad were
Seconds_Behind_Master axd SHOW SLAVE STATUS, respectively.
As of MySQL 8.0.22, the metric axd comma~d are Seconds_
Behind_Source ad SHOW REPLICA STATUS. I use the curre \t met-
ric a\d comma \d i v this book.

Seconds_Behind_Source equals the curre vt time o \ the replica mi ws the timestamp
of the bivary log evet that the SQL thread is executi g.* If the curret time o
the replica is T = 100 a‘d the SQL thread is executi\g a bivary log evet with
timestamp T = 80, the v Seconds_Behind_Source = 20. Whe 1 everythi \g is worki \g
(replicatio v lag votwithsta \di \g), Seconds_Behind_Source is relatively accurate, but
it’s votorious for three problems:

o The first problem occurs whe everythivg is ‘ot workivg. Sivce Seconds_
Behind_Source relies solely o+ bivary log eve 1t timestamps, it does ‘ot figura-
tively see (or care about) a vy issues before the bivary log eve vts arrive. If the
source or ‘etwork has a problem that causes bivary log evets ‘ot to arrive,
or to arrive slowly, the v the SQL thread applies all bivary log eve ts ad Sec
onds_Behind_Source reports zero lag because, from the SQL thread poi+t of
view, that is tech vically correct: zero eve s, zero lag. But from our poi vt of view,
we k ow that’s wro \g: vot o \ly is there replicatio v lag, there’s a v issue before the
replica, too.

e The secod problem is that Seconds_Behind_Source is +otorious for flap-
pivg betweev zero avd a vovzero value. For example, ove momet Sec
onds_Behind_Source reports 500 seco \ds of lag, the ‘ext mome 1t it reports
zero lag, avd a mome vt later it reports 500 seco \ds of lag agai . This problem
is related to the first problem: whe \ eve \ts trickle i+to the relay logs because
of av issue before the replica, the SQL thread oscillates voticeably betwee
worki vg (applyi \g the latest eve 1t) a \d waiti vg (for the vext eve vt). That causes

4 Tech vically, it’s the eve vt timestamp plus its executio  time. Also, the clock skew betwee v source a \d replica is
subtracted from Seconds_Behind_Source whe v it’s reported by SHOW REPLICA STATUS.
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Seconds_Behind_Source to flap betwee v a value (SQL thread is workig) axd
zero (SQL thread is waiti \g).

o The third problem is that Seconds_Behind_Source does 1ot precisely a \swer the
questio v that e \gi veers really wa vt to k xow: when will the replica catch up? Whe
will replica lag be effectively zero because it’s applyi vg the latest tra vsactio \s from
the source? Presumi g everythi g is workivg (replicatio v lag votwithsta \di vg),
the value of Seconds_Behind_Source oy i+dicates how lo\g ago the curret
eve 1t bei \g applied was executed o  the source; it does not precisely i vdicate how
lo vg u il the replica catches up to the source. The reaso v is that replicas apply
tra vsactio vs at a differe vt rate tha v the source.

For example, suppose that 10 tra \sactio \s execute co curre vtly o v the source,
ad each tra vsactio \ takes 1 seco \d. The total executio \ time is 1 seco \d a \d the
rate is 10 TPS because the tra vsactio \s executed co vcurre vtly o v the source. O
a sigle-threaded replica, which applies each tra vsactio v serially, the worst-case
total executio v time ad rate could be 10 secods axd 1 TPS, respectively. I
emphasize could be because it’s also possible that the replica applies all 10 tra vsac-
tio vs sig vifica tly faster because the replica is vt burde ved with the full workload
ad it does vt execute SQL stateme vts (it applies bivary log eve vts). This could
happe v if the 1 seco \d executio \ time per tra vsactio 1 o \ the source was due to a
terrible WHERE clause that accessed a millio \ rows but o \ly matched a \d updated
a sivgle row. The lucky replica updates that sigle row i almost ‘o time. O
a multithreaded replica (see “Reduci \g Lag: Multithreaded Replicatio v’ o \ page
246), the total executio v time a\d rate vary based o\ at least two factors: the
wumber of applier threads a vd whether the tra vsactio \s ca \ be applied i+ paral-
lel. Either way, the poi vt is: replicas apply tra vsactio s at a differe vt rate tha  the
source, a \d si vce there’s vo way to k vow the differe \ce, Seconds_Behind_Source
cavot—ad does ot—precisely i \dicate whe v a replica will catch up.

Despite these problems, Seconds_Behind_Source provides value: it’s a ballpark esti-
mate of how lo vg u +til the replica catches up to the source: seco \ds, mi vutes, hours,
days? More o Y recovery time i \ the ‘ext sectio .

MySQL 8.0 i vtroduced sig vifica tly better visibility i vto MySQL replicatio v, i vclud-
ivg replicatio v lag. There’s just oe catch: it provides primitives, ‘ot ready-to-use
metrics like Seconds_Behind_Source. If youre usivg MySQL 8.0, talk with your
DBA about Performace Schema replicatio v tables that expose a ‘ew wealth of
iformatio v about MySQL replicatio \. Otherwise, the best practice for mo vitori vg
replicatio \ lag is to use a purpose-built tool. I \stead of relyi g o bivary log eve t
timestamps, tools use their ow \ timestamps. A tool writes timestamps at regular
ivtervals to a table, the \ reports replicatio v lag as the differe \ce of the curre 1t time
o a replica miwus the latest timestamp i+ the table. Fu \dame vtally, the approach
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is similar to how MySQL calculates Seconds_Behind_Source, but there are three
importa vt differe vces whe 1 usi \g a tool:

o A tool writes timestamps at regular i vtervals, which mea s that it’s ‘ot suscepti-
ble to the first problem of Seconds_Behind_Source. If there’s a vy issue before
the biary log eve vts arrive, replicatio v lag from a tool will immediately begi  to
icrease because its timestamp (writte v to a table) stops i \creme vtig.

o A tool precludes the seco \d problem of Seconds_Behind_Source: replicatio  lag
from a tool does vot flap; it cay o+ly be (effectively) zero if its timestamp is
(effectively) equal to the curre vt time.

A tool ca measure replicatio 1 lag a \d write timestamps at subseco \d i vtervals
(every 200 milliseco \ds, for example). A sigle seco \d of replicatio v lag is too
much for high performa vce applicatio ys—or a vy applicatio v whe v usi\g asy \-
chro vous replicatio .

The de facto tool for moitorivg MySQL replicatioy is pt-
heartbeat. (Timestamps writte v by replicatio v lag mo vitori g
tools are called heartbeats.) This ve verable tool has see \ more tha
a decade of use ad success because it’s simple a \d effective. Use it
to start mo vitori vg replicatio v lag, or use it to lear v how to write
your ow  tool.

Recovery Time

Whe v a replica has a sigvifica vt amou 1t of lag, the most pressi g questio v is ofte 1
“Whe v will it recover?” Whe v will the replica catch up to the source so that it’s exe-
cutivg (applyig) the latest tra vsactio vs? There’s ‘o precise a vswer. But replicatio
lag always recovers after the cause is fixed. I retur \ to this ‘otio v at the e \d of the
sectio . Uil the v, there’s o ve more characteristic of replicatio v lag to u \dersta \d.

A vother commo v ad importa vt characteristic of replicatio v lag is the i+flectio
poi 1t betwee v i \creasi g lag a \d whe \ the replica begi \s to recover (decreasi g lag).
I\ Figure 7-6, the i \flectio v poi vt is marked by the dotted li ve at time 75.

Whe v replicatio v lag begi 1s, the situatio v looks i \creasi \gly dire as lag i \creases. But
this is vormal. Presumi \g the replica is vt broke v, the SQL threads are worki \g hard,
but the cause has ‘ot bee 1 fixed yet, so the backlog of bi vary log eve 1ts co i vues to
ivcrease. As lo g as the cause persists, replicatio v lag will i \crease. But agai v: this is
vormal. Very soo v after the cause is fixed, the proverbial tide will tur vy, creatig as
iflectio v poi vt i the graph of replicatio v lag, as show v i+ Figure 7-6 at time 75. The
replica is still lagged, but it’s applyi \g bi vary log eve vts faster tha v the I/O thread is
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dumpi vg them i vto the relay logs. Post-i vflectio v poi v, replica lag usually decreases
with voticeable a \d satisfyi g haste.

Lag

0 Time 75

Figure 7-6. Inflection point in graph of replication lag

Recovery time is ‘ot very mea vi vgful before the i flectio v poi 1t because, i\ theory,
if the cause is ‘ever fixed, the \ the replica will vever recover. Whe v replicatio 1 lag
is i vcreasivg steadily (pre-i vflectio v poi 1t), do vt be distracted by the value; i \stead,
focus o + fixi \g the cause. Lag will i vcrease u il the cause is fixed.

Recovery time is more mea vi gful after the i+flectio poit ad it’s usually faster
tha v Seconds_Behind_Source or the value reported by tools. As explaived iy “Mo vi-
tori\g” o\ page 250, despite replicatio 1 lag, a sigle SQL thread is very fast because
the replica does vt have to execute the full workload that besets the source. As a
result, replicas ofte v apply tra vsactio s faster tha v the source, which is how replicas
eve vtually catch up.

I\ my experie \ce, if replicatio v lag is measured i+ days, it ofte v recovers i+ hours
(post-ivflectio v poi \t)—perhaps ma vy hours, but hours ‘evertheless. Likewise, sev-
eral hours of lag ofte recovers iv a few hours, a‘d several miwutes of lag ofte
recovers before you ca v fi vish a cup of coffee.

Returvivg to the votio s that theres ‘o precise aswer axd lag always recovers,
the ed result is that a precise recovery time is ‘ot as useful or mea vigful as it
first seems. Eve v if you could kvow the exact time that a replica will recover, you
ca ot do a vythi vg but wait. MySQL replicatio v is remarkably dogged. As lo \g as the
replica does vt break, MySQL will recover—it always does. Fix the cause as quickly
as possible, wait for the i+flectio v poi \t, the v replicatio v lag i \dicates a worst case
recovery time: MySQL usually recovers more quickly because SQL threads are fast.
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Summary

This chapter iwestigated MySQL replicatio v lag. Replicatio v is the fou \datio v of
MySQL high availability, a \d replicatio v lag is data loss. The mai v takeaways are:

MySQL has three types of replicatio v: asy vchro ‘ous, semisy vchro vous, ad
Group Replicatio .

Asy vchro vous (asy \c) replicatio v is the default.
Asy \chro vous replicatio ¥ ca v lose vumerous tra vsactio \s o  failure.

Semisy vchro vous (semisy vc) replicatio v does ot lose a vy committed tra vsac-
tio \s o  failure, 0 \ly 0 ve u \committed tra vsactio v per clie 1t co v vectio .

Group Replicatio v is the future of MySQL replicatio v a \d high availability (but
‘ot covered i v this chapter or book): it tur s MySQL i sta vces i vto a cluster.

The fou datio v of MySQL asy \c ad semisy \c replicatio v is se \di g tra vsac-
tio s, e vcoded as bi vary log eve 1ts, from a source to a replica.

Semisy vc replicatio v makes a tra vsactio * commit o \ the source wait for at least
0 e replica to ack vowledge receivivg a \d savi g ( vot applyi \g) the tra vsactio .

A replica has ay I/O thread that fetches bivary log eve vts from the source axd
stores them i v local relay logs.

A replica has, by default, o ve SQL thread that executes bi vary log eve ts from the
local relay logs.

Multithreaded replicatio v ca v be evabled to ru+ multiple SQL threads (applier
threads).

Replicatio v lag has three mai+ causes: (high) trassactio v throughput o+ the
source, a MySQL iistavce catchivg up after failure a\d rebuild, or ‘etwork
issues.

SQL (applier) threads are the limiti vg factor i v replicatio v lag: more SQL threads
reduce lag by applyi \g tra vsactio v i v parallel.

Semisy \c replicatio v ca v i vcur replicatio \ lag.
Replicatio v lag is data loss, especially with asy vchro vous replicatio .
E vabli vg multithreaded replicatio v is the best way to reduce replicatio v lag.

The MySQL metric for replicatio \ lag, Seconds_Behind_Source, ca \ be mislead-
ivg; avoid relyivg o vit.

Use a purpose-built tool to measure a \d report MySQL replicatio v lag at subsec-
od itervals.
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o Recovery time from replicatio v lag is imprecise a \d difficult to calculate.

o MySQL will recover, eve vtually—it always does o \ce the cause is fixed.

The vext chapter exami ves MySQL tra vsactio vs.

Practice: Monitor Subsecond Lag

The goal of this practice is to mo vitor subseco \d replicatio v lag ad determi ve: is
your replica laggi g beyod the 1-seco\d resolutio v that Seconds_Behind_Source
cay report? For example, is your replica laggi'g by 800 milliseco vds (which is
far greater thav retwork latecy)? A tool is ‘eeded to mo vitor subsecod lag:
pt-heartbeat.

To complete this practice, you veed:

o A compute isstace to ruy pt-heartbeat that cav co vvect to the source avd a
replica

o MySQL SUPER or GRANT OPTION privileges to create a user; or ask your DBA to
create the user

o MySQL CREATE privileges to create a database; or ask your DBA to create the
database

Every MySQL co vfiguratio v a~d e wiro yme vt is differe \t, so adapt the followi g
example as veeded.

1. Create a database for pt-heartbeat to use:

CREATE DATABASE IF NOT EXISTS ‘percona’;

You ca  use a differe vt database vame; I just chose percona as a \ example. If you
cha vge the database vame, be sure to cha vge it i v the followi \g comma ds.

2. Create a MySQL user for pt-heartbeat ad gra vt it the privileges that it veeds:

CREATE USER 'pt-heartbeat'@'%' IDENTIFIED BY 'percona';

GRANT CREATE, INSERT, UPDATE, DELETE, SELECT ON ‘percona’. heartbeat’
TO 'pt-heartbeat'@'%';

GRANT REPLICATION CLIENT ON *.* TO 'pt-heartbeat'@'%';

You cav use a differe vt MySQL user vame a‘d password; I just chose pt-
heartbeat ad percona (respectively) as av example. You should defiitely

chage the password if ruivg this i v productio v. (The password is set by the
IDENTIFIED BY clause.)
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3. Ru pt-heartbeat i+ update-mode to write heartbeats to a table i the percona
database:
pt-heartbeat \
--create-table \
--database percona \
--interval 0.2 \
- -update \
h=SOURCE_ADDR,u=pt-heartbeat,p=percona
A quick breakdow 1 of those comma 1d-li ve argume 1ts:
--create-table
Automatically create the heartbeat table i\ the specified database, if ‘eeded.
The first GRANT stateme t allows the pt-heartbeat user to CREATE the table.
If vot usi g this optio v, read the pt-heartbeat docume vtatio 1 to lear » how
to create the heartbeat table ma wually.
--database
Specify the database to use. pt-heartbeat requires this optio .
--interval
Write heartbeats every 200 milliseco \ds. This optio v determi ves the maxi-
mum resolutio v of pt-heartbeat, which is the smallest amou t of lag that it
ca \ detect. The default is 1.0 seco \d, which is ‘ot subseco \d. The maximum
resolutio v is 0.01 seco \ds (10 milliseco \ds). Therefore, 0.2 seco \ds is a little
co \servative, so experime vt with lower values (high resolutio v).
- -update
Write heartbeats to heartbeat table iy --database every --interval
seco \ds.
h=SOURCE_ADDR,u=pt-heartbeat, p=percona
The data source ame (DSN) to covvect to MySQL. The h specifies the
host vame. Cha vge SOURCE_ADDR to the host vame of the source i \sta ce. The
u specifies the user vame. The p specifies the password.
Read the pt-heartbeat docume vtatio \ for further details o * comma \d-li ve
optio vs ad the DSN.
If the comma \d is successful whe v ru v, it prits vothiyg axd ru s sile vtly.
Else, it pri vts a v error a \d exits.
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4. Rupt-heartbeat agai  but i v mo vitor mode to pri t replicatio v lag:

pt-heartbeat \
--database percona \
--interval 0.5 \
--monitor \

h=REPLICA_ADDR,u=pt-heartbeat,p=percona
Cha vge REPLICA_ADDR i ¥ the DSN to the host vame of a replica i \sta vce.
I\ mo vitor mode, --interval is how ofte v to check ad prit replicatio v lag. The
update mode i\sta vce of pt-heartbeat is writi \g heartbeats every 0.2 seco \ds (200

milliseco \ds), but the mo vitor mode i+stace of pt-heartbeat checks ad prits
replicatio + lag a little more slowly (every 0.5 seco \ds) for easy readi \g.

If the comma d i v step four is successful whe v ru v, it pri vts li ves like:

0.00s [ 0.00s, 0.00s, 0.00s ]
0.20s [ 0.00s, 0.00s, 0.00s ]
0.70s [ 0.01s, 0.00s, 0.00s ]
0.00s [ 0.01s, 0.00s, 0.00s ]

The first field is the curre vt replicatio v lag. The three fields betwee 1 the brackets are
movi \g averages for the last 1, 5, a\d 15 mi wutes of replicatio \ lag.

I this example, the first li ve shows zero lag. The v I i vte vtio vally lagged my replica
for 1.1 secods. Co vseque tly, the seco\d live shows 200 milliseco vds of replica-
tio v lag, which is the maximum resolutio v because the update-mode i‘stace of
pt-heartbeat is ruvvivg with --interval 0.2. Half a secod later (due to the
mo vitor-mode iistace of pt-heartbeat ruvvivg with --interval 0.5), the tool
reports 0.7 seco \ds (700 milliseco \ds) of replicatio v lag o+ the third li ve. But the
my fake 1.1 seco \ds of lag e \ds, so the last (fourth) li ve correctly reports zero lag.

This example is co vtrived, but it demo strates how pt-heartbeat ca+ mo vitor ad
report subseco \d replicatio \ lag. Try it o » your ‘etwork—the tool is safe to use.
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CHAPTER 8
Transactions

MySQL has o trasactio val storage e gives, like MyISAM, but 111 oDB is the
default a~d the presumptive vorm. Therefore, practically speakig, every MySQL
query executes i\ a tra vsactio \ by default, eve v a si \gle SELECT stateme 1t.

This chapter does ‘ot apply if you happe to be usivg avother
storage e \give, like Aria or MyRocks. But more tha v likely, you're
usi g I 1 10DB, i v which case: every MySQL query is a tra sactio .

From our poi 1t of view as e \gi eers, tra vsactio \s appear co \ceptual: BEGIN, execute
queries, a \d COMMIT. The v we trust MySQL (a \d I+ voDB) to uphold the ACID prop-
erties: atomicity, co vsiste \cy, isolatio v, ad durability. Whe v the applicatio + work-
load—queries, i \dexes, data, a \d access patter \s—is well optimized, tra vsactio \s are
a ‘o issue with respect to performa vce. (Most database topics are a 1o vissue whe
the workload is well optimized.) But behi \d the sce ves, tra vsactio s i woke a whole
vew world of co vsideratio \s because upholdi \g ACID properties while mai vtai vig
performa vce is ‘ot a v easy feat. Fortu vately, MySQL shi ves at executi \g tra \sactio vs.

As with replicatio v lag i \ the previous chapter, the i v ver worki \gs of tra vsactio \s are
beyo \d the scope of this book, but u vdersta \di \g a few basic co \cepts is pivotal to
avoidi \g commo v problems that hoist tra vsactio vs from the lowest levels of MySQL
to the tops of e \gi veers’ mi \ds. A little u \dersta \di vg avoids a lot of problems.

This chapter exami ves MySQL tra vsactio vs with respect to avoidi vg commo » prob-
lems. There are five major sectio vs. The first desce \ds i vto row locki vg with respect
to tra vsactio v isolatio v levels. The seco \d exami ves how I110DB ma vages co ‘cur-
re 't data access while guara vteei \g ACID properties: MVCC ad the udo logs. The
third describes the history list le vgth a \d how it i dicates problematic tra \sactio vs.
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The fourth e yumerates commo \ problems with tra \sactio \s to avoid. The fifth is a
foray i vto reporti g tra vsactio v details i + MySQL.

Row Locking

Reads do 1ot lock rows (except for SELECT...FOR SHARE ad SELECT...FOR UPDATE),
but writes always lock rows. That’s simple a \d expected, but the tricky questio v is:
which rows must be locked? Of course, the rows bei vg writte v must be locked. But
iva REPEATABLE READ tra vsactio v, I110DB ca lock sig vifica tly more rows tha v it
writes. This sectio v illustrates a vd explai \s why. But first, we must shift termi vology
ito the ver vacular of I v voDB data locki vg.

Sice tables are ivdexes (recall “IvvoDB Tables Are I1dexes” o\ page 41), rows
are ivdex records. I1voDB row lockig is discussed i+ terms of locking records, ‘ot
locki vg rows, because of ivdex record gaps. A gap is a rage of values betwee v two
ivdex records, as illustrated iv Figure 8-1: a primary key with two records, two
pseudo-records (i \fimum a \d supremum), a \d three gaps.

Primary key values
_________ A 4 e c—c. pe——————— A 4 mm——————
3
Infimum | 2 | E l 5 l Supremum
]
B \"""::'L'.'""",' TR
; Teentt ST ,
R LR Gaps ============mmmmemnen '

Figure 8-1. Index record gaps

Records are depicted as solid squares with ivdex values ivside: 2 axd 5 iy this
example. Pseudo-records are depicted as solid arrows o+ each ed of the ivdex:
infimum ad supremum. Every I11oDB B-tree idex has these two pseudo-records:
i vfimum represe \ts all i vdex values less tha v the mi vimum record (2 i+ this exam-
ple); supremum represe ts all i vdex values greater tha  the maximum record (5 i+
this example). Ivdex records do vt begiv at 2 or ed at 5; tech vically, they begi
avd evd at the ivfimum a\d supremum, ad examples i+ this sectio\ reveal the
importa vce of this detail. Gaps are depicted as dashed squares with vo i1dex value.
If the primary key is a sigle u vsig ved four-byte i vteger, the v the three gaps are (i
ivterval votatiov):

® [0’ 2)

e (2, 5)
o (5, 4294967295]
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Whe v discussi \g row locki \g, the term record is used i \stead of row because records
have gaps, but it could be misleadi g to say that rows have gaps. For example, if
the applicatio v has two rows with values 2 a~d 5, that does vot etail a gap i+
the rows comprisi\g values 3 ad 4 because maybe these are vt valid values for the
applicatio v. But with respect to a v i vdex, betwee v record values 2 ad 5, values 3 a\d
4 costitute a valid record gap (presumi g a v iteger colum v). To put it succi vctly:
the applicatio v deals i+ rows; I1voDB row lockig deals i+ records. Examples i
this sectio v demo vstrate that gap locks are surprisi \gly pervasive a vd arguably more
importa vt tha v i vdividual record locks.

The term data locks refers to all types of locks. There are ma vy types of data locks, but
Table 8-1 lists the fu vdame vtal I v voDB data locks.

Table 8-1. Fundamental InnoDB data locks

Lock type Abbreviation Locks gap  Locks

Record lock REC_NOT_GAP Locks a single record

Gap lock GAP v Locks the gap before (less than) a record
Next-key lock v Locks a single record and the gap before it
Insert intention lock INSERT_INTENTION Allows INSERT into gap

The best way to u vdersta \d the fu \dame vtal I v voDB data locks is with real tra \sac-
tio s, real locks, a \d illustratio 1s.

As of MySQL 8.0.16, data locks are easy to exami e usig Per-
forma vce Schema tables data_locks ad data_lock_waits. The
followi \g examples use these Performa ce Schema tables.

I MySQL 5.7 ad older, you must first SET GLOBAL innodb_sta
tus_output_locks=0N, which requires SUPER MySQL privileges,
the v execute SHOW ENGINE INNODB STATUS ad shift through the
output to fivd the relevat trasactioy ad locks. It's ‘ot easy—
eve \ experts strai\ to carefully parse the output. Si xce MySQL 5.7
is vot the curre vt release, I do ‘ot use its output i v this sectio v; but
sivce MySQL 5.7 is still widely used, refer to my blog post “MySQL
Data Locks: Mappi g 8.0 to 5.7” for a v illustrated guide to mappi g
data lock output from MySQL 5.7 to MySQL 8.0.

Let’s reuse the tried a \d true table elem but simplified as show iy Example 8-1.

RowLocking | 261



Example 8-1. Table elenm simplified

CREATE TABLE ‘elem’ (
*id® int unsigned NOT NULL,
‘a’ char(2) NOT NULL,
‘b* char(2) NOT NULL,
‘¢’ char(2) NOT NULL,
PRIMARY KEY ('id"),
KEY “idx_a® ('a’)

) ENGINE=InnoDB;

T Er TETE T .
[idla [b |c |
R Er TETE T
| 2] Au | Be | Co |
| 5] Ar | Br | C |
T s

The table elem is vearly the same as before, but vow the o wuique i vdex idx_a oy
covers colum v a, ad there are o \ly two rows, which create two primary key values
as show v earlier i v Figure 8-1. Si vce row locks are really i vdex record locks a \d there
are 0 ivdexes oY colum s b ad ¢, you ca v ig vore these two colum vs; they’re show
o ly for complete vess a \d the vostalgia of simpler chapters, like Chapter 2 whe \ row
locks were just rows locks.

Sivce autocommit is e vabled by default, the followi \g examples begi v with BEGIN to
start a v explicit tra vsactio v. Locks are released whe v a tra vsactio v e \ds; therefore,
the tra vsactio v is kept active— 1o COMMIT or ROLLBACK—to exami ve the data locks
that the SQL stateme vt followi'g BEGIN has acquired (or is waiti\g to acquire).
At the evd of each example, data locks are prited by queryisg the table perfor
mance_schema.data_locks.

Record and Next-Key Locks

A\ UPDATE o table elem usi\g the primary key to match rows acquires four data
locks i v the default tra vsactio  isolatio  level, REPEATABLE READ:

BEGIN;
UPDATE elem SET c='' WHERE id BETWEEN 2 AND 5;

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM  performance_schema.data_locks
WHERE object_name = 'elem';
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B B B T R R R R TP PR +
| index_name | lock_type | lock_mode | lock_status | lock_data |
B B B R B P LR EE R T PR +
| NULL | TABLE | IX | GRANTED | NULL |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 |
| PRIMARY | RECORD | X | GRANTED | supremum pseudo-record|
| PRIMARY | RECORD | X | GRANTED | 5 |
R e Rt D LR R L R R R TR +

Before illustrati vg a \d explai i \g these data locks, I will briefly describe what each
row mea\s:

o The first row is a table lock, as i+dicated by the lock_type colum \. I110DB is
a row-level locki g storage e \gi ve, but MySQL also requires table locks—refer
back to “Lock time” o+ page 13. There will be a table lock for every table
refere \ced by queries i the tra vsactio v. I ivclude table locks for complete vess,
but ig vore them si vce were focusi vg o v record locks.

o The seco\d row is a record lock o primary key value 2, as i dicated by all the
colum s. The cryptic colum v is lock_mode: X mea s a v exclusive lock (S [ ‘ot
show \] mea vs a shared lock), a \d REC_NOT_GAP mea 1s a record lock.

o The third row is a next-key lock o the supremum pseudo-record. I colum v
lock_mode, a solitary X or S mea \s a \ exclusive or shared ‘ext-key lock, respec-
tively. Imagi ve it as X,NEXT_KEY.

o The fourth row is a next-key lock o v primary key value 5. Agai v, the solitary X i 1
colum + lock_mode mea s a v exclusive vext-key lock. Imagi ve it as X,NEXT_KEY.

Figure 8-2 illustrates the impact of these data locks.

Record lock Next-key lock Next-key lock

.................. S R
]
Infimum E
]
1y

Figure 8-2. Record and next-key locks on primary key, REPEATABLE READ transaction

Locked records are shaded; u \locked records are white. The record lock o \ primary
key value 2 is shaded darkly. This record is locked because its correspo \dig row
matches the table co \ditio : id BETWEEN 2 AND 5.

The vext-key lock o v primary key value 5 is shaded medium-dark, a \d the gap before
it is shaded lightly. This record is locked because its correspo \di \g row matches the
table co \ditio v, too. The gap before this record is locked because it’s a vext-key lock.
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The gap comprises the 1o vexiste vt primary key values 3 a \d 4 (to which there are ‘o
correspo \di \g rows).

Similarly, the vext-key lock o v the supremum pseudo-record is shaded medium-dark,
avd the gap before it is shaded lightly. The gap comprises all primary key values
greater tha v 5. The i+trigui vg questio v is: why lock the supremum pseudo-record,
which includes all primary key values greater thav 5, whe the table co \ditio
excludes primary key values greater tha 5? The aswer is equally i trigui g, but
I must defer it u vtil “Gap Locks” o \ page 266.

Lets cofirm that the gaps are locked by tryivg to ivsert a row (usivg arother
tra vsactio \ with autocommit e vabled):

mysql> INSERT INTO elem VALUES (3, 'Au', 'B', 'C');
ERROR 1205 (HY0O0): Lock wailt timeout exceeded; try restarting transaction

B B R LR R P P
| index_name | lock_type | lock_mode lock_status | lock_data |
B B R L EE T EEE PP B +
| PRIMARY | RECORD | X,GAP,INSERT_INTENTION | WAITING | 5 |

------------- Fommmmm ot

+ — +

mysql> INSERT INTO elem VALUES (6, 'Au', 'B', 'C');
ERROR 1205 (HY0O0): Lock wailt timeout exceeded; try restarting transaction

R B R R B R R R +
| index_name | lock_type | lock_mode | lock_status | lock_data |
R B R R B R R R +

| PRIMARY | RECORD | X,INSERT_INTENTION | WAITING | supremum pseudo... |

The first INSERT times out tryi\g to acquire av ivsert ivtetioy lock o+ the gap
betwee \ values 2 a\d 5, which is where the ‘ew value (3) would be i\serted.
Although colum v lock_data lists value 5, this record is not locked because this ot
a record or rext-key lock: it's a v ivsert ite vtio \s lock, which is a special type of
gap lock (for INSERT); therefore, it locks the gap before the value 5. More o\ isert
ivte vtio vlocks i v “Ivsert I vte vtio v Locks” o v page 273.

The seco\d INSERT times out tryiyg to acquire a ‘ext-key lock o the supremum
pseudo-record because the ‘ew value, 6, is greater tha v the curre vt maximum value,
5, so it would be i \serted betwee 1 the maximum record a \d the supremum pseudo-
record.

These INSERT stateme vts prove that Figure 8-2 is ‘ot wro \g: ‘early the e vtire i \dex
is locked except for values less tha v 2. Why does I+ 1oDB use ‘ext-key locks that lock
the gaps i \stead of record locks? Because the tra vsactio v isolatio v level is REPEATABLE
READ, but that’s o \ly part of the a \swer. The complete a vswer is ‘ot straightforward,
so bear with me for a mome t. By locki g the gaps before the affected records,
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ext-key locks isolate the etire rage of records that the query accesses, which
is the I iy ACID: isolatio \. That preve vts a phe vome o\ called phantom rows (or
phantom reads) whe, at a later time, a tra vsactio \ reads rows that it did ‘ot read
at av earlier time. The vew rows are phantoms because, like a ghost, they appear
mysteriously. (Phantom is the actual term i the ANSI SQL-92 stadard.) Pha vtom
rows violate the priciple of isolatioy, which is why certai trasactio v isolatio v
levels forbid them. Now the truly mysterious part of this explavatio : the ANSI
SQL-92 stavdard allows pha ytom rows i REPEATABLE READ but I+voDB preve vts
them with ext-key locki vg. But let’s vot go dow \ the proverbial rabbit hole by aski vg
why Iv1oDB preve vts pha ytom rows iy REPEATABLE READ. K owig why does vt
cha ge the fact, ad it's vot u xcommo + for database servers to impleme vt tra vsactio v
isolatio v levels differe vtly tha v the sta \dard.! For complete vess, however, k vow that
the ANSI SQL-92 stadard forbids pha tom rows o\ly i+ the highest tra vsactio
isolate level: SERIALIZABLE. IvvoDB supports SERIALIZABLE, but I do vt cover it
iv this chapter because its ot commo \ly used. REPEATABLE READ is the default i+
MySQL axd I11oDB uses ‘ext-key locks to preve vt pha ytom rows iy REPEATABLE
READ.

Tra vsactio v isolatio v level READ COMMITTED disables gap lockig, which iicludes
vext-key locks. To prove it, cha vge the tra vsactio  isolatio  level to READ COMMITTED:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
BEGIN;
UPDATE elem SET c='' WHERE id BETWEEN 2 AND 5;

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM  performance_schema.data_locks
WHERE object_name = 'elem';

R P R R R B R B +
| index_name | lock_type | lock_mode | lock_status | lock_data |
R B R R D R B +
| NULL | TABLE | IX | GRANTED | NULL |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 5 |
R B B R L e T B +

SET TRANSACTION applies o \ce to the text travsactio . After the
vext travsactio v, subseque vt tra vsactio \s use the default tra vsac-
tio visolatio v level. See SET TRANSACTION for details.

1 To go dow + the rabbit hole, follow “A Critique of ANSI SQL Isolatio \ Levels™: a classic read o » the subject of
ANSI SQL-92 isolatio  levels.
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The same UPDATE stateme vt iy a READ COMMITTED tra vsactio v acquires records locks
0 \ly o  the matchi vg rows, as illustrated i v Figure 8-3.

Record lock Record lock

Supremum

Why ‘ot use READ COMMITTED? That questio relates to av access patter trait
(“Tra vsactio v Isolatio v 0 v page 136) that makes it e tirely applicatio \-specific, eve v
query-specific. I v a tra vsactio v, READ COMMITTED has two importa vt side effects:

Figure 8-3. Record locks on primary key, READ COMMITTED transaction

o The same read stateme vt ca \ retur \ differe vt rows if re-executed.

o The same write stateme 1t ca v affect differe \t rows if re-executed.

These side effects explaiy why I+ oDB does ‘ot ‘eed to use a co \siste 1t s vapshot
for reads or lock the gaps for writes: READ COMMITTED allows the tra vsactio \ to read
or write differe \t records (for committed cha vges) at differe vt times. (“MVCC ad
the U~do Logs™ o page 276 defies consistent snapshot.) Carefully co vsider these
side effects with respect to your applicatio \. If you are certai they will ‘ot cause
a tra \sactio v to read, write, or retur v ivcorrect data, the v READ COMMITTED reduces
locks a \d u vdo logs, which helps improve performa vce.

Gap Locks

Gap locks are purely prohibitive: they preve vt other tra vsactio \s from i \serti \g rows
ito the gap. That’s all they do.

Multiple tra vsactio s ca lock the same gap because all gaps locks are compatible
with other gap locks. But sice gap locks preve 1t other tra vsactio vs from iserti g
rows ivto the gap, o\ly ove travsactioy cay ivsert rows ivto a gap when it’s the
oy trasactio v lockivg the gap. Two or more locks o the same gap preve vt all
tra vsactio s from i \serti \g rows i ‘to the gap.

The purpose of a gap lock is arrow: preve 1t other tra vsactio \s from i serti \g rows
ivto the gap. But the creatio v of a gap lock is wide: a vy query that accesses the gap.
Readi vg vothi g ca v create a gap lock that blocks i \serti \g rows:

BEGIN;
SELECT * FROM elem WHERE id = 3 FOR SHARE;

266 | Chapter 8: Transactions



SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM  performance_schema.data_locks
WHERE object_name = 'elem';

Fommmm e Fommmm e R Hommmmmm—aeea Fommm e +
| index_name | lock_type | lock_mode | lock_status | lock_data |
Fommmm e Fommmm e o Hommmmm e R R +
| NULL | TABLE | IS | GRANTED | NULL

| PRIMARY | RECORD | S,GAP | GRANTED | 5 |
Fommmm e Fommmmea dommmm e Hommmmm e o +

Prima facie, that SELECT seems i vocuous: a SELECT i\ REPEATABLE READ uses a
co siste 1t s vapshot, a\d FOR SHARE o \ly creates shared locks, so it wo ¥t block other
reads. More importa tly, the SELECT does vt match a vy rows: table elem has primary
key values 2 a\d 5, ‘ot 3. No rows, ‘o locks—right? Wro g. By accessi \g the gap with
READ REPEATABLE a ‘d SELECT...FOR SHARE, you summo \ a lo e gap lock: Figure 8-4.

Figure 8-4. Lone gap lock

I call it a lone gap lock because it does vt accompa vy a vext-key lock or iisert
ivtetio v lock; it staxds alove. All gap locks—shared or exclusive—preve 1t other
tra vsactio s from iserti \g rows ito the gap. That iy vocuous SELECT stateme 1t is
actually a v ivsidious INSERT blocker. The larger the gap, the larger the block, which
the vext sectio v illustrates with a seco \dary i vdex.

The easy creatio v of gap locks by avy access to the gap is part of the aswer to
the ivtrigui vg questio v i v “Record a vd Next-Key Locks” o\ page 262: why lock the
supremum pseudo-record, which includes all primary key values greater tha v 5, whe
the table co \ditio v excludes primary key values greater tha \ 5? First, let me dial the
ivtrigue to maximum. Here’s the origi val query a \d its data locks:

BEGIN;
UPDATE elem SET c='' WHERE id BETWEEN 2 AND 5;

dommmmmeeaa e LT TP LR T R DT T TP +
| index_name | lock_type | lock_mode | lock_status | lock_data |
R B R T R D R T +
| NULL | TABLE | IX | GRANTED | NULL |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 |
| PRIMARY | RECORD | X | GRANTED | supremum pseudo-record |
| PRIMARY | RECORD | X | GRANTED | 5 |
dommmmeaaaas domemminaaas doeemmeeiiaaiaan KSR deeemeaaeaseeaiaaceaaaas +
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Now, here’s the same query but with a v IN clause i vstead of a BETWEEN clause:

BEGIN;
UPDATE elem SET c='' WHERE id IN (2, 5);

e oemmeeaaeas domemeeeaaaaas ommeeeaaans ocemeeaaaas +
| index_name | lock_type | lock_mode | lock_status | lock_data |
ommmemeeeaa LT LT TP ommmmmeeaa LT +
| NULL | TABLE | IX | GRANTED | NULL |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 5 |
R P D R R T B +

Both trasactio xs are REPEATABLE READ, a‘d both queries have the exact same
EXPLAIN pla v: ra vge access o \ primary key. But the vew query acquires record locks
oly o the matchi g rows. What is this magic? Figure 8-5 shows what’s happe i \g
for each query.

Infimum
Infimum Supremum

Figure 8-5. Range access for BETWEEN versus IN, REPEATABLE READ transaction

BETWEEN 2AND 5

Row access for BETWEEN happe s as you might expect: from 2 to 5 ad everythi g
betwee . I v simplistic terms, the seque vce of row access for BETWEEN is:

Read row at i vdex value 2
Row matches: record lock
Next i vdex value: 5
Traverse the gap from 2 to 5
Read row at i \dex value 5

Row matches: vext-key lock

NS s e

Next i vdex value: supremum
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8. Traverse the gap from 5 to supremum
9. End of the i vdex: vext-key lock

But the seque ‘ce of row access for IN is much simpler:

1. Read row atidex value 2
2. Row matches: record lock
3. Read row at i \dex value 5

4, Row matches: record lock

Despite havi vg the exact same EXPLAIN pla v a \d matchi vg the same rows, the quer-
ies access rows differe vtly. The origi val query (BETWEEN) accesses the gaps; therefore,
it uses vext-key locks to lock the gaps. The vew query (IN) does ‘ot access the gaps;
therefore, it uses record locks. But make vo mistake: the IN clause does ‘ot preclude
gap lockig. If the ew query table covditiovis IN (2, 3, 5), that accesses the gap
betwee ' value 2 a\d 5 a \d causes a gap lock (ot a vext-key lock):

BEGIN;
UPDATE elem SET c='' WHERE id IN (2, 3, 5);

B R B R R B +
| index_name | lock_type | lock_mode | lock_status | lock_data |
R L B T B R B +
| NULL | TABLE | IX | GRANTED | NULL |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 5 |
| PRIMARY | RECORD | X,GAP | GRANTED | 5 |
B B B R B +

You have a love gap lock: X,GAP. But rotice: there is ‘o ‘ext-key lock o+ the
supremum pseudo-record because IN (2, 3, 5) does ‘ot access that gap. Mid
the gap.

Gap locki vg is easy to disable by usi \g READ COMMITTED. A READ COMMITTED tra \sac-
tio v does vt veed gap locks (or vext-key locks) because records i\ the gap are allowed
to chage, a \d each query accesses the latest latest cha \ges (committed rows) whe v it
executes. Eve 1 the lo ve gap lock summo ved by SELECT * FROM elem WHERE id = 3
FOR SHARE is quashed by READ COMMITTED.

Secondary Indexes

Seco vdary i+dexes itroduce pote vtially wide-ra \gi \g co vseque ces with respect to
row locki vg, especially ‘o vuvique idexes. Recall that simplified table elem (Exam-
ple 8-1) has a vo vuique seco vdary ivdex o\ colum v a. With that i\ mid, let’s see
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how the followi g UPDATE iy a REPEATABLE READ tra sactio v locks records o the
seco \dary i vdex a \d the primary key:

BEGIN;
UPDATE elem SET c='' WHERE a BETWEEN 'Ar' AND 'Au';

SELECT  index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks

WHERE object_name = 'elem'

ORDER BY 1index_name;

B B B R R R B e TR PP +
| index_name | lock_type | lock_mode | lock_status | lock_data |
B B B e R R B LR TP PP P +
| NULL | TABLE | IX | GRANTED | NULL |
| a | RECORD | X | GRANTED | supremum pseudo-record |
| a | RECORD | X | GRANTED | 'Au', 2 |
| a | RECORD | X | GRANTED | 'Ar', 5 |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 5 |
B e R B T B R D LR LT PP +

Figure 8-6 illustrates those six records locks: four o  the seco \dary i vdex a \d two o
the primary key.

Record lock Record lock

Infimum Supremum

Infimum

Next-key lock Next-key lock Next-key lock

Figure 8-6. Next-key locks on secondary index, REPEATABLE READ transaction

The UPDATE o ly matches two rows, but it locks the e vtire seco vdary i+dex, which
preve vts ivsertivg a vy values. The locks o v the seco \dary i vdex are similar to those
i+ Figure 8-2. But ‘ow there is a ‘ext-key lock o the first record i+ the seco vdary
ivdex record: tuple ('Ar', 5), where 5 is the correspo \di\g primary key value.
This vext-key lock isolates the ra vge from vew duplicate “Ar” values. For example, it
preve \ts iserti vg the tuple ('Ar', 1), which sorts before ('Ar', 5).
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Normally, I+voDB does 1ot lock a e tire seco vdary ivdex. That happe s i+ these
examples o \ly because there are o1ly two ivdex records (i both the primary key
ad the vo vuvique seco \dary i \dex). But recall “Extreme Selectivity” o v page 86: the
lower the selectivity, the larger the gaps. As a  extreme example, if a 10 wu vique i \dex
has 5 uique values eve \ly distributed over 100,000 rows, that is 20,000 records per
row (100,000 rows / 5 cardi vality), or 20,000 records per gap.

The lower the i vdex selectivity, the larger the record gaps.

READ COMMITTED avoids gap locki g, eve v for ‘o vuvique seco vdary i vdexes because
0 \ly matchi g rows are locked with record locks. But lets ‘ot make it too easy o
ourselves; let’s keep exami vi vg I110DB data locks o0 v o vuique seco \dary i vdexes
for differe vt ki vds of data cha vges.

At the e d of the previous sectioy, chagi\g the BETWEEN clause to ay IN clause
averted gap locki \g, but that does ‘ot work with a ‘o vuvique idex. I v fact, I v voDB
adds a gap lock i + this case:

BEGIN;
UPDATE elem SET c='' WHERE a IN ('Ar', 'Au');

SELECT  index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks
WHERE object_name = 'elem'

ORDER BY 1index_name;

B B B T
| index_name | lock_type | lock_mode

B R B R T
| a | RECORD | X,GAP

I removed the origi val data locks from the output (theyre ide ‘tical) to highlight the
vew gap lock o tuple ('Au', 2). Strictly speaki g, this gap lock is redu \da vt with
the vext-key lock o the same tuple, but it does ‘ot result i ivcorrect lockig or
data access. Therefore, just let it be ad vever forget: I+ v0oDB is full of wo ders a\d
mysteries. A \d what would life be without a few of those?

It's importa \t to exami ‘e data locks because I+ voDB is full of surprises. Although
this sectio v is detailed a \d meticulous, it’s barely below the surface—I v voDB locki \g
is deep, ad i+ the depths hide secrets. For example, what data locks might I+voDB
require if “Au” is cha vged to “Go”? Let’s exami ve the data locks of that cha vge:
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BEGIN;
UPDATE elem SET a = 'Go' WHERE a = 'Au';

R Fommmm e Fommmm s Fommmm e LT +
| index_name | lock_type | lock_mode | lock_status | lock_data

L Fommmm e R Fommmm e R LT T TR +
| NULL | TABLE | IX | GRANTED | NULL |
| a | RECORD | X | GRANTED | supremum pseudo-record |
| a | RECORD | X | GRANTED | 'Au', 2 |
| a | RECORD | X,GAP | GRANTED | 'Go', 2 |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 |
R P T R R R R R TP +

Figure 8-7 visualizes those four data locks.

Record lock

Gl ] e

_________ A T

Next-key lock Gap ? Next-key lock

Figure 8-7. Update nonunique secondary index value, REPEATABLE READ transaction

The “Au” value is go ve—cha ged to “Go”—but I voDB still holds a vext-key lock o 1
the tuple: ('Au', 2). The vew “Go” does ‘ot have record lock or vext-key lock, o \ly
a gap lock before the tuple: ('Go', 2). So what’s locki vg the vew “Go” record? Is this
some ki vd of REPEATABLE READ side effect? Let’s cha ge the tra vsactio v isolatio 1 level
a\d re-exami ve the data locks:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
BEGIN;
UPDATE elem SET a = 'Go' WHERE a = 'Au';

e Fommmm e Fommmm e Fommmm e Fommmm e +
| index_name | lock_type | lock_mode | lock_status | lock_data |
Fommmm e Fommmm e Fommmm e ommmm e Fommmm e +
| NULL | TABLE | IX | GRANTED | NULL |
| a | RECORD | X,REC_NOT_GAP | GRANTED | 'Au', 2 |
| PRIMARY | RECORD | X,REC_NOT_GAP | GRANTED | 2 I
Fommmm e Fommmm e Fommmm e Fommmm e Fommmm e +
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Switchig to READ COMMITTED disables gap lockig as expected, but where is the
lock—a vy lock—o v the ‘ew “Go” value? “Writes always lock rows,” or at least that’s
what I said at the begi v vi \g of “Row Lockivg” o \ page 260. A \d yet, I \\oDB reports
vo locks for this write...

What if I told you that I+ 10DB is so optimized that it ca v lock without locki vg? Let’s
use the ‘ext type of data lock, i1sert i vte \tio v, to stare perilously deep ito IvvoDB
locki g a \d resolve this mystery.

Insert Intention Locks

A~ insert intention lock is a special type of gap lock that mea s the tra \sactio v will
ivsert a row ivto the gap whe the gap is ‘ot locked by other tra sactiovs. Oly
gap locks block i1sert i vte vtio v locks. (Remember: gap locks iclude vext-key locks
because the latter are a combi vatio v of record lock a\d gap lock.) I sert ivte vtio
locks are compatible with (do vot block) other isert i vte tio v locks. This is impor-
ta vt for INSERT performa vce because it allows multiple tra vsactio s to i vsert differe vt
rows ito the same gap at the same time. How does I 1 voDB ha vdle duplicate keys? I
retur \ to this questio v after demo 1strati vg other facets of i sert i vte vtio v locks that
make the a yswer more clear.

Gap locks prevent INSERT. I \sert i vte vtio v locks allow INSERT.

I\sert i vte vtio v locks are special for three reaso \s:

o Isert ittetio v locks do ‘ot lock the gap because, as the term intention implies,
they represe vt a future actio : iserti \g a row when there are ‘o gap locks held
by other tra \sactio 1s.

o Isertittetio v locks are created ad reported o \ly whe 1 they co “flict with gap
locks held by other tra vsactio vs; otherwise, i vsert i vte vtio v locks are ‘ot created
or reported by the tra vsactio v i vserti vg the row.

o If avivsert ivtetio lock is created, it is used o ‘ce ad released immediately
o0 \ce gra vted; but I+ v0DB co i vues to report it u vtil the tra vsactio v is complete.

Ivasense, ivsert ivte vtio v locks are vt locks because they do vt block access. They’re
more like wait co \ditio \s that I 1 voDB uses to sig val whe v a tra sactio \ ca \ proceed
with a v INSERT. Gra \ti\g the itsert i vte vtio v lock is the sig val. But if a tra vsactio
does vt have to wait because there are 1o co vflict gap locks, the v it does vt wait, ad
you wo vt see a visert i vte vtio v lock because 10 ve was created.
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Let’s see i vsert i vte vtio v locks i v actio v. Start by locki g the gap betwee v primary key
values 2 avd 5; the, i+ a seco \d travsactio v, try to ivsert a row with primary key
value 3:

-- First transaction
BEGIN;
UPDATE elem SET c='"' WHERE id BETWEEN 2 AND 5;

-- Second transaction
BEGIN;
INSERT INTO elem VALUES (3, 'As', 'B', 'C');

B B B LR R P P R B +
| index_name | lock_type | lock_mode | lock_status | lock_data |
B B R R R PP R B +
| PRIMARY | RECORD | X,GAP,INSERT_INTENTION | WAITING | 5 |

X,GAP,INSERT_INTENTION i\ colum \ lock_mode is a v isert ite vtio v lock. It’s also
listed as X, INSERT_INTENTION (ot show ) whe v lockig ad iiserti g ito the gap
betwee ' the maximum record value a \d the supremum pseudo-record.

The first travsactiov locks the gap before primary key value 5. That gap lock
blocks the secod trasactio v from issertivg ivto the gap, so it creates av itsert
ivtetio v lock ad waits. O vce the first tra vsactio v commits (or rolls back), the gap
is ulocked, the ivsert ite vtio v lock is gra ted, ad the seco \d tra vsactio v i vserts
the row:

-- First transaction
COMMIT;

-- Second transaction
-- INSERT executes

Frmmmmm e Fommmmm e R LT TR Hommmmm e o +
| index_name | lock_type | lock_mode | lock_status | lock_data |
Fommmm e Fommmmm e oo Hommmmm e o +
| NULL | TABLE | IX | GRANTED | NULL |
| PRIMARY | RECORD | X,GAP,INSERT_INTENTION | GRANTED | 5 |
R B R R TP B LR Fommmm e +

As voted earlier, I 1 voDB co 1ti wues to report a v ivsert ite vtio v lock eve v though,
0 \ce gra vted, it is used o \ce a \d released immediately. Co seque tly, it looks like the
gap is locked, but it’s a illusio v—a ploy by I1voDB to lure us i+ deeper. You ca
prove that it’s a v illusio v by i \serti \g a vother row i+to the gap at primary key value
4; it does ‘ot block. Why does I+ oDB co vti vue to report a ivsert ite vtio v lock
that’s vot really there? Few mortals k vow, a \d it matters vot. Look past the illusio v to
see it for what it was: i+ the past, the tra vsactio \ blocked before i serti \g a row i vto
the gap.
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For complete vess a \d a segue i vto deeper aspects of I v1oDB locki g, especially with
respect to i vsert i vte vtio v locks, here is what you see whe v a v INSERT does ot block
0\ gap locks:

BEGIN;
INSERT INTO elem VALUES (9, 'As', 'B', 'C'); -- Does not block

Fommmmmeeaa e LT T Hommmmm e LT +
| index_name | lock_type | lock_mode | lock_status | lock_data |
R P Fommm D LR Fommm e +
| NULL | TABLE | IX | GRANTED | NULL |
LR B B R R B +

No record locks at all. That’s how isert i vte vtio v locks work o v the surface, but we
came here to stare perilously deep ito I1voDB locki \g, so let’s go deeper by aski g
the questio v that led us here: why is there ‘o record (or ‘ext-key) lock o+ the ‘ewly
ivserted row? This is the same mystery from the previous sectio v: o lock o  the vew
“Go” value.

This is the secret: I vvoDB has explicit a \d implicit locks a \d it o \ly reports explicit
locks.? Explicit locks exist as lock structures iy memory; therefore, I1voDB ca
report them. But implicit locks do vot exist: there is vo lock structure; therefore,
I110DB has vothi g to report.

I+ the previous example, INSERT INTO elem VALUES (9, 'As', 'B', 'C'), the
ivdex record for the vew row exists, but the row is ‘ot committed (because the
tra vsactio v has ‘ot committed). If a vother tra \sactio v attempts to lock the row, it
detects three co \ditio s:

o The row is ‘ot committed.
o The row belo \gs to a vother tra vsactio .

o The row is ‘ot explicitly locked.

The v magic happe \s: the requesti vg tra vsactio v—the tra vsactio v attempti g to lock
the record—co werts the implicit lock to a v explicit lock on behalf of the ow vivg
tra vsactio v—the tra vsactio v that created the record. Yes, that mea s o ve tra \sactio
creates a lock for aother travsactio v—but thats ‘ot the co fusig part. Sice the
requesti g trasactio creates the lock that it’s tryivg to acquire, at first glace
I1voDB seems to report that the tra vsactio v is waiti\g for a lock that it holds—the
tra sactio v is blocked o v itself. Theres a way to see through this illusio v, but we've
go ‘e too deep.

2 Tha k you to Jakub Lopuszanski for reveali vg a \d teachi \g me this secret.
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I hope that, as a v e \gi veer usi \g MySQL, you rever ‘eed to desce \d to this depth of
I+ voDB locki vg to achieve remarkable performa ce with MySQL. But I led us dow
here for two reaso vs. First, despite the illusio vs, the fu vdame vtals of I+v0DB row
locki vg with respect to tra vsactio v isolatio v levels are tractable a \d applicable. You
are ‘ow fa vtastically well prepared to hadle every commo  I11oDB row locki g
issue—a vd more. Seco \d, I 1 \0DB made me do it because I stared too deeply for too
lovg; axd whe it all blurred ivto ove, I kvew that I had falle v from the precipice
ad could vever retur \. Do vt ask why it locks the supremum pseudo-record beyo \d
the table co \ditio \ ra vge. Do vt ask why it has redu \da vt gap locks. Do vt ask why it
co werts implicit locks. Do vt ask; else the questio \s vever cease. Go 0 v; save yourself.

MVCCand the Undo Logs

I+ voDB uses multiversio v co vcurre xcy co vtrol (MVCC) ad u+do logs to accom-
plish the A, C, axd I properties of ACID. (To accomplish the D, IvvoDB uses a
tra vsactio v log—see “Tra vsactio v log” o \ page 219.) Multiversion concurrency control
mea s that chages to a row create a ‘ew versio \ of the row. MVCC is ‘ot uique
to I1voDB; its a commo v method that ma vy data stores use. Whe v a row is first
created, it’s versio v 1. Whe v it’s first updated, it’s versio v 2. The basis of MVCC is that
simple, but it quickly becomes more complex a \d i vteresti \g.

Usivg the term undo logs is a ite vtio val simplificatio v because
the full structure of u+do loggivg is complex. The term undo
logs is sufficie vtly precise to lear v what it does a \d how it affects
performa xce.

Undo logs record how to roll back chages to a previous row versio . Figure 8-8
shows a sigle row with five versio \s a\d five udo logs that allow MySQL to roll
back cha vges to previous row versio s.

That row harke \s back to “I110DB Tables Are I \dexes” o\ page 41 i+ Chapter 2: it’s
the row with primary key value 2 i\ table elem, depicted as the primary key leaf vode.
For brevity, I i vclude o \ly the primary key value (2), the row versio v (v1 through v5),
ad colum v a value (“Au” for v5); the other two colum s, b a \d c, are ot show .

Versio ' 5 (bottom right i+ Figure 8-8) is the curre t row that all vew tra sactio \s
will read, but let’s begi v at the begi v vi\g. The row is created as iro v (“Fe”): versio
1 i+ the upper left cor ver. There’s a\ udo log for versio \ 1 because INSERT creates
the first versio v of a row. The v colum v a is modified (UPDATE) to chage iro\ to
tita vium (“Ti”): versio v 2. Upo v creati vg versio v 2, MySQL also creates a v uvdo log
that records how to roll back versio v 2 cha vges, which restores versio v 1. (I v the vext
paragraph, I explai v why versio v 1 has a solid outli ve [a \d a camera ico ] but versio
2 has a dashed outlive.) The v colum a is modified to chage titavium to silver

276 | Chapter 8: Transactions



(“Ag”): versio v 3. MySQL creates a ' udo log that records how to roll back versio v
3 chages, a \d this udo log is li \ked to the previous so that MySQL ca v, if veeded,
roll back a\d restore versio v 2. Two more row updates occur: silver to Califor \ium
(“Cf”) for versio v 4, a \d Califor vium to gold (“Au”) for versio v 5.

e N

@83 Multiple versions of arow

\

r

( INSERT )4.' Viev2 Hv2<—v3]<{v3<—v4]<-[v4<l—v5] ]

Undo logs

J

L

Figure 8-8. One row with five versions and five undo logs

There are two sets of udo logs: insert undo logs for INSERT ad
update undo logs for UPDATE a \d DELETE. For simplicity, I refer o \ly
to u \do logs, which comprises both sets.

Versio v 1 has a solid outli e ad camera ico\ because a\ active trasactio ( ‘ot
show 1) holds a co ssiste 1t s vapshot at this poi vt i v the history of the database. Let me
u pack that se vte vce. I v 10DB supports four tra vsactio 1 isolatio v levels, but o \ly two
are commo \ly used: REPEATABLE READ (the default) a \d READ COMMITTED.

I+ a REPEATABLE READ tra sactio v, the first read establishes a consistent snapshot (or
snapshot for short): a virtual view of the database (all tables) at the mome ‘t whe + the
SELECT is executed. The s vapshot is held u+til the e \d of the tra vsactio v ad used
by all subseque 1t reads to access rows oly at this poit i+ the history of the data-
base. Cha \ges made by other tra vsactio \s after this poi vt are ‘ot figuratively visible
withi v the origi val tra vsactio \. Presumi g that other tra \sactio \s are modifyi \g the
database, the s vapshot of the origi val tra vsactio » becomes a v i \creasi vgly old view of
the database while the tra vsactio \ remai \s active (does ‘ot COMMIT or ROLLBACK). It’s
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like the origi val tra vsactio v is stuck i\ the 1980s a \d the o \ly musicia vs it liste s to
are Pat Be vatar, Stevie Nicks, a \d Taylor Day ve: old but still great.

Sivce versio 5 is the curret row, ‘ew trasactio \s establish a s vapshot from its
poit iy database history, which is why it has a solid outli e a\d camera ico . The
importa vt questio v is: why do versios 2, 3, axd 4 still exist whe there are ‘o
tra vsactio vs holdi g s vapshots at their respective poiits iy database history? They
exist to maitaiv the svapshot for versiov 1 because MySQL uses uxdo logs to
reco \struct old row versio s.

MySQL uses uvdo logs to recosstruct old row versioss for
s vapshots.

It's easy to recostruct Figure 8-8. First, immediately after i\sertivg the row i
Figure 8-8, start a tra \sactio v a\d establish a s vapshot o versio+ 1 of the row by
executi vg a SELECT stateme t:

BEGIN;
SELECT a FROM elem WHERE id = 2;

-- Returns row version 1: 'Fe'

Sivce there’s o COMMIT, that tra vsactio v is still active ad holdi g its s vapshot o
the e vtire database, which is simply row versio v 1 i+ this example. Let’s call this the
original transaction.

The  update the row four times to create versio \ 5:

-- autocommit enabled

UPDATE elem SET a = 'Ti' WHERE id =
UPDATE elem SET a = 'Ag' WHERE id
UPDATE elem SET a = 'Cf' WHERE id
UPDATE elem SET a = 'Au' WHERE id =

B

B

N N NN

autocommit is e vabled by default i+ MySQL, which is why the first (active) tra \sac-
tio v veeds a v explicit BEGIN but the four UPDATE stateme ts do vot. Now MySQL is i\
a state represe ‘ted by Figure 8-8.

If the origial tra ysactio v executes SELECT a FROM elem WHERE id = 2 agaiv, it
reads versio\ 5 (that’s ‘ot a typo) but (figuratively) sees that that versio v is ‘ewer
tha v the poi‘t i+ database history established by its s vapshot. Co seque tly, MySQL
uses the udo logs to roll back the row ad reco struct versio v 1, which is co vsis-
te vt with the s vapshot established by the first SELECT stateme vt. Whe v the origi val
tra vsactio v commits, a \d presumitg ‘o other active travsactio s are holdi+g old
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s vapshots, the v MySQL ca 1 purge all the related u vdo logs because vew tra vsactio \s
always begi+ with the curre vt row versiox. Whe trasactio \s are workig well,
the whole process is immaterial to performa ce. But you already k vow: problematic
tra vsactio vs ca\ ‘egatively affect the performa \ce of the e tire process. “Commo
Problems” o 1 page 282 looks at how a \d why; but u +til the v, there are more details to
k vow about MVCC a \d the u vdo logs.

I+ a READ COMMITTED travsactio v, each read establishes a vew svapshot. As a result,
each read accesses the latest committed row versio v, he \ce READ COMMITTED. Sice
s vapshots are used, u \do logs are still created, but this is almost ‘ever a v issue with
READ COMMITTED because each s vapshot is held o \ly for the duratio v of the read. If a
read takes a very lo vg time and there’s sig vifica 1t write throughput o v the database,
you might votice the accrual of redo logs (as a~ ixcrease i+ history list le vgth).
Otherwise, READ COMMITTED is virtually free of u \do loggi\g.

Shapshots o\ly affect reads (SELECT)—they’re vever used for writes. Writes always
secretly read curre vt rows, eve v if the tra vsactio v ca vvot “see” them with SELECT.
This double visio v averts chaos. For example, imagive that aother tra vsactio
ivserts a ew row with primary key value 11. If the origi+al trasactio v tries to
ivsert a row with the same primary key value, MySQL will retur v a duplicate key
value because the primary key value exists eve v though the tra vsactio v ca ot see
it with SELECT. Moreover, s vapshots are very co \siste \t: i v a tra vsactio v, there is ‘o
way to adva ce the s vapshot to a vewer poit i database history. If the applicatio
executi g the trasactioy veeds a ‘ewer svapshot, it must commit the tra vsactio
avd begiva ew o e to establish a vew s vapshot.

Writes ge verate udo logs that are kept u vtil the e \d of the tra vsactio v—regardless
of tra vsactio v isolatio v level. Util vow, I have focused o v udo logs with respect to
reco vstructi vg old row versio 1s for s vapshots, but they are also used o \ ROLLBACK to
revert cha vges made by writes.

O ve last thivg to kow about MVCC: udo logs are saved i+ the I1voDB buffer
pool. You might recall from “Page flushig” o page 212 that “Misc pages co tai
miscella veous i vter val data ot covered i this book” Misc pages i vclude u vdo logs
(axd may more ivteral data structures). Sivce urdo logs reside i+ buffer pool
pages, they use memory a \d are periodically flushed to disk.

There are a few system variables a \d metrics related to the udo logs; as a v e \gi veer
usivg MySQL, you only reed to kvow axd moitor oe: HLL, first i vtroduced i
“History list le vgth (metric)” o\ page 205 ad explai ved further i+ the vext sectio .
Otherwise, MVCC ad the u \do logs work flawlessly as lo vg as the applicatio v avoids
all “Commo \ Problems” o v page 282. O ve such problem is aba \do ved tra vsactio s,
so let’s avoid that by committi vg the origi val tra vsactio :

COMMIT;
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Goodbye, co rsiste 1t s vapshot. Goodbye, u vdo logs. Hello, history list le vgth...

History List Length

History list le gth (HLL) gauges the amout of old row versio s ‘ot purged or
flushed.

Historically (vo puv ivteded), HLL has bee difficult to defie because the full
structure of u vdo loggi \g is complex:

Rollback segments
L— Undo slots
L— Undo log segments
L— Undo logs
L— uUndo log records

That complexity obscures a vy simple relatio vship betwee v udo loggi vg axd HLL,
ixcludi g the u it of measureme vt. The simplest fu \ctio val (although vot tech vically
correct) u it of HLL is changes. If the HLL value is 10,000, you ca  read that as 10,000
cha\ges. By udersta \di\g “MVCC ad the Udo Logs” o 1 page 276, you k vow that
chages are kept (ot purged) i+ memory (ot flushed) i+ order to reco struct old
row versio vs. Therefore, it's accurate e vough to say that HLL gauges the amou t of
old row versio s ‘ot purged or flushed.

HLL greater tha x 100,000 is a problem—do ot ig vore it. Eve 1 though the true tech-
vical vature of HLL is elusive—eve v for MySQL experts—its useful vess is clear a\d
udeviable: HLL is the harbiger of tra vsactio v-related problems. Always mo vitor
HLL (see “History list le vgth (metric)” o v page 205), alert whe v it’s too high (greater
thav 100,000), avd fix the problem, which is u+doubtedly o+e of the commo 1
problems discussed i the ext sectio .

Although I cautio v agai \st alerti g o thresholds i+ “Wild Goose Chase (Thresh-
olds)” o \ page 225, HLL is a  exceptio \: alerti \g whe v HLL is greater tha + 100,000 is
reliable a \d actio vable.

Alert o v HLL greater tha 1 100,000.

I theory, HLL has a maximum value, but MySQL performa ce is sure to crumble
lo \g before that value.? For example, just a few weeks ago as I write this, a v i \sta \ce

3 1 storage/innobase/trx/trxOpurge.cc of the MySQL 8.0 source code, a debug block logs a war i \g whe v HLL is
greater tha 1 2,000,000.
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of MySQL i the cloud crashed at HLL 200,000, which took a lo vg-ru v vi vg tra \sac-
tio + four hours to amass before crashi \g MySQL a \d causi vg a two-hour outage.

Sice undo loggi g is ivcredibly efficie \t, there is huge leeway i+ HLL with respect
to the value at which MySQL performa ce will degrade or—worst case—crash. I
have see v MySQL crash at 200,000, but I have also see v it ru v just five well beyo \d
200,000. O e thivg is certai v: if HLL icreases u vchecked, it will cause a problem:
either voticeably slow performa ce, or MySQL will crash.

I wat you to be the first e vgi veer i+ history to use MySQL ad +ever have a HLL
problem. That’s a lofty goal, but I e vcourage you to shoot for the stars. To that e d,
I ivte vtiovally flooded a MySQL ista vce with UPDATE stateme vts to drive up the
HLL—to amass thousa \ds of old row versio \s. Table 8-2 shows the effect of HLL o
query respo ‘se time for a si \gle row poi ‘t-select: SELECT * FROM elem WHERE id=5
ivanactive REPEATABLE READ tra vsactio \.

Table 8-2. Effect of HLL on query response time

HLL  Response time (ms) Baseline increase (%)

0 0.200 ms

495 0.612ms 206%
1,089 1.012ms 406%
2,079  1.841ms 821%
5056  3.673ms 1,737%
11,546  8.527 ms 4,164%

This example does not mea that HLL will i \crease query respo \se time as show v;
it oly proves that HLL ca icrease query respo se time. From “MVCC ad the
Undo Logs” o page 276 ad this sectio \ you k vow why: the SELECT i+ the active
REPEATABLE READ trasactio \ has a co ssiste vt svapshot o row 5 (id=5), but the
UPDATE stateme vts o \ that row ge verate ‘ew row versio \s. Each time the SELECT is
executed, it slogs through the udo logs to reco \struct the origi val row versio \ for
the co ysiste 1t s vapshot, a \d that slog i \creases query respo se time.

I \creasi g query respo 1se time is proof e vough, but we're professio vals, so let’s prove
it irrefutably. At the e \d of “MVCC a\d the Udo Logs” o page 276, I me vtio v that
udo logs are stored as pages i\ the I 1voDB buffer pool. As a result, the SELECT
should access a ivordivate vumber of pages. To prove this, I use Percova Server
because its e vha ced slow query log prits the wumber of disti \ct pages accessed
whe 1 co vfigured with log_slow_verbosity = innodb:

# Query_time: 0.008527
# InnoDB_pages_distinct: 366

History ListLength | 281



Normally, the SELECT i+ this example accesses a si‘gle page to look up o e row by
primary key. But whe \ the co \siste \t svapshot for the SELECT is old (a\d HLL is
large), I 1 voDB slogs through hu vdreds of u vdo log pages to reco vstruct the old row.

MVCC, udo logs, axd HLL are all vormal a \d good trade-offs: a little performa \ce
for a lot of cocurrecy. It's o\ly whey HLL is ivordiately large—greater tha
100,000-that you should take actio 1 to fix the cause, which is almost u viversally o e
of the followi \g commo  problems.

Common Problems

Tra vsactio v problems arise from the queries that co istitute the trasactio\, how
quickly the applicatio v executes those queries, a \d how quickly the applicatio v com-
mits the tra vsactio . Although a si \gle query with autocommit e vabled is tech vically
a tra vsactio v that ca \ cause the followi \g problems (except for “Aba vdo ved Tra vsac-
tio\s” o\ page 285), the mai focus is multistateme vt tra vsactio \s that begi v with
BEGIN (or START TRANSACTION), execute several queries, ad ed with COMMIT (or
ROLLBACK). The performa ce impact of a multistateme vt tra vsactio v ca 1 be greater
tha v the sum of its parts—the queries that co \stitute the tra vsactio v—because locks
axd u+do logs are held util the trasactio v commits (or rolls back). Remember:
MySQL is very patie t—almost too patie \t. If the applicatio v does ‘ot commit a
tra vsactio v, MySQL will wait eve v uvtil the co vseque vces of that active tra vsactio
ri g its death k vell.

Fortu vately, ‘o ve of these problems are difficult to detect or fix. HLL is the harbi vger
of most tra vsactio v problems, which is why you should always mo vitor it: see “His-
tory list le vgth (metric)” o v page 205 a \d “History List Le vgth” o v page 280. To keep
the details of each problem u \cluttered, I explai v how to fi\d a \d report problematic
tra vsactio \s i Y “Reporti \g” o v page 286.

Large Transactions (Transaction Size)

A large travsactio' modifies av ivordivate vumber of rows. How ma vy rows is
inordinate? That is relative, but e \gi veers always k vow whe 1 they see it. For example,
if you see that a tra vsactio v has modified 250,000 rows a \d you k vow that there are
0y 500,000 rows i+ the whole database, that’s i vordi vate. (Or at the very least, it’s a
suspicious access patter v: see “Result Set” o \ page 139.)

Ge verally, transaction size refers to the vumber of rows modified:
the more rows modified, the larger the travsactio . For MySQL
Group Replicatio v, transaction size has a slightly differe vt mea vi g:
see “Group Replicatio  Limitatio vs” i v the MySQL ma wual.
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If the tra vsactio v is ru v vi g i the default isolatio v level, REPEATABLE READ, the v it’s
safe to presume that it has locked a greater vumber of records tha v modified rows
because of gap locki vg—as detailed i + “Row Locki vg” o \ page 260. If the tra sactio
is ruvvivg iy READ COMMITTED isolatio \level, the v it’s o \ly acquiri g record locks for
each modified row. Either way, a large tra vsactio \ is a large source of lock co vte vtio v
that ca v severely degrade write throughput a \d respo vse time.

Do vt forget replicatiov (see Chapter 7): large travsactios are a maiy cause of
replicatio v lag (see “Tra vsactio v Throughput” o v page 240) a\d decrease the effec-
tive vess of multithreaded replicatio v (see “Reduci vg Lag: Multithreaded Replicatio v’
0\ page 246).

Large trasactiovs cay be voticeably slow to commit (or roll back) as previously
addressed iy “MVCC ad the Uxdo Logs” o \ page 276, “Bivary Log Eve \ts” o \ page
237, ad Figure 6-7. It's quick ad easy to modify rows because the data cha ges
happe v i v memory, but commit is the recko vi \g whe v MySQL does sig vifica vt work
to persist a \d replicate the data cha vges.

Smaller tra vsactio 1s are better. How small? That, too, is relative a \d complicated to
calibrate because, as I just voted, tra vsactio \s cause a recko i g o\ commit, which
mea s you have to calibrate several subsystems. (I's eve v more complicated whe v
you factor i+ the cloud, which teds to limit ad tweak little details, like IOPS.)
Except for bulk operatio vs which require calibrati g a batch size (see “Batch Size”
0\ page 115), calibrati vg tra vsactio \ size is vot commo \ly veeded because, although
the problem is commo v, it’s typically a o ve-off problem: foud, fixed, ad does vt
reoccur (for awhile, at least). “Reportig” o\ page 286 shows you how to fid large
tra vsactio vs.

The fix is to fid the query (or queries) i+ the trasactio v that modify too ma vy
rows, a \d cha vge them to modify fewer rows. But that depe \ds e ‘tirely o 1 the query,
its purpose i+ the applicatio v, a \d why it’s modifyi \g too ma vy rows. Whatever the
reaso v, Chapters 1-4 equip you to u vdersta \d a \d fix the query.

Fivally, if you closely follow the pri \ciple of least data (see “Pri ciple of Least Data”
0\ page 97), tra vsactio \ size may ‘ever be a problem.

Long-Running Transactions

A log-ruvving travsactio v takes too lo g to complete (commit or roll back). How
lo \g is too long? That depe \ds:

o Lo vger tha v acceptable for the applicatio \ or users
» Lo g eough to cause problems (likely co vte ‘tio 1) with other tra \sactio \s

» Lo g e ough to cause a history list le vgth alert
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Unless youre proactively addressig performa ce, the secod ad third poi ts are
more likely to bri vg a lo vg-ru v vi vg tra vsactio \ to your atte vtio .

Presumig that the applicatio v is ¥t waiti \g betwee v queries (which is the rext
problem: “Stalled Tra vsactio \s” o page 284), lo vg-ruvviyg trasactio \s have two
causes:

o The queries that co 1stitute the tra vsactio v are too slow.

o The applicatio \ executes too ma vy queries i v the tra vsactio .

You fix the first cause with the tech viques from Chapters 1-5. Remember: u vdo logs
ad row locks for all queries i+ a tra vsactio v are held u +til the tra vsactio v commits.
O the upside, this mea s that optimizi vg slow queries to fix a lo \g-ru v vi \g tra \sac-
tio v has collateral be vefits: the i1dividual queries are faster and the trasactio v as a
whole is faster, which ca v ixcrease overall tra vsactio v throughput. The dow side is
that a lo vg-ru i g tra\sactio v might be quick e vough for the applicatio v but too
lo \g for other tra vsactio vs. For example, let’s say that a tra vsactio v takes o ‘e seco \d
to execute, which is fi ve for the applicatio v, but duri \g that seco \d it holds row locks
eeded by a vother, faster tra vsactio . This creates a tricky problem to debug because
the fast tra vsactio v might ru v slowly i+ productio v but quickly i+ isolatio v whe
avalyzed i+ the laboratory (o v your laptop, for example). The differe \ce, of course,
is that the cocurrecy ad co vte vtio v of trasactio s i+ productio v is largely or
completely abse 1t i \ the lab. I + this case, you must debug data lock co 1te vtio v, which
is vot easy for several reaso 1s, the least of which is that data locks are fleeti vg. See the
vote followi vg Table 8-1, a \d talk with your DBA or a MySQL expert.

You fix the secod cause by modifyi g the applicatio to execute fewer queries
iv the travsactio v. This occurs whe \ the applicatio v attempts a bulk operatio v or
programmatically ge verates queries i vside a tra vsactio v without limiti vg the vumber
of queries. Either way, the fix is to reduce or limit the vumber of queries i the
trasactio\. Evev if the trasactiov is vt loyg-ruvvivg, this is a best practice to
e \sure that it wo vt accide vtally become lo vg-ru v vi vg. For example, maybe whe 1 the
applicatio v is vew it oly ivserts 5 rows per travsactio v; but years later, whe v the
applicatio v has millio vs of users, it's iserti g 500 rows per trasactio \ because a
limit was vt built i v from the begi v i g.

“Reportig” o \ page 286 shows you how to fi vd lo vg-ru v vi vg tra vsactio s.

Stalled Transactions

A stalled travsactio v is waitig too log after BEGIN, betwee v queries, or before
COMMIT. Stalled tra vsactio 1s are likely to be lo vg-ru v vi \g tra vsactio s, but the causes
are differe vt: time waiti g betwee v queries (stalled) rather tha\ time waitig for
queries (lo vg-ru v vig).
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I\ practice, a stalled tra vsactio v appears as a lo \g-ru v vi \g tra \sac-
tio v because the e \d result is the same: slow tra vsactio v respo \se
time. Avalyzivg the trassactio is required to determie if the
respo se time is due to stalls or slow queries. Abse 1t that a valysis,
egiveers (ad MySQL experts) ofte v refer to a vy slow tra vsactio v
aslog-ruvving.

Gra vted, there’s always some wait time betwee \ queries (at least due to ‘etwork
late \cy required to se \d queries a \d receive result sets), but as i\ the previous two
problems, you'll k vow a stalled tra vsactio » whe \ you see it. To put it figuratively: the
whole is much greater tha v the sum of its parts. To put it tech vically: the tra sactio
respo vse time from BEGIN to COMMIT is much greater thay the sum of the query
respo \se times.

Sivce stalled travsactio \s are waitivg between queries (ivcludivg after BEGIN ad
before COMMIT), MySQL is ‘ot culpable: the waits are caused by the applicatio v, axd
the reaso s are limitless. A commo  reaso \ is doig time-co sumi vg applicatio 1
logic while a trasactio is active, istead of before or after the trasactio+. But
sometimes this ca vt be avoided; co vsider the followi vg example:

BEGIN;
SELECT <row>

-- Time-consuming application logic based on the row

UPDATE <row>
COMMIT;

The solutio v i+ this case depe \ds o+ the applicatio \ logic. I'd begi+ by aski g the
most fu vdame vtal questio v: do these queries ‘eed to be a tra vsactio ¢ Ca the row
chage after readi g ad before updatig? If the row chages, does that break the
logic? If vothi\g else, ca~ the READ COMMITTED isolatio v level be used to disable gap
locki vg? Egiveers are clever axd fivd ways to fix cases like this; the first step is
fi\di \g them, which is covered i v+ “Reporti \g” o \ page 286.

Abandoned Transactions

A abado ved trasactio v is a v active tra vsactio \ without a \ active clie \t co v vec-
tio \. There are two mai \ causes of aba \do \ed tra sactio 1s:

o Applicatio v co " vectio \ leaks
« Half-closed co v vectio \s
A~ applicatio v bug ca v leak database co v vectio vs (like leaki \g memory or threads):

the code-level co vvectio v object goes out of scope, so it's o loger used, but it’s
still refere vced by other code, so it's teither closed vor freed (probably resulti g
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iva small memory leak, too). Apart from applicatio v-level profili vg, debuggi g, or
leak detectio v to verify this bug directly, you ca verify it i+directly if restarti g
the applicatio v fixes (closes) the abado ved tra sactio xs. I+ MySQL, you ca see
what are likely to be aba vdo ved tra vsactio \s (as show v i+ “Reporti g’ o v page 286),
but you ca ot verify this bug i1 MySQL because MySQL does vt kow that the
co v rectio v has bee v aba vdo ved.

Half-closed co v vectio s do ‘ot happe \ u\der ‘ormal circumsta \ces because MySQL
rolls back a tra vsactio v whe v the clie vt co v vectio v closes for a vy reaso \ detectable
by MySQL or the operati \g system. But problems outside MySQL a \d the operati \g
system ca cause the cliet side of the covrectiov to close without closivg the
MySQL side—that’s why its called a half-closed co vectio . MySQL is especially
pro e to half-closed co vvectio vs because its ‘etwork protocol is almost e stirely
comma d ad respo se: the clie vt se \ds comma \ds, a \d MySQL se \ds a respo 1se.
(If you're curious, clie vts se \d a query to MySQL with a COM_QUERY packet.) Betwee v
comma d ad respo yse, the clie vt axd MySQL observe total sile \ce— ‘ot a siygle
byte is tra vsmitted. As peaceful as that sou \ds, it mea s that half-closed co " vectio \s
go uvoticed u il watt_timeout seco vds have passed, which defaults to 28,800 (8
hours).

Whether a applicatio v bug causig co v 1ectio v leaks or a half-closed co v ectio
mistake v\ for meditative vetwork sile \ce, the e \d result is the same if either occurs
while a tra vsactio v is active ( Yot committed): the tra vsactio v stays active. A vy co 1sis-
te \t svapshot or data locks stay active, too, because MySQL does vt k vow that the
tra vsactio \ has bee v aba \do ved.

Truth be told, MySQL likes the sile vce; as do I. But were paid to work, so let’s
exami ve how to fi \d a \d report all four tra vsactio \ problems.

Reporting

The MySQL Performa vce Schema makes detailed tra vsactio v reporti vg possible; but
at the time of this writig, there are ‘o tools that make it easy. I wish I could
tell you to use existi \g ope \ source tools, but there are vove. The followig SQL
stateme ts are the state of the art. Whe v vew art is developed, I'll let you k vow at
MySQL Tra vsactio v Reportig. Until the v, let’s get the job do ‘e the old-fashio ved
way: copy-paste.

Active Transactions: Latest

The SQL stateme vt i v Example 8-2 reports the latest query for all tra vsactio \s active
lovger thav 1 secord. This report aswers the questio\: which trasactio s are
lo vg-ru v vi vg a \d what are they doi \g right vow?
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Example 8-2. Report latest query for transactions active longer than 1 second

SELECT
ROUND(trx.timer_wait/1000000000000,3) AS trx_runtime,
trx.thread_1id AS thread_id,
trx.event_id AS trx_event_id,
trx.isolation_level,
trx.autocommit,
stm.current_schema AS db,
stm.sql_text AS query,
stm.rows_examined AS rows_examined,
stm.rows_affected AS rows_affected,
stm.rows_sent AS rows_sent,
IF(stm.end_event_id IS NULL, 'running', 'done') AS exec_state,
ROUND(stm. timer_wait/1000000000000,3) AS exec_time
FROM
performance_schema.events_transactions_current trx
JOIN performance_schema.events_statements_current stm USING (thread_id)
WHERE
trx.state = "ACTIVE'
AND trx.timer_wailt > 1000000000000 * 1\G

To i \crease the time, cha ge the 1 before \G. Performa \ce Schema timers use picosec-
0 \ds, so 1000000000000 * 1 is 0 ‘e seco \d.

The output of Example 8-2 resembles the followi \g:

khkkkkhkkhkhhkhhkhhkhhkhhkhhkhhkhhdk 1' row *hkkhkkkkhkhkkhhkhhkhhkdhkdhhhkhrdkkx
trx_runtime: 20729.094
thread_id: 60
trx_event_id: 1137
isolation_level: REPEATABLE READ
autocommit: NO
db: test
query: SELECT * FROM elem
rows_examined: 10
rows_affected: 0
rows_sent: 10
exec_state: done
exec_time: 0.038

The followi g is a bit more i vformatio v about the fields (colum s) of Example 8-2:

trx_runtime
How lo \g the tra vsactio v has bee v ru v vi g (active) i seco vds with milliseco \d
precisio . (I forgot about this tra vsactio v, which is why it’s bee v active for almost
six hours i 1 the example.)

thread_1id
The thread ID of the clie vt co v vectio v that is executi vg the tra vsactio v. This is
used i+ “Active Tra vsactio v: History” o\ page 291. Performa vce Schema eve \ts
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use thread IDs avd evet IDs to livk data to cliet covrectiovs ard eve s,
respectively. Thread IDs are differe vt tha  process IDs commo 1 to other parts of
MySQL.

trx_event_1id
The tra vsactio v eve vt ID. This is used i+ “Active Tra vsactio v: History” o v page
291.

isolation_level
Tra vsactio v isolatio \ level: READ REPEATABLE or READ COMMITTED. (The other
isolatio  levels, SERIALIZABLE a \d READ UNCOMMITTED, are rarely used; if you see
them, it might be a v applicatio v bug.) Recall “Row Lockig” o+ page 260: the
tra vsactio v isolatio \ level affects row locki vg a \d whether or ‘ot SELECT uses a
co vsiste 1t s vapshot.

autocommit
If YES, the v autocommit is e vabled ad it’s a si\gle-stateme vt tra vsactio v. If NO,
the v the trasactio \ was started with BEGIN (or START TRANSACTION) ad it’s
most likely a multistateme vt tra vsactio .

db
Curre 't database of query. The curre \t database mea s USE db. The query ca
access other databases with database-qualified table vames, such as db. table.

query
The latest query either executed by or executi vg i + the tra vsactio \. If exec_state
= running, the v query is curre ‘tly executi vg i \ the tra vsactio \. If exec_state =
done, the v query is the last query that the tra vsactio v executed. I v both cases the
tra vsactio v is active ( vot committed), but i v the latter case it’s idle with respect to
executi \g a query.

rows_examined
Total umber of rows examied by query. This does ‘ot iclude past queries
executed i+ the tra vsactio .

rows_examined
Total wumber of rows modified by query. This does “ot ivclude past queries
executed i+ the tra vsactio .

rows_sent
Total wumber of rows set (result set) by query. This does ‘ot iclude past
queries executed i v the tra vsactio \.
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exec_state
If done, the » the tra vsactio v is idle with respect to executi g a query, a\d query
was the last query that it executed. If running, the\ traisactio is curre vtly
executi \g query. I v both cases, the tra vsactio  is active ( ‘ot committed).

exec_time
Executio \ time of query i seco \ds (with milliseco \d precisio v).

The Performa vce Schema tables events_transactions_current a\d events_state
ments_current co tai y more fields, but this report selects o \ly the esse tial fields.

This report is a true workhorse because it ca \ reveal all four “Commo + Problems” o
page 282:

Large transactions
Look at rows_affected (row modified) a \d rows_sent to see the tra \sactio \ size
(i terms of rows). Experime ‘t with addi g a co \ditio  like trx.rows_affected
> 1000.

Long-running transactions
Adjust the 1 at the e \d of co\ditio v trx.timer_wait > 1000000000000 * 1 to
filter for lo vger-ru v \i \g queries.

Stalled transactions
If exec_state = done a\d stays that way for a while, the tra vsactio v is stalled.
Sivce this report oly lists the latest query of active trasactio s, the query
should cha vge quickly—exec_state = done should be fleeti\g.

Abandoned transactions
If exec_state = done remais for a lo g time, it's possible the tra vsactio v is
aba vdo ved because it stops bei \g reported after commit.

The output of this report should be volatile because active tra vsactio vs should be
fleeti vg. If it reports a tra vsactio v lo vg e vough for you to see it multiple times, the
the tra vsactio v is probably exhibiti \g o ve of the “Commo  Problems” o 1 page 282.
I+ this case, use its thread_1id ad statement_event_1id (as i\ “Active Tra vsactio \:
History” o \ page 291) to report its history—past queries—which helps reveal why the
tra vsactio v is a problem.
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Information Schema INNODB_ TRX

Usivg the MySQL Performace Schema is the best practice axd the future
of MySQL performace reportivg. But the MySQL I+formatio Schema is still
widely used ad it cay report lo vg-ruvvivg trasactio vs by queryig table inform
ation_schema.innodb_trx:

SELECT
trx_mysql_thread_id AS process_id,
trx_isolation_level,
TIMEDIFF(NOW(), trx_started) AS trx_runtime,
trx_state,
trx_rows_locked,
trx_rows_modified,
trx_query AS query
FROM
information_schema.innodb_trx
WHERE
trx_started < CURRENT_TIME - INTERVAL 1 SECOND\G

kkkkkhkhkkkkhkhkhkkkhkhkhkkkkhkhkhkkx 1. row kkkkhkkkkhkhkhkhkkkkkhkhkkkkkhkhkkk®

process_1id: 13
trx_1isolation_level: REPEATABLE READ
trx_runtime: 06:43:33

trx_state: RUNNING
trx_rows_locked: 4
trx_rows_modified: 1
query: NULL

I+ this example, query is NULL because the tra vsactio v is ‘ot executi\g a vy query. If it
were, this field would co vtai  the query.

I advise usi \g the Performa ce Schema because it co vtai vs sig vifica vtly more detail—
esse tially everythig there is to k vow about what happe \s ivside MySQL. All the
examples i\ this book use the Performa ce Schema whe + possible; i \ rare cases, some
iformatio v is still 0 \ly available i v the I \vformatio v Schema.

To lear \ more about table information_schema.innodb_trx, read “The INFORMA-
TION_SCHEMA INNODB_TRX Table” i \ the MySQL ma vual.

Active Transactions: Summary

The SQL stateme vt i v Example 8-3 reports the summary of queries executed for all
tra vsactio s active lo vger thav 1 secod. This report aswers the questio v: which
tra vsactio \s are lo vg-ru v vi vg a \d how much work have they bee v doi vg?
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Example 8-3. Report transaction summary

SELECT
trx.thread_id AS thread_id,
MAX(trx.event_id) AS trx_event_id,
MAX(ROUND(trx.timer_wait/1000000000000,3)) AS trx_runtime,
SUM(ROUND(stm.timer_wait/1000000000000,3)) AS exec_time,
SUM(stm.rows_examined) AS rows_examined,
SUM(stm.rows_affected) AS rows_affected,
SUM(stm.rows_sent) AS rows_sent
FROM
performance_schema.events_transactions_current trx
JOIN performance_schema.events_statements_history stm
ON stm.thread_id = trx.thread_id AND stm.nesting_event_id = trx.event_id
WHERE
stm.event_name LIKE 'statement/sql/%'
AND trx.state = 'ACTIVE'
AND trx.timer_wait > 1000000000000 * 1
GROUP BY trx.thread_id\G

To ixcrease the time, chage the 1 before \G. The fields are the same as i+ “Active
Tra vsactio vs: Latest” o page 286 but this report aggregates past queries for each
tra vsactio \. A stalled tra vsactio v ( ‘ot curre vtly executi \g a query) might have do ‘e a
lot of work i v the past, which this report reveals.

Whe a query fivishes executivg, it's logged i+ table perfor
mance_schema.events_statements_history but also remaiys i
table performance_schema.events_statements_current. There-
fore, the report oly ixcludes completed queries ad should ‘ot
be joi ved to the latter table u \less active queries are filtered out.

This report is better to fivd large tra vsactio \s—“Large Tra vsactio \s (Tra vsactio 1
Size)” o \ page 282—si \ce it i \cludes past queries.

Active Transaction: History

The SQL stateme vt i+ Example 8-4 reports the history of queries executed for a
si\gle tra vsactio v. This report a vswers the questio v: how much work did each query
tra vsactio v do? You must replace the zeros with thread_id ad trx_event_id values
from the output of Example 8-2.

Example 8-4. Report transaction history

SELECT
stm.rows_examined AS rows_examined,
stm.rows_affected AS rows_affected,
stm.rows_sent AS rows_sent,
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ROUND(stm.timer_wait/1000000000000,3) AS exec_time,

stm.sql_text AS query
FROM

performance_schema.events_statements_history stm
WHERE

stm.thread_id = 0

AND stm.nesting_event_id = 0

ORDER BY stm.event_id;

Replace the zeros with values from the output of Example 8-2:

« Replace the zero i+ stm.thread_id = 0 with thread_1id.

« Replace the zero iy stm.nesting_event_id = 0 with trx_event_id.

The output of Example 8-4 looks like:

B B B R L LR +
| rows_examined | rows_affected | rows_sent | exec_time | query |
B L B B B B LR PP +
| 10 | 0| 10 | 0.000 | SELECT * FROM elem |
| 2 | 1] 0| 0.003 | UPDATE elem SET ... |
| 0| 0 | 0 | 0.002 | COMMIT |
B T B T T Fommmmm e B B T TP +

Apart from the BEGIN that started the trasactio s, this tra vsactio v executed two
queries, the v COMMIT. The SELECT was the first query, a \d the UPDATE was the seco \d
query. It's ot a riveti g example, but it demo 1strates the query executio v history
of a travsactioy, plus basic query metrics. History is ialuable whe v debuggi \g
problematic tra vsactio 1s because you ca \ see which queries are slow (exec_time) or
large (i v terms of rows), as well as the poi 1t at which the applicatio v stalls (whe \ you
k vow that the tra vsactio v will execute more queries).

Committed Transactions: Summary

The previous three reports are for active tra vsactio vs, but committed tra vsactio s
are also revealivg. The SQL statemet iy Example 8-5 reports basic metrics for
committed (completed) tra vsactio vs. It’s like a slow query log for tra vsactio vs.

Example 8-5. Report basic metrics for committed transactions

SELECT
ROUND(MAX(trx.timer_wait)/1000000000,3) AS trx_time,
ROUND(SUM(stm.timer_end-stm.timer_start)/1000000000,3) AS query_time,
ROUND( (MAX(trx.timer_wait)-SUM(stm.timer_end-stm.timer_start))/1000000000, 3)
AS idle_time,
COUNT(stm.event_1id)-1 AS query_count,
SUM(stm.rows_examined) AS rows_examined,
SUM(stm.rows_affected) AS rows_affected,

292 | Chapter 8: Transactions



SUM(stm.rows_sent) AS rows_sent
FROM
performance_schema.events_transactions_history trx
JOIN performance_schema.events_statements_history stm
ON stm.nesting_event_id = trx.event_id
WHERE
trx.state = "COMMITTED'
AND trx.nesting_event_id IS NOT NULL
GROUP BY
trx.thread_1id, trx.event_id;

The fields of Example 8-5 are:

trx_time
Total tra vsactio \ time, i v milliseco vds with microseco \d precisio .

query_time
Total query executio \ time, i \ milliseco \ds with microseco \d precisio .

idle_time
Tra vsactio  time mi wus query time, i v milliseco \ds with microseco \d precisio .
Idle time i dicates how much the applicatio v stalled while executi vg the queries
i the tra vsactio .

query_count
Number of queries executed i+ the tra vsactio .

rows_%*
Total wumber of rows exami ved, affected, a \d se 1t (respectively) by all queries
executed i\ the tra vsactio \.

The output of Example 8-5 looks like the followi \g:

dommmmeea Hommmmmeaa e Hommmmmeas T T R T e +
| trx_time | qry_time | idle_time | gry_cnt | rows_exam | rows_affe | rows_sent |
B R R B T Fommmm e B L +
| 5647.892 | 1.922 | 5645.970 | 2 | 10 | 0| 10 |
|  0.585 |  0.403 | 0.182 | 2 | 10 | 0| 10 |
e o oo N oo Fommmm e oo +

For this example, I executed the same tra vsactio \ twice: first ma wually, the v copy-
pasted. The ma vual executio v took 5.6 seco \ds (5647.892) a \d was mostly idle time
due to typirg. But a tra vsactio v programmatically executed should be mostly query
executio \ time, as show v i+ the seco \d row: 403 microseco vds of executio v time,
ad o \ly 182 microseco \ds of idle time.
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Summary

This chapter exami ved MySQL tra vsactio s with respect to avoidi \g commo » prob-
lems. The major takeaway poi 1ts are:

Tra vsactio v isolatio v levels affect row locki vg (data locks).

The fu vdame vtal I+ voDB data locks are: record lock (locks a si gle i vdex record),
next-key lock (locks a sigle i vdex record plus the record gap before it), gap lock
(locks the rage [gap] betwee two records), ad insert intention lock (allows
INSERT i vto a gap; more like a wait co \ditio v tha v a lock).

The default tra vsactio v isolatio v level, REPEATABLE READ, uses gap lockig to
isolate the ra vge of rows accessed.

The READ COMMITTED tra vsactio  isolatio  level disables gap locki vg.

I+\oDB uses consistent snapshots iy REPEATABLE READ tra sactio s to make
reads (SELECT) retur the same rows despite chages to those rows by other
tra vsactio vs.

Co rsiste 1t s vapshots require I 1 voDB to save row cha \ges i v u \do logs to reco \-
struct old row versio 1s.

History list le vgth (HLL) gauges the amou 1t of old row versio \s ‘ot purged or
flushed.

HLL is a harbisger of doom: always mo vitor a“d alert oy HLL greater tha
100,000.

Data locks ad udo logs are released whe v a tra vsactio v e \ds, with COMMIT or
ROLLBACK.

Four commo » problems beset tra vsactio \s: large tra vsactio vs (modify too ma vy
rows), log-ruvisg trasactio vs (slow respo vse time from BEGIN to COMMIT),
stalled tra vsactio \s (superfluous waits betwee \ queries), a \d aba vdo ved tra vsac-
tio s (clie vt co v vectio  va vished duri g active tra vsactio v).

The MySQL Performa ce Schema makes detailed tra vsactio v reporti vg possible.

Tra vsactio v performa \ce is as importa ‘t as query performa ce.

The rext chapter e vumerates commo  MySQL challe vges a \d how to mitigate them.
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Practice: Alert on History List Length

The goal of this practice is to alert o v history list le \gth (HLL) greater tha v 100,000.
(Recall “History List Le vgth” o v page 280.) This depe \ds o v your systems for mo -
itorivg (collecti vg metrics) a~d alertivg, but fudame vtally it's ‘o differe vt tha
alerti \g o v other metrics. Therefore, the veeded work is twofold:

o Collect a d report the HLL value.
o Create a valert o v HLL greater tha x 100,000.

All MySQL mo vitors should be able to collect a vd report HLL. If your curre vt mo +-
itori g cavvot, seriously co vsider a better mo vitor because HLL is a fu vdame vtal
metric. Read the docume vtatio + for your mo vitor to lear » how to make it collect a \d
report HLL. HLL ca v cha \ge quickly, but there’s leeway before MySQL is at risk due
to high HLL. Therefore, you ca \ report HLL slowly: every mi wute.

O rce your mo vitor is collecti \g a \d reporti \g HLL, set a v alert o v HLL greater tha
100,000 for 20 mi vutes. But recall “Wild Goose Chase (Thresholds)” o v page 225: you
might eed to adjust the 20 mi wute threshold, but vote that HLL greater tha v 100,000
for lo vger tha » 20 mi wutes is quite ab vormal.

I\ case you eed to query the HLL value ma wually:

SELECT name, count
FROM  information_schema.innodb_metrics
WHERE name = 'trx_rseg_history_len';

Historically, HLL was parsed from the output of SHOW ENGINE INNODB STATUS: look
for “History list le vgth” u vder sectio + header “TRANSACTIONS” i + MySQL.

I hope that you're vever alerted for HLL, but havi \g the alert is a best practice, ad it
has saved ma vy applicatio \s from a v outage. A v HLL alert is a frie \d.
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Practice: Examine Row Locks

The goal of this practice is to exami ve row locks for real queries from your applica-
tio v avd, if possible, uderstad why the query acquires each lock. If possible is a
recessary disclaimer give 1 that I x\oDB row locki vg ca v be i vscrutable.

Use a developme vt or stagi g i\sta ce of MySQL; do ot use productio \. Also, use
MySQL 8.0.16 or ‘ewer because it has the best data lock reporti \g usi \g the Perfor-
ma ‘ce Schema table data_locks, as show iy “Row Lockig” o+ page 260. If you
ca oly use MySQL 5.7, the » you'll reed to exami e data locks usi \g SHOW ENGINE
INNODB STATUS: refer to MySQL Data Locks for a v illustrated guide to mappi \g data
lock output from MySQL 5.7 to MySQL 8.0.

Use real table defi vitio vs a vd as much real data (rows) as possible. If possible, dump
data from productio v a \d load i \to your developme vt or stagi \g MySQL i \sta vces.

If there are particular queries or travsactio\s that youre curious about, begi+ by
exami vi g their data locks. Otherwise, begi v with slow queries—recall “Query pro-
file” o \ page 9.

Sivce locks are released whe v a trasactioy completes, you ‘eed to use explicit
tra \sactio vs, as show i+ “Row Locki vg” o v page 260:

BEGIN;

-- Execute one or several queries

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM  performance_schema.data_locks
WHERE object_name = 'elem';

Replace elem with your table vame, a \d remember to COMMIT or ROLLBACK to release
the locks.

To cha vge the tra vsactio v isolatio v level for the vext (ad o \ly the vext) tra vsactio v,
execute SET TRANSACTION ISOLATION LEVEL READ COMMITTED before BEGIN.

This is expert-level practice, so avy effort axd u+derstavdivg is av achieveme tt.
Co vgratulatio ss.
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CHAPTER 9
Other Challenges

This chapter is a short but importa vt lau \dry list of commo » MySQL challe vges a \d
how to mitigate them. These challe \ges do vt fit ito other chapters because most
are ot directly related to performa \ce. But do vt u vderestimate them: the first two
challe vges, for example, ca rui+ a database. More importa vtly, these challe vges are
‘ot special cases that oly happe v whe 1 the stars alig+ ad The Fates co \spire to
rui \ your day. These are commo + challe vges. Take them seriously, a \d expect to face
them.

Split-Brain s the Greatest Risk

Split-brai v requires two co \ditio \s to occur at the same time, i \ the same replicatio
topology:

o More tha v o ve MySQL i sta vce is writable (read_only=0)

o Writes occur o Y more tha v o ve MySQL i sta vce

Neither of those should ever happe \—especially ‘ot at the same time—but life is full
of surprises, a\d you ca ot avoid bugs or accide \ts forever. Whe v it happe s, it’s
called split-brain: i vstead of all MySQL i sta vces havi \g the same data, they're figura-
tively split because data is vo lo vger ide vtical (co vsiste 1t) o v every i wsta vce. Not o \ly
is ivco vsiste vt data fu vdame vtally wro vg, it ca break replicatio v or—worse—have
a ripple effect that causes more data to become i1co vsiste \t, which causes the 1ext
challe vge: data drift.
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Split-brai v does “ot apply to MySQL replicatio 1 topologies i vte \-
tio vally desig ved to have multiple writable i vsta \ces.

If split-brai v occurs, you must detect a \d stop it immediately. Why? Because a sigle
write ca affect a vy wumber of rows. Mere seco \ds of split-brai+ ca+ produce a
avala vche of i vco vsiste vt data, resulti vg i v weeks of data fore vsics a \d reco \ciliatio .

To stop split-brai v, disable writes o v all i \sta \ces: SET GLOBAL read_only=1. Do ‘ot
leave o ve i1sta \ce writable; that will make the problem worse. If you ca v ot disable
writes, the v kill MySQL or the server—seriously. Data integrity is more important
than data availability.

Data i vtegrity is more importa vt tha v data availability.

Ideally, you should take the e tire database offli ve u til all i vco vsiste vt data is foud
ad reco xciled. But realistically, if a prolo vged database outage will kill the busi vess
ad youre absolutely certai that readig pote tially ivcorrect data will ‘ot cause
further damage, the v you ca ru MySQL i+ read-o \ly mode (read_only=1) while
you fix data usi \g super_read_only mode.

There are o\ly two ways to fid ivcosiste vt rows: ruy pt-table-sync, or check
ma ually. Ma wually e vtails whatever you ca do to compare ad verify rows give
your u \dersta \di g of the applicatio v, the data, a \d what cha ges were likely to have
occurred duri vg the split-brai . pt-table-sync is a\ ope \ source tool that ca find,
prit, ad sy vchro vize data differe ces betwee v two MySQL i sta \ces, but use it with
cautio \ because a vy tool that cha \ges data is i vhere tly risky.

pt-table-sync is a dagerous tool uless you wield it carefully.
Do not use its --execute optio : 0\ly use --print, a\d reads its
ma wual thoroughly.

N

Reco xcilivg rows is the difficult part, avd you should work with a MySQL expert
to e sure that it's dove correctly. If you're lucky, you'll determi ve that o ve MySQL
ista \ce is authoritative—all rows have the correct data—a \d you ca \ rebuild rather
tha \ reco cile: rebuild all replicas from the authoritative i wsta \ce. If youre ‘ot lucky,
the v work with a MySQL expert to determi ve your optio s.
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Data Drift Is Real but Invisible

Data drift refers to ico vsiste vt data: ove or more rows have differe vt values o+
differe vt MySQL ista\ces i the same replicatio \ topology. (Drift is figurative for
the values driftivg further apart as chages to the ico vsiste vt data cause further
ivco vsiste vcies.) Whereas i vco vsiste vt data from a split-brai v sce vario is expected,
ivco vsiste vt data from data drift is u vexpected: you do vt kow or have a vy reaso
to suspect that there is i vco siste vt data. Although data drift is i wisible i the se \se
that it does ‘ot seem to cause a problem, it is vevertheless a real problem because the
applicatio v could retur \ wro g values.

Fortu vately, data drift is easy to detect: ru~ pt-table-checksum. This tool is safe:
it only reads ad compares data. U fortu vately, data drift is o easier to reco \cile
tha v ivco vsiste 1t data due to split-brai \. But that probably wo vt be a v issue because
data drift te \ds to be limited a \d isolated i v scope— vot a v avala \che of i \co vsiste 1t
data—because it’s ‘ot caused by a serious failure like split-brai .

The fasci vati \g aspect of data drift is that, to my k vowledge, ‘o o0 e has ever foud
or prove the root cause of data drift i+ the wild (iv a real productio v database).
I+ theory, it’s caused by ‘o vdetermi vistic queries a \d stateme vt-based replicatio v, or
writes o\ replicas. I v a laboratory, those two would surely cause data drift, but they
rever seem to be the cause i+ the wild. I stead, e vgi veers a \d DBAs alike are certai v
that vothi \g was do e to cause or permit data drift. A \d yet, it exists.

Check for data drift every few mo vths (or o ce a year at the very
least) by ruvvivg pt-table-checksum. If you fid data drift o vce,
do vt worry about it: reco \cile the rows, axd check agaiv iy a
mo vth. If data keeps drifti g (which is very ulikely), the v you
have a exotic problem worth a detailed i westigatio v to find axd
fix the root cause.

Don’t Trust ORM

The purpose of object-relatio val mappi \g (ORM) is to aid programmers by abstract-
ig data access ito programmi g terms a \d objects. ORM is ‘ot i here tly bad or
i efficie \t, but you should verify queries ge verated by a\ ORM library because per-
forma \ce is vot its purpose. For example, si \ce ORM treats rows as objects, a1\ ORM
library might select all colum s, which is co vtrary to what you saw i+ the efficie vt
data access checklist (Table 3-2). A vother example: some ORM libraries execute other
queries (SHOW WARNINGS, for example) before or after the actual applicatio v query.
Whe v strivi g for maximum performa \ce, every query is importa \t; other queries
are u vacceptable waste.
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There are high-performa ce applicatio 1s that use ORM, but the e \gi veers are careful
ot to trust ORM: they verify ORM-ge verated queries i \ the query profile a \d query
report (see “Query profile” o\ page 9 a \d “Query report” o \ page 10, respectively). If
ay ORM-ge verated query is too i vefficie \t, read the ORM library docume ‘tatio \ to
lear v how to co vfigure it to ge erate a more efficie 1t query.

Schemas Always Change

You probably already k vow this challe vge, but i+ case youre brad vew to life with
a vy relatio val database: schemas always cha ge. (More specifically, table defi vitio \s
always chage, but tables co \stitute a schema.) The challege is doivg a+ online
schema change (OSC): chagivg a schema while it’s iv use, without affecti\g the
applicatio v. As me vtio ved i\ previous chapters, there are three great solutio s for
MySQL:

o pt-olive-schema-cha vge
e gh-ost
e ALTER TABLE

Each solutio v works very differe vtly, but all of them ca v alter a table defi vitio v 0 \li e
without affecti vg the applicatio . Read the docume +tatio \ for each to decide which
0 e works best for you.

There’s a vother aspect to this challe vge: i vtegrati vg schema cha ges i vto the software
developme 1t process. You cat ruy ay OSC ma vually, but e giveeri g teams do vt
do that because, like other code cha vges, schema chages ‘eed to be a part of the
developme 1t process so they are reviewed, approved, tested i+ stagi g, a \d so forth.
Sice developme vt processes are team-specific, your team will have to create its ow
solutio \. But there is curre \tly o e ope v source solutio \: Skeema. For a thorough
read o v how re vow ved MySQL expert Shlomi Noach solved this challe vge at GitHub,
read his blog post “Automati \g MySQL Schema Migratio \s with GitHub Actio vs a \d
More”.
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MySQL Extends Standard SQL

If you use oly MySQL, the v perhaps you ca+ skip this challege. But if youre
comig from (or goig to) a vother relatio val database, the v be aware that MySQL
has ma vy exte sio s to sta \dard SQL e vumerated i v “MySQL Exte sio \s to Sta vdard
SQL” iy the MySQL ma wal. Axd MySQL does ‘ot support some stavdard SQL
features, like full outer joits. There are other restrictio vs ad limitatio \s cataloged
i+ the aptly vamed excerpt “MySQL Restrictio \s a \d Limitatio 1s”, a \d you will fi \d
other me ‘tio \s a \d oddities throughout the MySQL ma wual.

A vy database with a history as lo g ad storied as MySQL is boud to be equally
eclectic. What's u viquely MySQL about MySQL is somethi \g that experts have come
to kvow ad trust so vaturally that it’s rarely poiited out: the MySQL Ma wual is
comprehe vsive a vd authoritative. Software docume 1tatio v ca 1 be sparse, out of date,
or “oexiste \t, but ‘ot the MySQL ma wal. There are arca e bits of i formatio
about MySQL vot i\ the ma wal, but those aside, MySQL experts rely heavily o+ the
MySQL ma wual—a vd so should you.

Noisy Neighbors

O a physical server, a noisy neighbor is a program that degrades performa vce for
other programs by usi vg i vordi vately more system resources. For example, if a server
is ruvvivg 20 separate MySQL istaces, but ove of them uses all the CPU axd
disk I/O, the v its a voisy ‘eighbor. This is a commo v challe vge because a shared
server (or multitenancy) is the vorm: ru v vi \g multiple virtualized e wiro \me vts 0 v a
sivgle physical server. (The opposite, a dedicated server [or single-tenancy], is rare a \d
expe 1sive, especially i + the cloud.) A voisy eighbor is a perplexi \g challe vge because
the performa vce impact is ‘ot your fault, but it is your problem.

If your compa vy ru s its ow » hardware, the v the problem is tractable: measure the
resource usage of each program or virtual e wiro yme vt o v the shared server where
you suspect a voisy ‘eighbor. Noisy ‘eighbors are easy to spot because they’re ‘oisy.
The v move the voisy veighbor (or your database) to a vother, quieter server. If that’s
'ot possible, the v buy a vother copy of this book for the voisy ‘eighbor so they ca s
lear v how to optimize MySQL performa xce.

I the cloud, you ca v vot see or prove the existe \ce of a voisy reighbor. For security,
cloud providers mai vtai v strict separatio \ of te va \ts (customers like you) o v shared
servers. Ad they are ulikely to admit the existe \ce of a ‘oisy ‘eighbor because it
would imply that they are ‘ot bala ci g the server load, which should be icluded
i the cost. Co seque vly, the stadard practice is to reprovisio v a cloud database
whe 1 you suspect a voisy ‘eighbor. Some compa vies be \chmark a cloud resource
before usig it ad oly keep it if performa vce meets a baseli ve; else, the resource is
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destroyed, a vother o ve is provisio ved, a \d the process repeats u \til—by cha \ce—the
resource is provisio ved o \ a quiet server.

Applications Do Not Fail Gracefully

Netflix origi vated chaos engineering: ivte vtio vally i vtroduci vg problems a d failures
ivto a system to test its resilie \cy axd vecessitate that e \gi eers desig\ for failure.
This philosophy a \d practice is bold because it truly tests the mettle of a v applicatio .
Writi vg software that works correctly whe v everythi vg arou \d it also works correctly
is a expectatio v so basic ad obvious that it cou ts for vothisg. The challe \ge is
to write software that works—i some capacity—eve v whe v everythig aroud it
is failig. As e giteers, we ofte thi k that we have accou ted for failure i+ our
software, but how do we kow u til somethi g fails for real? Plus, ‘ot all failures
are bivary: worki g or ‘ot workivg. The most i+sidious problems are ‘ot outright
failures but, rather, edge cases a \d outliers: the ki \d of problem that requires a story
to explai v it, vot a simple failure stateme 1t like “the hard drive died”

The same is true for applicatio \s with respect to MySQL. However, chaos e \gi veeri \g
is ‘ot stadard practice i+ the MySQL idustry because trifli \g with a database is
risky avd few egiveers are so bold. But fortu e favors the bold, so here are 12
database chaos sce varios to test the mettle of your applicatio :

o MySQL is offli ve

o MySQL is very slow to respo \d

« MySQL is read-o \ly

o MySQL has just started (cold buffer pool)
 Read replicas are offli ve or very slow

« Failover i\ the same regio

« Failover to a differe 1t regio

o Database backup isruvvivg

o DNS resolutio \ is very slow

o Network is slow (high late \cy) or saturated
o O ehard drive iva RAID array is degraded
o Free disk space o va~ SSD is less tha v 5%

Some of those 12 database chaos sce varios might ot apply to your i ‘frastructure, but
most are sta vdard a\d yield i vteresti vg results depe \di\g o v the applicatio \. If you
have vever e \gi veered chaos, the 1 I e \courage you to start because chaos does vt wait
u il you're ready.

302 | Chapter9:Other Challenges



High Performance MySQL Is Difficult

If you ear vestly apply all the best practices ad tech viques i+ this book, I am co »-
fide vt that you will achieve remarkable performa ce with MySQL. But that does
ot mea  it'll be quick or easy. High-performa vce MySQL requires practice because
resources—books, blogs, videos, co fere ces, a \d so 0 \—teach you theory, which is
differe vt tha v reality. Co seque tly, whe \ you begi to apply what you've lear ved
from this book to your applicatio v, you might ru v i vto the followi g two challe ges.

The first challe vge is that real applicatio v queries ca\ be—a \d usually are—more
complex tha v the pithy little examples strew v throughout these pages. Add to that
the additio val challe vge of rememberi g a \d applyi \g so much k rowledge at o \ce:
query metrics, ivdexes a“d ivdexig, EXPLAIN output, query optimizatio s, table
defivitio vs, ad so forth. It cay be overwhelmi g at first, but take it oe query at
a time, a\d remember “North Star” o+ page 3 avd “Idexig: How to Thi k Like
MySQL” o » page 80. Eve v experts veed time to u vravel a \d u vdersta \d the full story
of a query.

The seco \d challe vge is that real applicatio v performa vce rarely depe \ds o v a sigle
aspect of the workload. Fixi+g slow queries will udoubtedly help, but it might
‘ot help evough. The more performace you ‘eed from MySQL, the more you
have to optimize the e vtire workload: each query, all data, a\d every access patter .
Eve vtually you will veed to apply k vowledge from every chapter of this book. (Except
Chapter 10 if youre ‘ot usi g MySQL i\ the cloud.) Start small (Chapters 1-4), but
commit to lear i vg a \d applyi \g everythi vg i \ this book because you will veed it.

There is more to MySQL performa vce tha v I prese 1t i+ this book, but I assure you:
the k vowledge imparted i+ these chapters is comprehe vsive a \d effective. Moreover,
there are ‘o secrets k vow v 0 \ly to experts that u \lock amazi \g MySQL performa vce.
I k vow that from my ow v experie \ce a \d also from havi \g worked with ma vy of the
best MySQL experts i the world. Plus, ope \ source software is terrible at keepi g
secrets.

Practice: Identify the Guardrails that Prevent Split-Brain

The goal of this practice is to ide ‘tify the guardrails that preve vt split-brai . There
are two parts: detaili g the guardrails so that every e \gi veer u dersta \ds what they
are, where they are (probably i tools), axd how they work, a\d the carefully
reviewi g tools that ma vage or cha vge MySQL i \sta \ces, especially failover tools.

If you do vot mavage MySQL, the v schedule time with the e \gi veers who ma vage
MySQL to have them detail how they preve vt split-brai v duri \g operatio s, especially
failover. This should be a v easy request because preve vti vg split-brai v is fu \dame vtal
to ma vagi \g MySQL.
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If you use MySQL i+ the cloud, the details vary. Cloud providers have u \disclosed
methods to preve vt split-brai v depe \di g o\ the i vter val setup a \d ma vageme vt of
MySQL. For example, split-brai v is theoretically ‘ot possible with a sta \dard multi-
AZ istavce of Amazo RDS for MySQL because, although it's multi-AZ, multiple
ixstaxces of MySQL do vot ruv at the same time. (It’s a sivgle ruvivg ivstace
of MySQL i+ oe availability zo ve [AZ]. If that i\sta ce fails, a vother iistace is
started i v avother AZ.) But if you add read replicas, the \ you have multiple ru vvi g
ivstaces of MySQL i+ the same replicatio v topology, a \d Amazo v does ‘ot make
a vy guara vtees about split-brai v with respect to read replicas. I 1 the cloud, presume
that you are respo sible for the guardrails that preve vt split-brai, but also k vow
whe  the cloud provider does a \d does ‘ot preve vt split-brai .

If you ma vage MySQL o \ your ow \ hardware, the 1 I advise you to co vtract a MySQL
expert to help you ide ‘tify the guardrails that preve vt split-braiv. (It should vt take
lo g, so it should be a short a+d affordable co vtract.) There is o e fou datio val
guardrail that you must impleme ‘t: co \figure MySQL (i v its my.cnf file) to start
iv read-o\ly mode: read_only=1. Always start MySQL i\ read-oly mode. From
this fou vdatio v, other guardrails detail how read-o \ly mode is toggled such that it’s
guara ‘teed to be off (MySQL is writable) o v 0 \ly 0 ve i \sta \ce at a time.

Always start MySQL i\ read-o \ly mode (read_only=1).

O ce the guardrails are uderstood by egiteers, the secod part is to carefully
review tools that maage or chage MySQL 1ista \ces, especially failover tools, to
e \sure that the guardrails are impleme vted a \d worki g as expected. Of course, all
code should be u it tested, but preve 1ti vg split-brai v is so importa 1t that it warra vts
ma wal code review, too. There are issues i+ code that might ot surface whe v ide +-
tifyi vg the guardrails; for example: race co \ditio s, retries, a \d error ha dlig. The
last—error ha \dli vg—is especially importa vt: ca v (or should) a tool roll back cha vges
o error? Remember: data i vtegrity is more importa 1t tha v data availability. Whe v
toggli \g MySQL read-o \ly, tools should err o \ the side of cautio \: if a v operatio \ has
a o zero cha ce of causi g split-brai v, do vt do it; leave MySQL i \ read-o \ly mode,
fail, a \d let a huma v figure it out.

Bottom li ve: be 100% clear o v the guardrails that preve t split-brai .
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Practice: Check for Data Drift

The goal of this practice is to check for data drift usi \g pt-table-checksum. You're i
luck: this tool was purposely writte 1 to be easy a \d automatic. Simply dow \load a\d
ru the tool, ad it automates the rest i v most cases. If vot, a quick read through its
docume vtatio v will a \swer a vy questio 1s.

Most MySQL tools veed special co vfiguratio \ to work with MySQL
i+ the cloud.

pt-table-checksum does oly o ve thig: check for ad report data drift. It ca ru
for hours or days depe \di \g o  data size a \d access load. By default, it’s slow to avoid
i vterferi vg with productio v access. Therefore, be sure to ruv it iva screen or tmux
sessio \.

Whe 1 pt-table-checksum fivishes checki vg a table, it privts a o ve-li ve result for the
table. The output looks like this:

TS ERRORS DIFFS ROWS DIFF_ROWS CHUNKS SKIPPED TIME TABLE

10-21T08:36:55 0 0 200 0 1 0 0.005 db1.tbl1
10-21T08:37:00 0 0 603 0 7 0 0.035 db1.tbl2
10-21T08:37:10 0 2 1600 3 21 0 1.003 db2.tbl3

The last li ve of the output reveals a table with data drift because colum \ DIFFS has
a o zero value. If a vy table has data drift, reru v with the --replicate-check-only
optio  to pri vt the replicas a vd chu 1ks that are differe vt tha v the source. (A chunk is
a rage of rows deli veated by upper a \d lower bou \dary values for a v i vdex [usually
the primary key]. pt-table-checksum verifies rows iy chuiks because checkig
ivdividual rows is too slow ad i efficie vt.) You will veed to devise a pla to isolate
ad reco 1cile i vco vsiste vt rows. If there are very few, you might be able to isolate a \d
reco \cile them ma wually. If vot, the v I advise you to work with a MySQL expert to
esure it’s do ve correctly.
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Practice: Chaos

The goal of this practice is to test the mettle of your applicatio . Chaos e \gi veeri \g is
vot for the fai \t of heart, so start with your stagi vg database.

This practice will cause outages.

For the followig chaos, MySQL ad the applicatio v should be ruvi\g ‘ormally
with some load, ad you should have good metrics ad observability ito both to
record ad avalyze how they respo \d.

I propose the followi vg chaos, but pick a \d choose based o v your level of risk:

Restart MySQL
Restarti \g MySQL tests how the applicatio v respo \ds whe v MySQL is offli ve,
ad how it respods whe v MySQL buffers are cold (specifically, the Iv+voDB
buffer pool). Cold buffers require disk I/O to read data ito memory, which
causes slower tha v usual respo vse time. It also teaches you three thi vgs: how lo \g
it takes MySQL to shutdow v, how lo g it takes MySQL to start up, a \d how lo\g
it takes the buffers to warm up.

Enable read-only mode

SET GLOBAL read_only=1 o\ the source istace to evable read-o+ly mode
ad test how the applicatio v respo \ds to bei g able to read data but ‘ot write
data. E vgi veers ofte v thi 'k that the applicatio v will co vti vue worki vg for reads
ad gracefully fail for writes, but chaos is full of surprises. This also effectively
simulates a failed failover, which should ever happe \ (because it would mea v a
failure of high availability), but “should vever happe ¥’ is withi v the purview of
chaos.

Stop MySQL for 1 hour
Most applicatio \s ca Y weather a storm for seco \ds or mi wutes—maybe eve 1 te \s
of mi wutes—but at some poi t, queues fill up, retires are exhausted, expo ve vtial
backoffs become very log, rate limits reset, axd users give up axd go to a
competitor. MySQL should vever be offli e more tha \ a few seco \ds—if properly
ma vaged—but agai \: chaos.

Back i+ 2004 whe v I worked i a data ce ter, mome vts before I started my 2 p.m. to
mid vight shift, a v e \gi veer accide vtally hit the emerge \cy power off butto v—to the
data center. Calm is the oly aswer to chaos, so I got a cup of coffee before sitti \g
dow  to help reboot the data ce vter.
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CHAPTER 10
MySQL in the Cloud

MySQL i+ the cloud is fu vdame vtally the same MySQL that you k vow a\d love (or
kvow ad tolerate). I\ the cloud, the best practices ad tech viques detailed i+ the
previous vive chapters are ‘ot o\ly true but eminently true because cloud providers
charge for every byte a vd milliseco \d of work. Performa vce is mo vey i » the cloud. To
recap the previous i ve chapters:

o Performa ce is query respo vse time (Chapter 1).

o Idexes are the key to performa vce (Chapter 2).

o Less data is better—for both stori vg a \d accessi vg (Chapter 3).

o Access patter s allow or i +hibit performa vce (Chapter 4).

o Shardi\gis vecessary to scale out writes a \d storage (Chapter 5).

o Server metrics reveal how the workload affects MySQL (Chapter 6).
o Replicatio v lag is data loss a \d must be avoided (Chapter 7).

o Tra sactio vs affect row locki \g a \d u \do loggi vg (Chapter 8).

o Other challe vges exist—eve v i v the cloud (Chapter 9).

If you embrace a \d apply all those details, MySQL will execute the applicatio v work-
load with remarkable performa vce regardless of locatio v: i + the cloud, o v premise, or
a yywhere.

For the sake of savi g you time, I wish it were that simple—optimize the workload
ad youre do ve—but MySQL i\ the cloud raises u vique co sideratio \s. The goal is
to kvow ad mitigate these cloud co \sideratio s so that you ca focus o MySQL,
‘ot the cloud. After all, the cloud is ‘othi \g special: behi \d the proverbial curtai v, it’s
physical servers i v a data ce vter ru v \i \g programs like MySQL.
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This chapter highlights what to k vow whe v usi \g MySQL i + the cloud. There are four
major sectio \s. The first cautio \s agai vst compatibility: whe v MySQL is ot MySQL.
The seco\d is a quick discussio v about varyi g levels of MySQL admi vistratio v i
the cloud. The third discusses ‘etwork late \cy a \d its relatio \ship to storage I/O. The
fourth is about performa ce a \d mo vey.

Compatibility

MySQL i+ the cloud might ‘ot be MySQL, or it might be a highly modified (ad
proprietary) versio v of MySQL. Compatibility of MySQL i v the cloud has two sides:
code compatibility a \d feature compatibility.

By MySQL, I mea » MySQL published by Oracle: the official, ope
source MySQL source code. I also mea 1 Perco va Server published
by Perco va, a \d MariaDB Server published by the MariaDB Fou +-
datio \: both are widely used, safe a \d stable, a \d co \sidered to be
MySQL i\ ge veral.

Code compatibility is whether or ot MySQL is the same ope source code pub-
lished by Oracle, Perco va, or MariaDB. The followig vive words a\d phrases are
commo\ly used i+ product descriptio s ad docume vtatio v to allude to the fact
that MySQL is ‘ot code-compatible but, rather, somethi g slightly (or sig vifica vtly)
differe 1t:

o Builton

o Emulates

« Compatible

« Clie vt compatible

« Protocol compatible
o Wire compatible

o Replaceme vt

o Drop-inreplaceme vt

o Works with existi \g

Code compatibility is importa \t because MySQL is complex a‘d subtle, a d we
etrust it to store ialuable data. I+ this book, I focus discussio \s to varrow the
scope of MySQL complexity, but sectio 1s like “Page flushi vg” o v page 212 ad “Row
Lockivg” o page 260 hit at how deep the rabbit hole goes. Whe v a vy compa vy
alters MySQL source code, the risks are fourfold: data loss, performa \ce regressio s,
bugs, ad icompatibilities. The greater the alteratio s, the greater the risks. I have
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see \ the latter three i+ the cloud; fortu vately, I have ‘ot see  a cloud provider lose
data.

If you have a vy doubts whether or vot MySQL i+ the cloud is code-
compatible, ask the cloud provider, “Is it the same ope v source
MySQL published by Oracle?”

To prese 1t the whole argume \t, ‘ot just the egatives (the risks), cloud providers
alter MySQL to provide additio val value: improve performa vce, fix bugs, ad add
features that customers ‘eed. Some alteratio \s are valuable a \d worth the risks. But if
you use MySQL i+ the cloud that is ‘ot code-compatible, you veed to u dersta \d the
exte 1t of the alteratio vs. This is basic due dilige \ce for professio val e \gi veers usi g
MySQL i+ the cloud.

Give v e vough eyeballs, all bugs are shallow.

—Eric S. Raymo \d

Feature compatibility is whether or vot MySQL i vcludes features ‘ot available outside
the cloud provider or the distributio v of MySQL. For example, Oracle publishes two
distributio vs: MySQL Commu vity Server a \d MySQL E sterprise Editio v. The former
is ope v source; the latter i+cludes proprietary features. Oracle Cloud I vfrastructure
(OCI) uses the latter, which is good: more value for the cloud mo vey. But it also
mea s that if you rely o v features specific to MySQL E terprise Editio v, you ca v vot
directly migrate to avother cloud provider or distributio v of MySQL. The same is
true for Percova Server ad MariaDB Server: these distributio xs of MySQL have
uvique features, which is good, but it complicates migratio v to a vother cloud pro-
vider or distributio v of MySQL.

Feature compatibility is importa+t for the same reaso+ ope\ source software is
importa t: freedom to cha vge. Software—MySQL i \cluded—should empower e \gi-
veers a \d users, ‘ot lock us i vto specific cloud providers or ve vdors. That reaso vi g
is more philosophical tha v tech vical, which is why I'll prese vt the whole argume t
agai \: some features are valuable a \d worth not cha \gi vg to keep. But if you choose
to use a feature that's ‘ot available outside the cloud provider or the distributio
of MySQL, you reed to documet why, so that future e gi‘eers ca uderstad
what’s at stake (a‘d what veeds to be replaced) if they use avother cloud provider
or distributio v of MySQL. This, too, is basic due dilige ce for professio val e \gi veers
usi \g MySQL i+ the cloud.

Compatibility | 309



Management (DBA)

We have successfully dodged MySQL admi vistratio v+ (DBA work) from the very first
pages of this book, so were ‘ot about to fail vow, but MySQL i+ the cloud raises
a\ issue that you ‘eed to kvow ad address: who ma vages MySQL? Oste vsibly, the
cloud provider ma vages MySQL, but it’s ‘ot that simple because ma vagi \g MySQL
e vtails ma vy operatio s. Brace yourself: 'm goi g steer this book da \gerously close
to DBA work i v order to explai .

Table 10-1 is a partial list of DBA operatio vs a \d who ma \ages them: you or the
cloud.

Table 10-1. DBA operations

Provision v
Configure v
MySQL users v
Server metrics v
Query metrics v
Online schema change (0SC) v/
Failure recovery v
Disaster recovery (DR) v
High availability (HA) v f
Upgrading v
Backup and recovery v
Change data capture ((DC) v/
Security v
Help v
Cost v

2 Indicates some management.

Let me breeze through the 15 operatio s i v Table 10-1 because bei \g aware of the full
scope—eve \ at a high level—helps you avoid gaps i v MySQL ma vageme t that will
become a vissue if ‘ot addressed. Also k vow v as CYA: cover your admi vistratio .

Provisio vi v\g MySQL is, of course, what a cloud provider must provide: the lowest
level operatio v of ruvvivg MySQL o+ a computer. Cloud providers use a dece 1t
MySQL co vfiguratio v, but double check because ‘o default co figuratio v ca\ suit
every customer. Apart from a root user ‘ecessary to give you invitial co vtrol of the
MySQL server, cloud providers do ‘ot mavage MySQL users. Server a \d query met-
rics are also your respo vsibility to collect a vd report. Gra vted, some cloud providers
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expose basic sever metrics, but 1o ‘e are eve  remotely close to the full spectra of
metrics detailed iy Chapter 6. OSCs—ru vvivg ALTER stateme ‘ts without affecti g
the workload—are e tirely your respo \sibility, ad they texd to be a little more
difficult i+ the cloud for various tech vical reaso s outside the scope of this book.
Cloud providers do ha \dle failover: whe  hardware or MySQL dies, the cloud pro-
vider will failover to restore availability. But cloud providers do ‘ot hadle disaster
recovery: whe v av entire regio v fails ad availability must be restored by ruvvivg
MySQL from a differe 1t geographic locatio \. Give \ the previous two operatio 1s, high
availability (HA) has mixed ma vageme 1t (he vce t i+ the cloud colum+). The full
discussio v of MySQL high availability i v the cloud is too wua ced to cover here; let’s
just say that the cloud provides some amou ‘t of high availability. Cloud providers
upgrade MySQL, which is really vice because this operatio v is tedious at scale. Cloud
providers backup MySQL, provide lo vg-term backup rete vtio v, a \d provide methods
to restore backups—all of which are icredibly importa vt. You are respo sible for
cha vge data capture (CDC), which usually i wolves a vother tool or service acti vg like
a replica to dump (or stream) bivary logs from MySQL to a vother data store (ofte v
a big data store or data lake). Security of MySQL i 1 the cloud is your respo sibility—
the cloud is not i+heretly secure. Cloud providers help with ruvivg MySQL i
ge veral, but do vt expect much (or avy) help with MySQL performa vce u less your
compa vy pays for that level of support. A \d fi vally, you must ma vage costs: the cloud
is votorious for costi \g more tha v e \gi \eers a vticipate.

The three major cloud providers—Amazo v, Google, a‘d Micro-
soft—have a 99.95% or 99.99% availability SLA for MySQL (as a
ma vaged service), but read the five privt—the full legal details.

. For example, mai te va \ce widows usually do ot cou 1t agai \st
the SLA. Or, the SLA might be voided if MySQL is ‘ot properly
cofigured by you. There are always details ad caveats to cloud
provider high availability a \d SLAs.

Table 10-1 is descriptive, ot prescriptive, because differet cloud providers ad
third-party compa vies provide differe 1t levels of MySQL ma vageme vt i+ the cloud.
For example, some compa vies fully mavage MySQL i+ the cloud (or o\-premise).
As av engiveer usivg MySQL, ‘ot maagivg it, you o\ly veed to kow that all the
operatio \s are ma vaged—all the boxes are checked—so that ‘o ‘e of them i vterfere
with your work. Oce you krow that, please forget everythivg you read i this
sectio v, else you'll wivd up a MySQL DBA before you kow it, twe vty years will
pass, ad the ext e \gi veer to joi v your team will have bee va vewbor v i+fat whe
—lo, the ma vy years past—you were deali g with a v ivexplicable multi-ra \ge read
performa \ce regressio v after a vi 1 vocuous poi vt release upgrade.
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Network and Storage. . .Latency

Whe ~ ru vvivg MySQL o \-premise (i data ce vter space that your compa vy leases),
the local vetwork should ever be a co sideratio v or co \cer v for you, presumi-g
it was desig ved ad wired by compete 1t professio val etwork e \gi veers. Local ret-
works are blazi g fast a\d stable with submilliseco \d late \cy. The local “etwork
should be more borivg tha the database (recall “Normal a~d Stable: The Best
Database Is a Bori vg Database” o 1 page 180).

But the cloud is global, ad wide-area ‘etworks have higher late cy a\d lower
stability (greater fluctuatio vs i+ late vcy a \d throughput). For example, the ‘etwork
roud-trip time (RTT) betwee v Sa Fra \cisco a\d New York City is approximately
60 milliseco ds, plus or mi vus 10 milliseco vds. If you ruy MySQL i+ Sa Fra xcisco
(or avywhere o the U.S. west coast) ad the applicatio v is i+ New York City (or
ayywhere o\ the U.S. east cost), the mi imum query respo \se time is approximately
60 milliseco \ds. That is 60 times slower tha+ a local ‘etwork.! You will +otice
that slow vess, but it will ‘ot show up i+ query respo \se time because the delay is
outside MySQL. For example, a query profile (see “Query profile” o\ page 9) shows
that a query takes 800 microseco \ds to execute, but your applicatio v performa ce
mo vitori vg (APM) shows that the query takes 60.8 milliseco vds to execute: 800 ys for
MySQL, ad 60 ms for vetwork late \cy from sea to shi vi \g sea.

Network late \cy over loyg distaces is physically limited by the speed of light
ad exacerbated by itermediate routig. Co vseque 1tly, you ca 1ot overcome this
late vcy; you ca v 0 \ly work arou vd it. For example, refer to “E \queue Writes” o 1 page
145: e \queue locally, write remotely—where remotely is a vy process that i vcurs high
etwork late vcy.

Switchivg back to local vetworks, it's a good thig theyre blazig fast ad stable
because cloud providers typically store MySQL data o network-attached storage:
hard drives co vvected to the server through a local vetwork. By co vtrast, locally-
attached storage (or local storage) is hard drives co vvected directly to the server.
Cloud providers use ‘etwork-attached storage for various reaso s beyo \d the scope
of this book. What’s importa 1t to kow is that ‘etwork-attached storage is much
slower ad less stable thay local storage. All three major cloud providers—Ama-
z0 v, Google, a \d Microsoft—publish “si vgle-digit milliseco \d late \cy” for vetwork-
attached storage (usig SSD),? with o e exceptio v: Amazo v i02 Block Express has
submilliseco \d late \cy. The bottom li ve is, whe v usi\g MySQL i the cloud, expect

1 Tech vically, all vetworks are equally fast: the speed of light. The problem is physical dista vce a \d i termediate
routi \g over lo \g dista vces.

2 See Amazo  EBS features, block storage performa ce o  Google, a \d premium storage with Microsoft Azure.
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the storage to have si \gle-digit milliseco d late cy, which is equivale 1t to a spivvivg
disk.

Network-attached storage is a\ order of magitude slower tha local storage (with
SSD; do vt use spivivg disks), but is it a problem that you should address? If you're
migrati \g MySQL to the cloud from bare metal hardware with high-e \d local storage
and the applicatio v heavily avd co \siste vtly utilizes the local storage IOPS (see
“IOPS” o v page 208), the v yes: verify that the i \creased late \cy of ‘etwork-attached
storage does ‘ot cause a ripple effect of performa \ce degradatio v (because IOPS
ivcur the latecy). (Heavy axd co vsiste t utilizatio v of IOPS is a hallmark of a
write-heavy workload: see “Read/Write” o\ page 133.) But if youre already i+ the
cloud, or starting a ‘ew applicatio v i+ the cloud, thev vo: do vt worry or thik
about storage late cy i+ the cloud. Istead, lay a foudatio v of highly optimized
queries (ivdexes), data, axd access patter \s—as covered iy Chapters 2, 3, ad 4,
respectively—a \d storage late \cy i+ the cloud may ‘ever be a v issue.

If storage late \cy i the cloud is a problem, the v you ‘eed to optimize the work-
load further, shard (Chapter 5), or purchase better (more expe \sive) cloud storage.
Remember: Netflix ru s i the cloud, as do other very large a\d successful compa-
vies. The performa \ce pote vtial for MySQL i+ the cloud is virtually u \limited. The
questio v is: ca v you afford it?

Performance Is Money

Fitti vgly, the begi i g of this book—“A True Story of False Performa vce” o\ page
2—mirrors the ed. But i\ the cloud, customers sell themselves more RAM to “fix”
MySQL performa vce. A v e gi veer at o ve of the three major cloud providers told me
that most MySQL i \sta \ces are over-provisio ved: customers pay for more capacity
tha v the applicatio v veeds or utilizes.’

Has the i+dustry come full circle avd vow, with the ease of scalability i+ the cloud,
performa vce is simply a larger iistace? No, defivitely vot: performance is query
response time; axd i+ the cloud, every byte a vd milliseco \d of performa vce is billed
hourly, which makes all the best practices a \d tech viques i\ this book more impor-
ta\t tha v ever.

If you have used a vy services i+ the cloud, the  the followi vg i \formatio v probably
wo vt surprise you. But if youre vew to the cloud, the v let me be the first to tell you:
cloud prici g is complex, tearly itractable, ad freque vtly u \derestimated (which
mea s over budget). That’s true whe 1 e \gi veers make a co \certed effort to estimate
ad co trol cloud costs; whe \ they do vt, I have see v six-figure surprises: more tha

3 Due to vo \disclosure agreeme 1ts, I ca v vot cite the source.
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$100,000 over budget. Followig are the three most importa vt thigs to kow to
avoid billi vg surprises whe v usi \g MySQL i + the cloud.

The first thivg to kvow is that the price doubles for each level of the uderlyi g
compute (the virtual server that rus MySQL) because the resources (vCPU cou 1t
ad memory size) at each level double. For example, if the mi \imum level of compute
is 2 vCPU a\d 8 GB RAM, the vext level up is 4 vCPU a+d 16 GB RAM—ad the
price doubles, too. There are a few exceptio vs, but expect doubli \g. As a result, you
cavvot gradually i vcrease costs; you double costs for each level of compute that you
scale up. From a e\gieeri g poitt of view, scalivg up from 2 vCPU to 8 vCPU
is still a very small compute, but the price quadruples. To put this i+ perspective,
imagi e if your mo vthly mortgage or re vt payme vt doubled, or your car payme 1t
doubled, or your stude 1t loa \ payme 1t doubled. You would probably be upset—a \d
rightly so.

The seco \d thi vg to k vow is that everythi g i + the cloud costs mo ‘ey. Compute costs
are just the begi v i \g. The followi g list i \cludes commo + charges for MySQL i 1 the
cloud i v additio  to compute costs:

o Storage type (IOPS)

« Data storage (size)

 Backups (size a vd rete vtio v)

o Logs (size a \d rete vtio v)

« High availability (replicas)

o Cross-regio v data tra sfer (size)
o Ecryptio v keys (to e \crypt data)

o Secrets (to store passwords)

Moreover, those charges are per-i \sta \ce. For example, if you create five read repli-
cas, each replica is billed for data store, backups, a \d so forth. I wish it were simpler,
but this is the reality: you ‘eed to i westigate, u vdersta \d, a \d estimate all costs whe
usi \g MySQL i v the cloud.

Some proprietary versio s of MySQL i+ the cloud (see “Compati-
bility” o v page 308) have additio val costs, or a completely differe 1t
prici vg model.

N

The third ad fi+al thi+g to kow is that cloud providers offer discou vts. Do vt pay
full price. At at mi \imum, costs ca \ be sig vifica \tly reduced with a o ve or three year
commitme ¥, rather tha payig mo vth to mo th. Other discou \ts vary by cloud
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provider: look for (or ask about) reserved i vsta \ces, committed usage, a \d volume
discou vts. If your compa vy relies o the cloud, the v it has most likely ‘egotiated
a cotract with the cloud provider. Fivd out if that’s the case ad whether avy of
the co vtract prici\g details affect costs for MySQL i+ the cloud. If you're lucky, the
co vtract might reduce and simplify costs, which allows you to focus o v the fu 1 details
of usi \g MySQL.

Summary

This chapter highlighted what to k vow whe  usi g MySQL i+ the cloud. The sub-
sta vtial takeaway poi vts are:

o Code ad feature compatibility of MySQL varies i v the cloud.

 Your due dilige vce is to k vow a vy code or feature i \compatibilities compared to
ope ' source MySQL.

o MySQL cav be partially or fully ma+aged, depedivg o+ cloud provider or
third-party compa vy.

 Network late \cy over wide-area ‘etworks i \creases query respo \se time by te \s
or hu \dreds of milliseco \ds.

o Data for MySQL i+ the cloud is usually stored o v vetwork-attached storage.

o Network-attached storage has si\gle-digit milliseco \d late \cy, which is equiva-
le vt to a spi v vivg disk.

o The cloud charges for everythi\g, a \d costs ca v (a \d ofte v do) go over budget.

o Cloud providers offer discou vts; do vt pay full price.

o Performa \ce is query respo se time i\ the cloud.

This is the last chapter, but do vt \q yet: there’s o ve more practice.

Practice: Try MySQL in the Cloud

The goal of this practice is to try MySQL i\ the cloud—just to see how it works, ‘o
DBA work required. O\ the o e had, I do vt wat to provide a vy of the followi g
five cloud providers free marketi \g—this book is strictly tech vical. But o\ the other
had, usi g MySQL i the cloud is i \creasi \gly commo v, so I wa t you to be pre-
pared a \d successful. Plus, this is a free trial: the followi g five cloud providers have a
free tier or a v initial accou vt credit. Do vt pay for a vythi \g yet: cloud providers must
ear \ your busi vess a \d mo vey by provi 1g the value of their services to you.
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Try creati g a \d usi \g MySQL with a vy o ve (or several) of these cloud providers:

o MySQL Database Service by Oracle

 SkySQL by MariaDB

« Relatio val Database Service (RDS) by Amazo
o Azure Database for MySQL by Microsoft

» Cloud SQL by Google

If you fivd that ove is easy to use ad pote tially valuable, i westigate its prici g
model a\d additio val costs. I specifically use the verb investigate because, as I me 1-
tioy iv “Performace Is Moey” o page 313: cloud pricivg is complex, rearly
i vtractable, a \d freque vtly u vderestimated (which mea \s over budget).

Do vt forget to destroy your MySQL ista ce i+ the cloud before
the free trial e \ds or the i vitial accou t credit reaches zero.

This is the last practice i+ this book, but I ecourage you to keep learvivg ad
practici vg because MySQL co i vues to evolve—so does the cloud. For this reasoy,
eve v MySQL experts must co ‘i vue to lear v a \d practice, a \d that remi vds me of a
Ze ~ proverb o \ which I e \d this book:

Chop wood. Carry water.
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