

Daniel Nichter

Efficient MySQL Performance
Best Practices and Techniques

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10509-9

[LSI]

Efficient MySQL Performance
by Daniel Nichter

Copyright © 2022 Daniel Nichter. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Andy Kwan
Development Editor: Corbin Collins
Production Editor: Katherine Tozer
Copyeditor: Justin Billing
Proofreader: Piper Editorial Consulting, LLC

Indexer: Amnet Systems LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2021: First Edition

Revision History for the First Edition
2021-11-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098105099 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Efficient MySQL Performance, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Preface. ix

1. Query Response Time. 1
A True Story of False Performance 2
North Star 3
Query Reporting 4

Sources 4
Aggregation 6
Reporting 8

Query Analysis 11
Query Metrics 11
Metadata and the Application 24
Relative Values 24
Average, Percentile, and Maximum 25

Improving Query Response Time 27
Direct Query Optimization 27
Indirect Query Optimization 28

When to Optimize Queries 29
Performance Affects Customers 29
Before and After Code Changes 29
Once a Month 30

MySQL: Go Faster 30
Summary 32
Practice: Identify Slow Queries 33

iii

2. Indexes and Indexing. 35
Red Herrings of Performance 37

Better, Faster Hardware! 37
MySQL Tuning 39

MySQL Indexes: A Visual Introduction 40
InnoDB Tables Are Indexes 41
Table Access Methods 45
Leftmost Prefix Requirement 49
EXPLAIN: Query Execution Plan 51
WHERE 54
GROUP BY 60
ORDER BY 65
Covering Indexes 71
Join Tables 71

Indexing: How to Think Like MySQL 80
Know the Query 80
Understand with EXPLAIN 81
Optimize the Query 82
Deploy and Verify 83

It Was a Good Index Until… 84
Queries Changed 84
Excessive, Duplicate, and Unused 85
Extreme Selectivity 86
It’s a Trap! (When MySQL Chooses Another Index) 87

Table Join Algorithms 87
Summary 89
Practice: Find Duplicate Indexes 90

3. Data. 91
Three Secrets 92

Indexes May Not Help 92
Less Data Is Better 96
Less QPS Is Better 96

Principle of Least Data 97
Data Access 97
Data Storage 104

Delete or Archive Data 115
Tools 115
Batch Size 115
Row Lock Contention 118

iv | Table of Contents

Space and Time 118
The Binary Log Paradox 119

Summary 120
Practice: Audit Query Data Access 121

4. Access Patterns. 123
MySQL Does Nothing 124
Performance Destabilizes at the Limit 125
Toyota and Ferrari 130
Data Access Patterns 131

Read/Write 133
Throughput 133
Data Age 134
Data Model 136
Transaction Isolation 136
Read Consistency 137
Concurrency 138
Row Access 139
Result Set 139

Application Changes 140
Audit the Code 140
Offload Reads 141
Enqueue Writes 145
Partition Data 146
Don’t Use MySQL 147

Better, Faster Hardware? 148
Summary 150
Practice: Describe an Access Pattern 150

5. Sharding. 151
Why a Single Database Does Not Scale 152

Application Workload 152
Benchmarks Are Synthetic 155
Writes 156
Schema Changes 157
Operations 158

Pebbles, Not Boulders 159
Sharding: A Brief Introduction 160

Shard Key 161
Strategies 162
Challenges 167

Table of Contents | v

Alternatives 170
NewSQL 170
Middleware 171
Microservices 172
Don’t Use MySQL 172

Summary 173
Practice: Four-Year Fit 173

6. Server Metrics. 175
Query Performance Versus Server Performance 177
Normal and Stable: The Best Database Is a Boring Database 180
Key Performance Indicators 181
Field of Metrics 182

Response Time 182
Rate 183
Utilization 183
Wait 184
Error 185
Access Pattern 186
Internal 186

Spectra 187
Query Response Time 188
Errors 190
Queries 191
Threads and Connections 196
Temporary Objects 199
Prepared Statements 200
Bad SELECT 201
Network Throughput 202
Replication 203
Data Size 203
InnoDB 205

Monitoring and Alerting 223
Resolution 223
Wild Goose Chase (Thresholds) 225
Alert on User Experience and Objective Limits 226
Cause and Effect 228

Summary 230
Practice: Review Key Performance Indicators 231
Practice: Review Alerts and Thresholds 232

vi | Table of Contents

7. Replication Lag. 233
Foundation 234

Source to Replica 235
Binary Log Events 237
Replication Lag 238

Causes 240
Transaction Throughput 240
Post-Failure Rebuild 241
Network Issues 241

Risk: Data Loss 241
Asynchronous Replication 242
Semisynchronous Replication 244

Reducing Lag: Multithreaded Replication 246
Monitoring 250
Recovery Time 252
Summary 254
Practice: Monitor Subsecond Lag 255

8. Transactions. 259
Row Locking 260

Record and Next-Key Locks 262
Gap Locks 266
Secondary Indexes 269
Insert Intention Locks 273

MVCC and the Undo Logs 276
History List Length 280
Common Problems 282

Large Transactions (Transaction Size) 282
Long-Running Transactions 283
Stalled Transactions 284
Abandoned Transactions 285

Reporting 286
Active Transactions: Latest 286
Active Transactions: Summary 290
Active Transaction: History 291
Committed Transactions: Summary 292

Summary 294
Practice: Alert on History List Length 295
Practice: Examine Row Locks 296

Table of Contents | vii

9. Other Challenges. 297
Split-Brain Is the Greatest Risk 297
Data Drift Is Real but Invisible 299
Don’t Trust ORM 299
Schemas Always Change 300
MySQL Extends Standard SQL 301
Noisy Neighbors 301
Applications Do Not Fail Gracefully 302
High Performance MySQL Is Difficult 303
Practice: Identify the Guardrails that Prevent Split-Brain 303
Practice: Check for Data Drift 305
Practice: Chaos 306

10. MySQL in the Cloud. 307
Compatibility 308
Management (DBA) 310
Network and Storage…Latency 312
Performance Is Money 313
Summary 315
Practice: Try MySQL in the Cloud 315

Index. 317

viii | Table of Contents

Preface

A gap in MySQL literature exists between basic MySQL knowledge and advanced
MySQL performance. There are several books about the former, and one book about
the latter: High Performance MySQL, 4th Edition, by Silvia Botros and Jeremy Tinley
(O’Reilly). This is the first book to bridge the gap.

The gap exists because MySQL is complex, and it’s difficult to teach performance
without addressing that complexity—the proverbial elephant in the room. But engi‐
neers using (not managing) MySQL should not need to become MySQL experts to
achieve remarkable MySQL performance. To bridge the gap, this book is unapologeti‐
cally efficient—pay no attention to the elephant; it’s friendly.

Efficient MySQL performance means focus: learning and applying only the best
practices and techniques that directly affect remarkable MySQL performance. Focus
dramatically narrows the scope of MySQL complexity and allows me to show you
a much simpler and faster path through the vast and complex field of MySQL
performance. The journey begins with the first sentence of Chapter 1, “Performance
is query response time.” From there, we move fast through indexes, data, access
patterns, and a lot more.

On a scale of one to five—where one is an introduction for anyone, and five is a deep
dive for aspiring experts—this book ranges from three to four: deep, but far from the
bottom. I presume that you’re an experienced engineer who has basic knowledge of
and experience with a relational database (MySQL or otherwise), so I do not explain
SQL or database fundamentals. I presume that you’re an accomplished programmer
who is responsible for one or more applications that use MySQL, so I continually
reference the application and trust that you know the details of your application. I
also presume that you’re familiar with computers in general, so I talk freely about
hardware, software, networks, and so forth.

Since this book focuses on MySQL performance for engineers using MySQL, not
managing it, a few references to MySQL configuration are made when necessary
but not explained. For help configuring MySQL, ask a DBA where you work. If

ix

you don’t have a DBA, hire a MySQL consultant—there are many great consultants
with affordable contract options. You can also learn by reading the MySQL Reference
Manual. The MySQL manual is superb and experts use it all the time, so you’re in
good company.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

x | Preface

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/efficient-mysql-performance.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example: “Efficient
MySQL Performance by Daniel Nichter (O’Reilly). Copyright 2022 Daniel Nichter,
978-1-098-10509-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xi

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/efficient-mysql-performance.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Thank you to the MySQL experts who reviewed this book: Vadim Tkachenko, Fréd‐
éric Descamps, and Fernando Ipar. Thank you to the MySQL experts who reviewed
parts of this book: Marcos Albe, Jean-François Gagné and Kenny Gryp. Thank
you to many other MySQL experts who have helped me, taught me, and provided
opportunities over the years: Peter Zaitsev, Baron Schwartz, Ryan Lowe, Bill Karwin,
Emily Slocombe, Morgan Tocker, Shlomi Noach, Jeremy Cole, Laurynas Biveinis,
Mark Callaghan, Domas Mituzas, Ronald Bradford, Yves Trudeau, Sveta Smirnova,
Alexey Kopytov, Jay Pipes, Stewart Smith, Aleksandr Kuzminsky, Alexander Rubin,
Roman Vynar, and—again—Vadim Tkachenko.

Thank you to O’Reilly and my editors: Corbin Collins, Katherine Tozer, Andy Kwan,
and all the people behind the scenes.

And thank you to my wife, Moon, who supported me during the time-consuming
process of writing this book.

xii | Preface

1 Latency is delay inherent in the system. Query response time is not a delay inherent in MySQL; it comprises
various latencies: network, storage, and so on.

CHAPTER 1

Query Response Time

Performance is query response time.

This book explores that idea from various angles with a single intent: to help you
achieve remarkable MySQL performance. Efficient MySQL performance means focus‐
ing on the best practices and techniques that directly affect MySQL performance—no
superfluous details or deep internals required by DBAs and experts. I presume that
you’re a busy professional who is using MySQL, not managing it, and that you need
the most results for the least effort. That’s not laziness, that’s efficiency. To that end,
this book is direct and to the point. And by the end, you will be able to achieve
remarkable MySQL performance.

MySQL performance is a complex and multifaceted subject, but you do not need to
become an expert to achieve remarkable performance. I narrow the scope of MySQL
complexity by focusing on the essentials. MySQL performance begins with query
response time.

Query response time is how long it takes MySQL to execute a query. Synonymous
terms are: response time, query time, execution time, and (inaccurately) query latency.1

Timing starts when MySQL receives the query and ends when it has sent the result
set to the client. Query response time comprises many stages (steps during query
execution) and waits (lock waits, I/O waits, and so on), but a complete and detailed
breakdown is neither possible nor necessary. As with many systems, basic trouble‐
shooting and analysis reveal the majority of problems.

1

Performance increases as query response time decreases. Improving
query response time is synonymous with reducing query response
time.

This chapter is the foundation. It expounds query response time so that, in subse‐
quent chapters, you can learn how to improve it. There are seven major sections.
The first is a true story to motivate and amuse. The second discusses why query
response time is the North Star of MySQL performance. The third outlines how
query metrics are transformed into meaningful reports: query reporting. The fourth
addresses query analysis: using query metrics and other information to understand
query execution. The fifth maps out the journey of improving query response time:
query optimization. The sixth gives an honest and modest schedule for optimizing
queries. The seventh discusses why MySQL cannot simply go faster—why query
optimization is necessary.

A True Story of False Performance
In 2004, I was working the night shift at a data center—2 p.m. to midnight. It was
a great job for two reasons. First, the only employees in the data center after 5 p.m.
were a handful of engineers monitoring and managing thousands of physical servers
for an undisclosed number of customers and websites—probably tens of thousands
of websites. It was an engineer’s dream. Second, there were countless MySQL servers
that always had problems to fix. It was a gold mine of learning and opportunity. But
at the time, there were few books, blogs, or tools about MySQL. (Though that same
year, O’Reilly published the first edition of High Performance MySQL.) Consequently,
the state of the art for “fixing” MySQL performance problems was “sell the customer
more RAM.” For sales and management it always worked, but for MySQL the results
were inconsistent.

One night I decided not to sell the customer more RAM and, instead, to do a
technical deep dive to find and fix the true root cause of their MySQL performance
problem. Their database was powering a bulletin board which had slowed to a crawl
under the weight of its success—still a common problem today, almost 20 years later.
To make a long story short, I found a single query missing a critical index. After
properly indexing the query, performance improved dramatically and the website was
saved. It cost the customer zero dollars.

Not all performance problems and solutions are that straightforward and glamorous.
But just shy of 20 years’ experience with MySQL has taught me (and many others)
that MySQL performance problems are very often solved by the best practices and
techniques in this book.

2 | Chapter 1: Query Response Time

North Star
I’m a MySQL DBA and a software engineer, so I know what it’s like working with
MySQL as the latter. Especially when it comes to performance, we (software engi‐
neers) just want it (MySQL) to work. Between shipping features and putting out
fires, who has time for MySQL performance? And when MySQL performance is
poor—or worse: when it suddenly becomes poor—the way forward can be difficult
to see because there are many considerations: where do we begin? Do we need more
RAM? Faster CPUs? More storage IOPS? Is the problem a recent code change? (Fact:
code changes deployed in the past can cause performance problems in the future,
sometimes days in the future.) Is the problem a noisy neighbor? Are the DBAs doing
something to the database? Has the app has gone viral and it’s the good kind of
problem to have?

As an engineer whose expertise is the application, not MySQL, that situation can be
overwhelming. To move forward confidently, start by looking at query response time
because it is meaningful and actionable. These are powerful qualities that lead to real
solutions:

Meaningful
Query response time is the only metric anyone truly cares about because, let’s
be honest, when the database is fast, nobody looks at it or asks questions. Why?
Because query response time is the only metric we experience. When a query
takes 7.5 seconds to execute, we experience 7.5 seconds of impatience. That same
query might examine a million rows, but we don’t experience a million rows
examined. Our time is precious.

Actionable
There’s so much you can do to improve query response time and make everyone
happy again that you’re holding a book about it. (Do people still hold books
in the future? I hope so.) Query response time is directly actionable because
you own the code, so you can change the queries. Even if you don’t own the
code (or have access to it), you can still indirectly optimize query response time.
“Improving Query Response Time” on page 27 addresses direct and indirect
query optimization.

Focus on improving query response time—the North Star of MySQL performance.
Do not begin by throwing hardware at the problem. Begin by using query metrics to
determine what MySQL is doing, then analyze and optimize slow queries to reduce
response time, and repeat. Performance will improve.

North Star | 3

Query Reporting
Query metrics provide invaluable insights into query execution: response time, lock
time, rows examined, and so on. But query metrics, like all metrics, are raw values
that need to be collected, aggregated, and reported in a way that’s meaningful to (and
readable for) engineers. That’s what this section outlines: how query metric tools
transform query metrics into query reports. But query reporting is only a means to
an end, as discussed in “Query Analysis” on page 11.

Looking ahead, query analysis is the real work: analyzing query metrics (as reported)
and other information with the goal of understanding query execution. To improve
MySQL performance, you must optimize queries. To optimize queries, you must
understand how they execute. And to understand that, you must analyze them with
pertinent information, including query reports and metadata.

But first you need to understand query reporting, since it represents the trove of
query metrics that provide invaluable insights into query execution. The next three
sections teach you about the following:

• Sources: query metrics originate from two sources and vary by MySQL distribu‐•
tion and version

• Aggregation: query metric values are grouped and aggregated by normalized•
SQL statements

• Reporting: query reports are organized by a high-level profile and a query-•
specific report

Then you’re ready for “Query Analysis” on page 11.

This is not a book about database administration, so this section
does not discuss the setup and configuration of query metrics in
MySQL. I presume this is already done or will be done. If not, don’t
worry: ask your DBA, hire a consultant, or learn how by reading
the MySQL manual.

Sources
Query metrics originate from the slow query log or the Performance Schema. As
the names indicate, the former is a log file on disk, and the latter is a database with
the same name: performance_schema. Although completely different in nature (log
file on disk as opposed to tables in a database), both provide query metrics. The
important difference is how many metrics they provide: apart from query response
time, which both provide, the number of metrics ranges from 3 to more than 20.

4 | Chapter 1: Query Response Time

The name slow query log is historical. Long ago, MySQL logged
only queries that took greater than N seconds to execute, and the
minimum value for N was 1. Old versions of MySQL would not
log a query that took 900 milliseconds to execute because that
was “fast.” The slow query log really earned its name. Today, the
minimum value is zero with a resolution of microseconds. When
set to zero, MySQL logs every query executed. Therefore, the name
is a little misleading, but now you know why.

All things considered, the Performance Schema is the best source of query metrics
because it exists in every current version and distribution of MySQL, it works locally
and in the cloud, it provides all nine metrics covered in “Query Metrics” on page 11,
and it’s the most consistent. Plus, the Performance Schema contains a wealth of other
data for deep MySQL analysis, so its usefulness extends far beyond query metrics.
The slow query log is a good source, too, but it varies considerably:

MySQL
As of MySQL 8.0.14, enable system variable log_slow_extra and the slow query
log provides six of the nine metrics in “Query Metrics” on page 11, lacking only
Rows_affected, Select_scan, and Select_full_join. It’s still a good source, but
use the Performance Schema if possible.

Before MySQL 8.0.14, which includes MySQL 5.7, the slow query log is bare
bones, providing only Query_time, Lock_time, Rows_sent, and Rows_examined.
You can still analyze queries with only these four metrics, but the analysis is
much less insightful. Consequently, avoid the slow query log before MySQL
8.0.14 and instead use the Performance Schema.

Percona Server
Percona Server provides a significantly greater number of metrics in the
slow query log when system variable log_slow_verbosity is configured: all
nine metrics covered in “Query Metrics” on page 11 and more. It also sup‐
ports query sampling (logging a percentage of queries) when system variable
log_slow_rate_limit is configured, which is helpful for busy servers. These
features make the Percona Server slow query log a great source. See “Slow Query
Log” in the Percona Server manual for details.

MariaDB Server
MariaDB Server 10.x uses the Percona Server slow query log enhancements, but
there are two notable differences: system variable log_slow_verbosity is config‐
ured differently in MariaDB, and it does not provide metric Rows_affected.
Otherwise, it’s essentially the same and a great source, too. See “Slow Query Log
Extended Statistics” in the MariaDB knowledge base for details.

Query Reporting | 5

The slow query log is disabled by default, but you can enable it dynamically (without
restarting MySQL). The Performance Schema should be enabled by default, though
some cloud providers disable it by default. Unlike the slow query log, the Perfor‐
mance Schema cannot be enabled dynamically—you must restart MySQL to enable it.

Make sure the best query metric source is used and properly configured. Ask your
DBA, hire a consultant, or learn how by reading the MySQL manual.

The slow query log can log all queries when long_query_time is set
to zero, but be careful: on a busy server, this can increase disk I/O
and use a significant amount of disk space.

Aggregation
Query metrics are grouped and aggregated by query. That sounds obvious since
they’re called query metrics, but some query metric tools can group by username,
hostname, database, and so on. These alternate groupings are exceptionally rare
and yield a different type of query analysis, so I don’t address them in this book.
Since query response time is the North Star of MySQL performance, grouping query
metrics by query is the best way to see which queries have the slowest response time,
which forms the basis of query reporting and analysis.

There’s one little problem: how do you uniquely identify queries to determine the
groups to which they belong? For example, system metrics (CPU, memory, storage,
and so on) are grouped by hostname because hostnames are unique and meaningful.
But queries don’t have any uniquely identifying properties like hostname. The solu‐
tion: a SHA-256 hash of the normalized SQL statement. Example 1-1 shows how a
SQL statement is normalized.

Example 1-1. SQL statement normalization

SELECT col FROM tbl WHERE id=1

SELECT `col` FROM `tbl` WHERE `id` = ?

f49d50dfab1c364e622d1e1ff54bb12df436be5d44c464a4e25a1ebb80fc2f13

SQL statement (sample)

Digest text (normalized SQL statement)

Digest hash (SHA-256 of digest text)

6 | Chapter 1: Query Response Time

MySQL normalizes SQL statements to digest texts, then computes the SHA-256 hash
of the digest text to yield the digest hash. (It’s not necessary to understand the full
process of normalization; it’s sufficient to know that normalization replaces all values
with ? and collapses multiple whitespaces to a single space.) Since the digest text is
unique, the digest hash is also unique (hash collisions notwithstanding).

The MySQL manual uses the term digest equivocally to mean either
digest text or digest hash. Since the digest hash is computed from
the digest text, the equivocation is only a language ambiguity, not a
technical error. Please allow me to equivocate, too, and use digest to
mean either digest text or digest hash when the technical difference
doesn’t matter.

There is an important shift in terminology in the context of query metrics: the term
query changes to be synonymous with digest text. The shift in terminology aligns
with the shift in focus: grouping metrics by query. To group by query, query must be
unique, which is only true of digests.

SQL statements are also called query samples (or samples for short), and they may or
may not be reported. For security, most query metric tools discard samples by default
(because they contain real values) and report only digest texts and hashes. Samples
are required for query analysis because you can EXPLAIN them, which produces meta‐
data necessary for understanding query execution. Some query metric tools EXPLAIN
a sample, then discard it, and report the EXPLAIN plan (the output of EXPLAIN).
Others only report the sample, which is still very convenient: copy-paste to EXPLAIN.
If you have neither, then manually extract samples from the source or manually write
them when needed.

Two more clarifications about terminology and then I promise we’ll move on to more
exciting material. First, terminology varies widely depending on the query metric
tool, as shown in Table 1-1.

Table 1-1. Query metric terminology

Official (MySQL) Alternatives
SQL statement Query

Sample Query

Digest text Class, family, fingerprint, query

Digest hash Class ID, query ID, signature

Second, another term that originated from Percona is query abstract: a SQL statement
highly abstracted to its SQL command and table list. Example 1-2 is the query
abstract for SELECT col FROM tbl WHERE id=1.

Query Reporting | 7

Example 1-2. Query abstract

SELECT tbl

Query abstracts are not unique, but they are useful because they’re succinct. Usually,
developers only need to see a query abstract to know the full query that it represents.

Brevity is the soul of wit.
—William Shakespeare

It’s important to understand that SQL statements are normalized because the queries
you write are not the queries you see. Most of the time, this is not a problem because
digest texts closely resemble SQL statements. But the process of normalization raises
another important point: do not dynamically generate the same logical query with
different syntax, else it will normalize to different digests and be reported as different
queries. For example, in the case of a programmatically-generated query that changes
the WHERE clause based on user input:

SELECT name FROM captains WHERE last_name = 'Picard'
SELECT name FROM captains WHERE last_name = 'Picard' AND first_name = 'Jean-Luc'

Those two queries may be logically the same to you and the application, but they’re
different queries with respect to reporting because they normalize to different digests.
To my knowledge, no query metric tool allows you to combine queries. And it’s tech‐
nically correct to report those queries separately because every condition—especially
in the WHERE clause—affects query execution and optimization.

One point about query normalization: values are removed, so the following two
queries normalize to the same digest:

-- SQL statements
SELECT `name` FROM star_ships WHERE class IN ('galaxy')
SELECT `name` FROM star_ships WHERE class IN ('galaxy', 'intrepid')

-- Digest text
SELECT `name` FROM `star_ships` WHERE `class` IN (...)

Since the digest is the same for both queries, the metrics for both queries are grouped,
aggregated, and reported as one query.

Enough about terminology and normalization. Let’s talk about reporting.

Reporting
Reporting is a challenge and an art form because a single application can have hun‐
dreds of queries. Each query has many metrics and each metric has several statistics:
minimum, maximum, average, percentile, and so forth. On top of that, each query
has metadata: samples, EXPLAIN plans, table structures, on so on. It’s challenging
to store, process, and present all this data. Almost every query metric tool presents

8 | Chapter 1: Query Response Time

the data in a two-level hierarchy: query profile and query report. Those terms vary by
query metric tool, but you will easily recognize each when you see them.

Query profile
A query profile shows slow queries. It is the top-level organization for query report‐
ing, usually the first thing you see in a query metric tool. It presents query digests and
a limited subset of query metrics, which is why it’s called a profile.

Slow is relative to the sort metric: the aggregate value of a query metric by which
queries are ordered. The first ordered query is called the slowest, even if the sort
metric is not query time (or any time). For example, if the sort metric is average rows
sent, the first ordered query is still called the slowest.

Although any query metric can be the sort metric, query time is the universal default
sort metric. When you reduce query execution time, you free up time that allows
MySQL to do more work, or possibly do other work more quickly. Sorting queries by
query time shows you where to begin: the slowest, most time-consuming queries.

What’s not universal is how query time is aggregated. The most common aggregate
values are:

Total query time
Total query time is the sum of execution time (per query). This is the most
common aggregate value because it answers an important question: which query
does MySQL spend the most time executing? To answer that, a query metric tool
adds up all the time MySQL spends executing each query. The query with the
greatest total time is the slowest, most time-consuming query. Here’s an example
of why this is important. Suppose query A has a 1-second response time and exe‐
cutes 10 times, while query B has a 0.1-second response time and executes 1,000
times. Query A has a much slower response time, but query B is 10 times more
time-consuming: 10 seconds in total versus 100 seconds in total, respectively. In
a query profile sorted by total query time, query B is the slowest query. This is
important because you free up the most time for MySQL by optimizing query B.

Percentage execution time
Percentage execution time is total query time (per query) divided by grand total
execution time (all queries). For example, if query C has a total query time of 321
ms and query D has a total query time of 100 ms, then grand total execution time
is 421 ms. Individually, query C is (321 ms / 421 ms) × 100 = 76.2% of grand total
execution time, and query D is (100 ms / 421 ms) × 100 = 23.8% of grand total
execution time. In other words, MySQL spent 421 ms executing queries, 76.2%
of which was spent executing query C. In a query profile sorted by percentage
execution time, query C is the slowest query. Percentage execution time is used
by some query metric tools, but not all.

Query Reporting | 9

Query load
Query load is total query time (per query) divided by clock time, where clock time
is the number of seconds in the time range. If the time range is 5 minutes, then
clock time is 300 seconds. For example, if query E has a total query time 250.2
seconds, then its load is 250.2 s / 300 s = 0.83; and if query F has a total query
time of 500.1 seconds, then its load is 500.1 s / 300 s = 1.67. In a query profile
sorted by query load, query F is the slowest query because its load is the greatest.

Load is relative to time but also subtly indicative of concurrency: multiple instan‐
ces of a query executing at the same time. Query load less than 1.0 means that,
on average, the query does not execute concurrently. Query load greater than 1.0
indicates query concurrency. For example, a query load of 3.5 means that, any
time you look, you’re likely to see 3.5 instances of the query executing. (In reality,
3 or 4 instances of the query since there cannot be 0.5 instances of a query.)
The higher the query load, the greater the possibility of contention if the query
accesses the same or nearby rows. Query load greater than 10 is high and likely to
be a slow query, but there are exceptions. As I write this, I’m looking at a query
with a load of 5,962. How is that possible? I reveal the answer in “Data Access” on
page 97.

When the sort metric uses a nontemporal query metric, like rows sent, a different
aggregate value (average, maximum, and so on) might make sense depending on
what you’re trying to diagnose. This is far less common than total query time, but it
occasionally reveals interesting queries worth optimizing.

Query report
A query report shows you everything there is to know about one query. It is the
second-level organization for query reporting, usually accessed by selecting a slow
query in the query profile. It presents all query metrics and metadata. Whereas the
query profile tells you something just by looking at it (which queries are the slowest),
a query report is an organized information dump used for query analysis. As such,
the more information, the better because it helps you understand query execution.

Query reports vary dramatically depending on the query metric tool. A bare mini‐
mum report includes all query metrics from the source and the basic statistics for
those metrics: minimum, maximum, average, percentile, and so forth. A thorough
report includes metadata: query samples, EXPLAIN plans, table structures, and more.
(Samples may be disabled for security purposes because they contain real values.) A
few query metric tools go further by adding additional information: metric graphs,
histograms (distributions), anomaly detection, time shift comparison (now versus
last week), developer notes, SQL comment key-value extraction, and so on.

Query analysis only requires query metrics in the report. Metadata can be collected
manually. If the query metric tool you use reports only query metrics, don’t worry:

10 | Chapter 1: Query Response Time

that’s a start, but you will need to manually collect EXPLAIN plans and table struc‐
tures, at the very least.

With a query report figuratively in hand, you’re equipped for query analysis.

Query Analysis
The goal of query analysis is understanding query execution, not solving slow
response time. That might surprise you, but solving slow response time happens
after query analysis, during query optimization. First, you need to understand what
you’re trying to change: query execution.

Query execution is like a story with a beginning, middle, and end: you read all three
to understand the story. Once you understand how MySQL executes a query, then
you will understand how to optimize it. Understanding through analysis, then action
through optimization.

I have helped many engineers analyze queries, and the primary
difficulty is not understanding the metrics but getting stuck in the
analysis: staring deeply into the numbers, waiting for a revelation.
Don’t get stuck. Carefully review all the metrics and metadata—
read the whole story—then turn your attention to query optimiza‐
tion with the goal of improving response time.

The following sections address key aspects to an efficient and insightful query analy‐
sis. Sometimes the cause of slow response time is so obvious that the analysis reads
more like a tweet than a story. But when it’s not—when the analysis reads like a
graduate thesis on French existentialism—understanding these aspects will help you
find the cause and determine a solution.

Query Metrics
From “Sources” on page 4, you know that query metrics vary depending on the
source, MySQL distribution, and MySQL version. All query metrics are important
because they help you understand query execution, but the nine metrics detailed in
the following sections are essential to every query analysis.

The Performance Schema provides all nine essential query metrics.

Query metric names also vary by source. In the slow query log,
query time is Query_time; but in the Performance Schema, it’s
TIMER_WAIT. I don’t use either convention. Instead, I use human-
friendly names like query time and rows sent. Query reporting
almost always uses human-friendly names, too.

Query Analysis | 11

Query time
Query time is the most important metric—you knew that already. What you may not
know is that query time includes another metric: lock time.

Lock time is an inherent part of query time, so it’s not surprising that the latter
includes the former. What’s surprising is that query time and lock time are the only
two time-based query metrics, with one exception: the Percona Server slow query log
has metrics for InnoDB read time, row lock wait time, and queue wait time. Lock
time is important, but there’s an unfortunate technical gotcha: it’s accurate only in the
slow query log. More on this later.

Using the Performance Schema, you can see many (but not all) parts of query execu‐
tion. This is off-topic and beyond the scope of this book, but it’s good awareness so
you know where to look if you need to dig deeper. MySQL instruments a bewildering
number of events that the manual defines as, “anything the server does that takes time
and has been instrumented so that timing information can be collected.” Events are
organized in a hierarchy:

transactions
└── statements
 └── stages
 └── waits

Transactions
Transactions are the top-level event because every query executes in a transaction
(Chapter 8 covers transactions).

Statements
Statements are queries, to which query metrics apply.

Stages
Stages are “steps during the statement-execution process, such as parsing a state‐
ment, opening a table, or performing a filesort operation.”

Waits
Waits are “events that take time.” (This definition amuses me. It’s tautological and
oddly satisfying in its simplicity.)

Example 1-3 shows the stages for a single UPDATE statement (as of MySQL 8.0.22).

12 | Chapter 1: Query Response Time

Example 1-3. Stages for a single UPDATE statement

+----------------------------------+----------------------------------+-----------+
| stage | source:line | time (ms) |
+----------------------------------+----------------------------------+-----------+
stage/sql/starting	init_net_server_extension.cc:101	0.109
stage/sql/Executing hook on trx	rpl_handler.cc:1120	0.001
stage/sql/starting	rpl_handler.cc:1122	0.008
stage/sql/checking permissions	sql_authorization.cc:2200	0.004
stage/sql/Opening tables	sql_base.cc:5745	0.102
stage/sql/init	sql_select.cc:703	0.007
stage/sql/System lock	lock.cc:332	0.072
stage/sql/updating	sql_update.cc:781	10722.618
stage/sql/end	sql_select.cc:736	0.003
stage/sql/query end	sql_parse.cc:4474	0.002
stage/sql/waiting handler commit	handler.cc:1591	0.034
stage/sql/closing tables	sql_parse.cc:4525	0.015
stage/sql/freeing items	sql_parse.cc:5007	0.061
stage/sql/logging slow query	log.cc:1640	0.094
stage/sql/cleaning up	sql_parse.cc:2192	0.002
+----------------------------------+----------------------------------+-----------+

The real output is more complex; I simplified it for easy reading. The UPDATE state‐
ment executed in 15 stages. The actual execution of the UPDATE was the eighth stage:
stage/sql/updating. There were 42 waits, but I removed them from the output
because they’re too far off topic.

Performance Schema events (transactions, statements, stages, and waits) are the fine
details of query execution. Query metrics apply to statements. If you need to dig
deeper in a query, look in the Performance Schema.

Efficiency is our modus operandi, so don’t get lost in the Performance Schema until
you need to, which may be never. Query time is sufficient.

Lock time
Lock time is time spent acquiring locks during query execution. Ideally, lock time is
a minuscule percentage of query time, but values are relative (see “Relative Values”
on page 24). For example, on one extremely optimized database that I manage,
lock time is 40% to 50% of query time for the slowest query. Sounds terrible, right?
But it’s not: the slowest query has a maximum query time of 160 microseconds and
a maximum lock time of 80 microseconds—and the database executes over 20,000
queries per second (QPS).

Although values are relative, I can safely say that lock time greater than 50% of query
time is a problem because MySQL should spend the vast majority of its time doing
work, not waiting. A theoretically perfect query execution would have zero wait time,

Query Analysis | 13

but that’s impossible due to shared resources, concurrency, and latency inherent in
the system. Still, we can dream.

MySQL Storage Engines and Data Locking
Before I explain more about lock time and locks in general, let me clarify some
background information.

MySQL has many storage engines—and a history of storage engines, but I won’t bore
you with that. The default storage engine is InnoDB. Other storage engines include:
MyISAM, MEMORY, TempTable, Aria with MariaDB, MyRocks with Percona Server
and MariaDB, XtraDB with Percona Server, and more. (Fun fact: the Performance
Schema is implemented as a storage engine.) In this book, InnoDB is implied unless
stated otherwise.

There are table locks and row locks. The server (MySQL) manages tables and table
locks. Tables are created using a storage engine (InnoDB by default) but are storage
engine agnostic, meaning you can convert a table from one storage engine to another.
Row-level locking is managed by the storage engine if supported. MyISAM does
not support row-level locking, so it manages data access with table locks. InnoDB
supports row-level locking, so it manages data access with row locks. Since InnoDB is
the default storage engine, row-level locking is implied unless stated otherwise.

InnoDB also has table locks called intention locks, but they’re
not important for this discussion.

There are metadata locks managed by the server that control access to schemas,
tables, stored programs, and more. Whereas table locks and row locks control access
to table data, metadata locks control access to table structures (columns, indexes, and
so on) to prevent changes while queries are accessing the tables. Every query acquires
a metadata lock on every table that it accesses. Metadata locks are released at the end
of the transaction, not the query.

Remember: InnoDB and row-level locking are implied unless
stated otherwise.

14 | Chapter 1: Query Response Time

Remember the unfortunate technical gotcha mentioned earlier? Here it is: lock time
from the Performance Schema does not include row lock waits, only table and
metadata lock waits. Row lock waits are the most important part of lock time, which
makes lock time from the Performance Schema nearly useless. By contrast, lock time
from the slow query log includes all lock waits: metadata, table, and row. Lock time
from either source does not indicate which type of lock wait. From the Performance
Schema, it’s certainly metadata lock wait; and from the slow query log, it’s probably
row lock wait, but metadata lock wait is a possibility, too.

Lock time from the Performance Schema does not include row lock
waits.

Locks are primarily used for writes (INSERT, UPDATE, DELETE, REPLACE) because rows
must be locked before they can be written. Response time for writes depends, in
part, on lock time. The amount of time needed to acquire row locks depends on
concurrency: how many queries are accessing the same (or nearby) rows at the
same time. If a row has zero concurrency (accessed by only one query at a time),
then lock time is vanishingly small. But if a row is hot—jargon for very frequently
accessed—then lock time could account for a significant percentage of response time.
Concurrency is one of several data access patterns (see “Data Access Patterns” in
Chapter 4).

For reads (SELECT), there are nonlocking and locking reads. The distinction is easy
because there are only two locking reads: SELECT…FOR UPDATE and SELECT…FOR

SHARE. If not one of those two, then SELECT is nonlocking, which is the normal case.

Although SELECT…FOR UPDATE and SELECT…FOR SHARE are the only locking reads,
don’t forget about writes with an optional SELECT. In the following SQL statements,
the SELECT acquires shared row locks on table s:

• INSERT…SELECT FROM s•
• REPLACE…SELECT FROM s•
• UPDATE…WHERE…(SELECT FROM s)•
• CREATE TABLE…SELECT FROM s•

Strictly speaking, those SQL statements are writes, not reads, but the optional SELECT
acquires shared row locks on table s. See “Locks Set by Different SQL Statements in
InnoDB” in the MySQL manual for details.

Query Analysis | 15

Locking reads should be avoided, especially SELECT…FOR UPDATE, because they don’t
scale, they tend to cause problems, and there is usually a nonlocking solution to
achieve the same result. With respect to lock time, a locking read is like a write:
it depends on concurrency. Be careful with SELECT…FOR SHARE: shared locks are
compatible with other shared locks, but they’re incompatible with exclusive locks,
which means shared locks block writes on the same (or nearby) rows.

For nonlocking reads, even though row locks are not acquired, lock time will not be
zero because metadata and table locks are acquired. But acquiring these two should
be very fast: less than 1 millisecond. For example, another database I manage executes
over 34,000 QPS but the slowest query is a nonlocking SELECT that does a full table
scan, reading six million rows every execution, with very high concurrency: 168
query load. Despite these large values, its maximum lock time is 220 microseconds,
and average lock time is 80 microseconds.

Nonlocking read does not mean non-blocking. SELECT queries must acquire shared
metadata locks (MDL) on all tables accessed. As usual with locks, shared MDL
are compatible with other shared MDL, but one exclusive MDL blocks all other
MDL. ALTER TABLE is the common operation that acquires an exclusive MDL. Even
using ALTER TABLE…ALGORITHM=INPLACE, LOCK=NONE or third-party online schema
change tools like pt-online-schema-change and gh-ost, an exclusive MDL must be
acquired at the end to swap the old table structure for the new one. Although the
table swap is very quick, it can cause a noticeable disruption when MySQL is heavily
loaded because all table access is blocked while the exclusive MDL is held. This
problem shows up as a blip in lock time, especially for SELECT statements.

SELECT can block waiting for metadata locks.

Locking might be the most complex and nuanced aspect of MySQL. To avoid going
down the proverbial rabbit hole, let me state five points but defer explanation for
now. Merely being aware of these points greatly increases your MySQL prowess:

• Lock time can be significantly greater than innodb_lock_wait_timeout because
this system variable applies to each row lock.

• Locking and transaction isolation levels are related.
• InnoDB locks every row it accesses including rows it does not write.

16 | Chapter 1: Query Response Time

• Locks are released on transaction commit or rollback, and sometimes during
query execution.

• InnoDB has different types of locks: record, gap, next-key, and more.

“Row Locking” on page 260 goes into detail. For now, let’s put it all together and
visualize how query time includes lock time. Figure 1-1 shows locks acquired and
released during query execution.

Figure 1-1. Lock time during query execution

Labels 1 to 10 mark events and details with respect to locking:

1. Acquire shared metadata lock on table1.
2. Acquire intention exclusive (IX) table lock2.
3. Acquire row lock 13.
4. Update (write) row 14.
5. Acquire row lock 25.
6. Release row lock 26.
7. Acquire row lock 37.
8. Update (write) row 38.
9. Commit transaction9.

10. Release all locks10.

Two points of interest:

• Lock time from the Performance Schema includes only labels 1 and 2. From the•
slow query log it includes labels 1, 2, 3, 5, and 7.

• Although row 2 is locked (label 5), it’s not written and its lock is released (label•
6) before the transaction commits (label 9). This can happen, but not always. It
depends on the query and transaction isolation level.

That was a lot of information about lock time and locking, but now you are well-
equipped to understand lock time in your query analysis.

Query Analysis | 17

Rows examined
Rows examined is the number of rows that MySQL accessed to find matching rows.
It indicates the selectivity of the query and the indexes. The more selective both are,
the less time MySQL wastes examining non-matching rows. This applies to reads and
writes, except INSERT unless it’s an INSERT…SELECT statement.

To understand rows examined, let’s look at two examples. First, let’s use the following
table, t1, and three rows:

CREATE TABLE `t1` (
 `id` int NOT NULL,
 `c` char(1) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

+----+---+
| id | c |
+----+---+
1	a
2	b
3	c
+----+---+

Column id is the primary key, and column c is not indexed.

The query SELECT c FROM t1 WHERE c = 'b' matches one row but examines three
rows because there is no unique index on column c. Therefore, MySQL has no idea
how many rows match the WHERE clause. We can see that only one row matches,
but MySQL doesn’t have eyes, it has indexes. By contrast, the query SELECT c FROM
t1 WHERE id = 2 matches and examines only one row because there is a unique
index on column id (the primary key) and the table condition uses the entire index.
Now MySQL can figuratively see that only one row matches, so that’s all it examines.
Chapter 2 teaches indexes and indexing, which explain table conditions and a lot
more.

For the second example, let’s use the following table, t2, and seven rows:

CREATE TABLE `t2` (
 `id` int NOT NULL,
 `c` char(1) NOT NULL,
 `d` varchar(8) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `c` (`c`)
) ENGINE=InnoDB;

18 | Chapter 1: Query Response Time

+----+------+--------+
| id | c | d |
+----+------+--------+
1	a	apple
2	a	ant
3	a	acorn
4	a	apron
5	b	banana
6	b	bike
7	c	car
+----+------+--------+

Column id is the same as before (primary key). Column c has a nonunique index.
Column d is not indexed.

How many rows will query SELECT d FROM t2 WHERE c = 'a' AND d = 'acorn'
examine? The answer is: four. MySQL uses the nonunique index on column c to look
up rows matching the condition c = 'a', and that matches four rows. And to match
the other condition, d = 'acorn', MySQL examines each of those four rows. As a
result, the query examines four rows but matches (and returns) only one row.

It’s not uncommon to discover that a query examines more rows than expected. The
cause is usually the selectivity of the query or the indexes (or both), but sometimes it’s
because the table has grown a lot larger than expected, so there are a lot more rows to
examine. Chapter 3 examines this further (pun intended).

Rows examined only tells half the story. The other half is rows sent.

Rows sent
Rows sent is the number of rows returned to the client—the result set size. Rows sent
is most meaningful in relation to rows examined.

Rows sent = Rows examined
The ideal case is when rows sent and rows examined are equal and the value
is relatively small, especially as a percentage of total rows, and query response
time is acceptable. For example, 1,000 rows from a table with one million rows
is a reasonable 0.1%. This is ideal if response time is acceptable. But 1,000 rows
from a table with only 10,000 rows is a questionable 10% even if response time
is acceptable. Regardless of the percentage, if rows sent and rows examined are
equal and the value is suspiciously high, it strongly indicates that the query is
causing a table scan, which is usually terrible for performance—“Table scan” on
page 48 explains why.

Rows sent < Rows examined
Fewer rows sent than examined is a reliable sign of poor query or index selectiv‐
ity. If the difference is extreme, it likely explains slow response time. For example,
1,000 rows sent and 100,000 rows examined aren’t large values, but they mean

Query Analysis | 19

99% of rows did not match—the query caused MySQL to waste a lot of time.
Even if response time is acceptable, an index could dramatically reduce the
wasted time.

Rows sent > Rows examined
It’s possible, but rare, to send more rows than were examined. This happens
under special conditions, like when MySQL can “optimize away” the query. For
example, SELECT COUNT(id) FROM t2 on the table in the previous section sends
one row for the value of COUNT(id) but examines zero rows.

Rows sent is rarely a problem by itself. Modern networks are fast and the MySQL
protocol is efficient. If your distribution and version of MySQL have the bytes sent
metric in the slow query log (the Performance Schema does not provide this query
metric), you can use it two ways. First, the minimum, maximum, and average values
reveal the result set size in bytes. This is usually small, but it can be large if the query
returns BLOB or JSON columns. Second, total bytes sent can be converted to a network
throughput (Mbps or Gbps) to reveal the network utilization of the query, which is
also usually very small.

Rows affected
Rows affected is the number of rows inserted, updated, or deleted. Engineers are
very careful to affect only the correct rows. It’s a serious bug when the wrong rows
are changed. Viewed this way, the value of rows affected is always correct. But a
surprisingly large value could indicate a new or modified query that affects more
rows than intended.

Another way to view rows affected is as the batch size of bulk operations. Bulk
INSERT, UPDATE, and DELETE are a common source of several problems: replication
lag, history list length, lock time, and overall performance degradation. Equally
common is the question, “How large should the batch size be?” There’s no universally
correct answer. Instead, you must determine the batch size and rate that MySQL
and the application can sustain without impacting query response time. I explain in
“Batch Size” on page 115, which focuses on DELETE but is also applicable to INSERT
and UPDATE.

Select scan
Select scan is the number of full table scans on the first table accessed. (If the query
accesses two or more tables, the next metric applies: select full join.) This is usually
bad for performance because it means the query isn’t using an index. After Chapter 2,
which teaches indexes and indexing, it should be easy to add an index to fix a table
scan. If select scan is not zero, query optimization is strongly advised.

20 | Chapter 1: Query Response Time

2 Unless STRAIGHT_JOIN is used—but don’t use this. Let the MySQL query optimizer choose the join order for
the best query execution plan. It’s almost always right, so trust it unless you can prove it wrong.

It’s possible, but very rare, that a query causes a table scan sometimes but not always.
To determine why, you need a query sample and EXPLAIN plan for both: a query
sample that causes a table scan, and a query sample that does not. One likely reason is
how many rows MySQL estimates the query will examine relative to index cardinality
(the number of unique values in the index), total rows in the table, and other
costs. (The MySQL query optimizer uses a cost model.) Estimates aren’t perfect and
sometimes MySQL is wrong, resulting in a table scan or suboptimal execution plan,
but again: this is very rare.

More than likely, select scan is either all zero or all one (it’s a binary value). Be happy
if it’s zero. Optimize the query if it’s not zero.

Select full join
Select full join is the number of full table scans on tables joined. This is similar to
select scan but worse—I explain why in a moment. Select full join should always be
zero; if not, query optimization is practically required.

When you EXPLAIN a query with multiple tables, MySQL prints the table join order
from top (first table) to bottom (last table). Select scan applies only to the first table.
Select full join applies only to the second and subsequent tables.

Table join order is determined by MySQL, not the query.2 Example 1-4 shows the
EXPLAIN plan for SELECT…FROM t1, t2, t3: MySQL determines a different join
order than the implicit three-table join in the query.

Example 1-4. EXPLAIN plan for three tables joined

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t3
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE

Query Analysis | 21

 table: t1
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 7
 filtered: 100.00
 Extra: NULL

MySQL reads table t3 first, then joins table t1, then joins table t2. That join order is
different than the query (FROM t1, t2, t3), which is why you must EXPLAIN a query
to see its join order.

Always EXPLAIN a query to see its join order.

Select scan applies to table t3 because it’s the first table in the join order and it causes
a table scan (indicated by type: ALL). Select full join would apply to table t1 if it
caused a table scan, but it doesn’t: MySQL joins the table using a range scan on the
primary key (indicated by type: range and key: PRIMARY, respectively). Select full
join applies to table t2 because MySQL joins it using a full table scan (indicated by
type: ALL).

The table scan on t2 is called a full join because MySQL scans the full table on join.
Select full join is worse than select scan because the number of full joins that occur
on a table during query execution is equal to the product of rows from the preceding
tables. MySQL estimates three rows from table t3 (indicated by rows: 3) and two
rows from table t1 (indicated by rows: 2). Therefore, 3 × 2 = 6 full joins on table
t2 during query execution. But the select full join metric value will be 1 because it

22 | Chapter 1: Query Response Time

counts full joins in the execution plan, not during query execution, which is sufficient
because even one full join is too many.

As of MySQL 8.0.18, the hash join optimization improves perfor‐
mance for certain joins, but avoiding full joins remains the best
practice. See “Table Join Algorithms” on page 87 for a brief over‐
view of hash join.

Created tmp disk tables
Created tmp disk tables is the number of temporary tables created on disk. It’s normal
for queries to create temporary tables in memory; but when an in-memory tempo‐
rary table becomes too large, MySQL writes it to disk. That can affect response time
because disk access is orders of magnitude slower than memory access.

However, temporary tables on disk is not a common problem because MySQL tries
to avoid them. Excessive “tmp disk tables” indicates a query that can be optimized, or
(perhaps) the system variable tmp_table_size is too small. Always optimize queries
first. Change system variables as a last resort—especially ones that affect memory
allocation.

See “Internal Temporary Table Use in MySQL” in the MySQL manual for more
information.

Query count
Query count is the number of query executions. The value is arbitrary unless
extremely low and the query is slow. “Low and slow” is an odd combination worth
investigating.

As I write this, I’m looking at a query profile that’s a perfect example: the slowest
query executed once but took 44% of execution time. Other metrics are:

• Response time: 16 s•
• Lock time: 110 μs•
• Rows examined: 132,000•
• Rows sent: 13•

Not your everyday query. It looks like an engineer manually executed the query, but I
can tell from the digest text that it was programmatically generated. What’s the story
behind this query? To find out, I’ll have to ask the application developers.

Query Analysis | 23

Metadata and the Application
There’s more to query analysis than query metrics: metadata. In fact, you can’t
complete a query analysis without at least two pieces of metadata: the EXPLAIN plan
(also called the query execution plan), and the table structure for each table. A few
query metric tools automatically collect metadata and show it in the query report. If
your query metric tool does not, don’t worry: it’s easy to collect metadata. EXPLAIN
and SHOW CREATE TABLE report the EXPLAIN plan and table structures, respectively.

Metadata is indispensable for query analysis, query optimization, and MySQL perfor‐
mance in general. EXPLAIN is a vital tool in your MySQL repertoire. I explain it in
“EXPLAIN: Query Execution Plan” on page 51 and use it extensively throughout
this book.

There’s even more to query analysis than query metrics and metadata: the applica‐
tion. Metrics and metadata are must-have for any query analysis, but the story is only
complete when you know what purpose the query serves: why does the application
execute the query? Knowing this allows you to evaluate changes to the application,
which is the focus of Chapter 4. More than once, I’ve seen engineers realize that a
query can be a lot simpler—or completely removed.

Query metrics, metadata, and the application should complete the story. But I’d be
remiss not to mention that, sometimes, issues outside MySQL and the application
influence the story—and usually not for the better. “Noisy Neighbors” on page 301
is a classic case. If response time is slow but a thorough query analysis doesn’t reveal
why, then consider outside issues. But don’t be too quick to jump to this conclusion;
outside issues should be the exception, never the norm.

Relative Values
For each query metric, the only objectively good value is zero because, as the saying
goes, the fastest way to do something is to not do it. Nonzero values are always
relative to the query and application. For example, one thousand rows sent is fine
in general, but it could be terrible if the query is supposed to return only one row.
Relative values are meaningful when considering the full story: metrics, metadata,
and the application.

Here’s another true story to illustrate that values are relative and meaningful with
the full story. I inherited an application that became slower and slower over the
years. It was an internal application—not used by customers—so fixing it wasn’t a
priority until it became unbearably slow. In the query profile, the slowest query was
examining and returning over ten thousand rows—not a full table scan, just a lot
of rows. Instead of fixating on the values, I went spelunking in the source code and
discovered that the function executing the query was only counting the number of
rows, not using the rows. It was slow because it needlessly accessed and returned

24 | Chapter 1: Query Response Time

3 For a full explanation of percentiles, see HackMySQL.

thousands of rows, and it became slower over time because the number of rows
increased as the database grew. With the full story, the optimization was glaringly
obvious and simple: SELECT COUNT(*).

Average, Percentile, and Maximum
It’s standard to talk about query response time as if it’s a single value, but it’s not.
From “Aggregation” on page 6 you know that query metrics are grouped and aggre‐
gated by query. As a result, query metrics are reported as single, statistical values:
minimum, maximum, average, and percentile. You are undoubtedly familiar with
these ubiquitous “stats,” but with respect to query response time, the following points
may surprise you:

• Average is overly optimistic•
• Percentile is an assumption•
• Maximum is the best representation•

Let me explain:

Average
Don’t be fooled by the average: if query count is small, a few very large or small
values can skew the average response time (or any metric). Moreover, without
knowing the distribution of values, we cannot know what percentage of values
the average represents. For example, if the average equals the median, then
the average represents the bottom 50% of values, which are the better (faster)
response times. In that case, the average is overly optimistic. (Most values are
overly optimistic if you ignore the worst half.) The average only tells you, at a
glance, if the query typically executes in a matter of microseconds, milliseconds,
or seconds. Don’t read more into it than that.

Percentile
Percentiles solve the problem of averages. Without going into a full explanation
of percentiles, P95 is the value that 95% of samples are less than or equal to.3 For
example, if P95 equals 100 ms, then 95% of values are less than or equal to 100
ms, and 5% of values are greater than 100 ms. Consequently, P95 represents 95%
of values, which is objectively more representative—and less optimistic—than
the average. There’s another reason percentiles are used: the small percentage of
values ignored are considered outliers. For example, network jitter and flukes can
cause a small percentage of query executions to take longer than normal. Since
that’s no fault of MySQL, we ignore those execution times as outliers.

Query Analysis | 25

4 P95, P99, and P999 are conventional. I’ve never seen other percentiles used with MySQL—median (P50) and
maximum (P100) notwithstanding.

Percentiles are standard practice, but they’re also an assumption. Yes, there can
be outliers, but they should be proven, not assumed. Until the top N% are
proven not to be outliers, they are the most interesting values precisely because
they’re not normal. What’s causing them? That’s difficult to answer, which is why
percentiles are standard practice: it’s easier to ignore the top N% of values than to
dig deep and find the answer.

The best percentile is P999 (99.9%) because discarding 0.1% of values is an
acceptable tradeoff between assuming that they’re outliers and the reality that
outliers do exist.4

Maximum
Maximum query time solves the problem of percentiles: don’t discard any values.
The maximum value is not a myth or statistical apparition like the average.
Somewhere in the world, some application user experienced the maximum query
response time—or gave up after a few seconds and left. You should want to know
why, and you can find the answer. Whereas explaining the top N% of values
is difficult because there are many values and, thus, many potentially different
answers, explaining the maximum is a single value and answer. Query metric
tools often use the query with the maximum response time as the sample, which
makes explaining it almost trivial because you have the proverbial smoking gun.
With that sample, one of two things will happen: either it reproduces the prob‐
lem, in which case you continue with the analysis; or, it does not reproduce the
problem, in which case you have proven that it’s an outlier that can be ignored.

Here’s another true story of the former case. An otherwise good application
would randomly respond very slowly. Minimum, average, and P99 query time
were all milliseconds, but maximum query time was seconds. Instead of ignoring
the maximum, I collected query samples of normal and maximum execution
time. The difference was the size of the IN list in the WHERE clause: hundreds of
values for normal query time, and several thousand values for maximum query
time. Fetching more values takes longer to execute, but milliseconds to seconds is
not normal even for thousands of values. EXPLAIN provided the answer: normal
query time used an index, but maximum query time caused a full table scan.
MySQL can switch query execution plans (see “It’s a Trap! (When MySQL Choo‐
ses Another Index)” on page 87), which explains MySQL, but what explains
the application? Long story short, the query was used to look up data for fraud
detection, and occasionally a big case would look up several thousand rows at
once, which caused MySQL to switch query execution plans. Normally, the query
was perfectly fine, but digging into the maximum response time revealed not

26 | Chapter 1: Query Response Time

only a MySQL gotcha but also an opportunity to improve the application and
user experience by handling large lookups more efficiently.

Average, percentile, and maximum are useful, just be aware of what they do and do
not represent.

Also consider the distribution of values between the minimum and maximum. If
you’re lucky, the query report includes histograms, but don’t count on it: calculating
histograms for an arbitrary time range is difficult, so almost no query metric tool
does it. The basic statistics (minimum, maximum, average, and percentile) indicate
enough of the distribution to determine if the query is stable: metrics are roughly the
same for every execution. (In Chapter 6, I return to the idea of stability. See “Normal
and Stable: The Best Database Is a Boring Database” on page 180.) Unstable queries
complicate the analysis: what causes the query to execute differently? The cause is
likely outside MySQL, which makes it more difficult to find, but it’s necessary to find
because stable queries are easier to analyze, understand, and optimize.

Improving Query Response Time
Improving query response time is a journey called query optimization. I call it a
journey to set the proper expectations. Query optimization takes time and effort,
and there is a destination: faster query response time. To make the journey efficient—
not a waste of time and effort—there are two parts: direct query optimization and
indirect query optimization.

Direct Query Optimization
Direct query optimization is changes to queries and indexes. These changes solve
a lot of performance problems, which is why the journey begins with direct query
optimization. And because these changes are so powerful, the journey often ends
here, too.

Let me use an analogy that’s a little simplistic now but will be more insightful later.
Think of a query as a car. Mechanics have tools to fix a car when it’s not running
well. Some tools are common (like a wrench), and others are specialized (like a
dual overhead cam lock). Once a mechanic pops the hood and finds the problem,
they know which tools are needed to fix it. Likewise, engineers have tools to fix a
query when it’s running slowly. The common tools are query analysis, EXPLAIN, and
indexes. The specialized tools are query-specific optimizations. To name only a few
from “Optimizing SELECT Statements” in the MySQL manual:

• Range Optimization•
• Index Merge Optimization•
• Hash Join Optimization•

Improving Query Response Time | 27

• Index Condition Pushdown Optimization•
• Multi-Range Read Optimization•
• Constant-Folding Optimization•
• IS NULL Optimization•
• ORDER BY Optimization•
• GROUP BY Optimization•
• DISTINCT Optimization•
• LIMIT Query Optimization•

In this book, I do not explain query-specific optimizations because Chapter 8, “Opti‐
mization” in the MySQL manual already explains them in detail, and it’s authoritative
and regularly updated. Plus, query-specific optimizations vary by MySQL version and
distribution. Instead, I teach indexes and indexing in Chapter 2: the foundation for
knowing which query-specific optimizations to use—and how—when fixing a slow
query. After Chapter 2, you will wield specialized tools like the “Index Condition
Pushdown Optimization” like a master mechanic wields a dual overhead cam lock.

Every so often I talk with an engineer who is surprised and a little unhappy when
the query optimizations they so assiduously applied do not solve the problem. Direct
query optimization is necessary but not always sufficient. An optimized query can
be or become a problem under different circumstances. When you can’t optimize a
query any further (or you can’t optimize it at all because you don’t have access to
the source code), you can optimize around the query, which leads to part two of the
journey: indirect query optimization.

Indirect Query Optimization
Indirect query optimization is changes to data and access patterns. Instead of changing
a query, you change what the query accesses and how: its data and access patterns,
respectively. These changes indirectly optimize the query because query, data, and
access patterns are inextricable with respect to performance. Changes to one influ‐
ence the others. It’s easy to prove.

Suppose you have a slow query. Data size and access patterns don’t matter for this
proof, so imagine whatever you like. I can reduce query response time to near-zero.
(Let’s say near-zero is 1 microsecond. For a computer that’s a long time, but for
a human it’s imperceptible.) The indirect “optimization” is: TRUNCATE TABLE. With
no data, MySQL can execute any query in near-zero time. That’s cheating, but it
nonetheless proves the point: reducing data size improves query response time.

Let’s revisit the car analogy. Indirect query optimization is analogous to changing
major design elements of the car. For example, weight is a factor in fuel efficiency:

28 | Chapter 1: Query Response Time

decreasing weight increases fuel efficiency. (Data is analogous to weight, which is why
TRUNCATE TABLE dramatically increases performance—but don’t use this “optimiza‐
tion.”) Reducing weight is not a straightforward (direct) change because engineers
can’t magically make parts weigh less. Instead, they have to make significant changes,
such as switching from steel to aluminum, which can affect many other design
elements. Consequently, these changes require a greater level of effort.

A greater level of effort is why indirect query optimization is part two of the journey.
If direct query optimization solves the problem, then stop—be efficient. (And con‐
gratulations.) If it doesn’t and you’re certain the query cannot be further optimized,
then it’s time to change data and access patterns, which Chapters 3 and 4 cover.

When to Optimize Queries
When you fix a slow query, another one takes its place. There will always be slow
queries, but you should not always optimize them because it’s not an efficient use
of your time. Instead, recall “North Star” on page 3 and ask: is query response time
acceptable? If not, then please continue optimizing queries. If yes, then you’re done
for now because when the database is fast, nobody looks or asks questions.

As a DBA, I would like you to review query metrics (starting with the “Query profile”
on page 9) every week and optimize the slowest queries if needed, but as a software
engineer I know that’s not practical and almost never happens. Instead, here are three
occasions when you should optimize queries.

Performance Affects Customers
When performance affects customers, it is the duty of engineers to optimize queries.
I don’t think any engineer would disagree; rather, engineers are eager to improve
performance. Some might say this is bad advice because it’s reactive, not proactive,
but my overwhelming experience is that engineers (and even DBAs) don’t look at
query metrics until customers report that the application is too slow or timing out.
As long as query metrics are always on and at the ready, this is an objectively good
time to optimize queries because the need for better performance is as real as your
customers.

Before and After Code Changes
Most engineers don’t argue against prioritizing query optimization before and after
code changes, but my experience is that they don’t do it, either. I implore you to
avoid this common pattern: seemingly innocent changes are made to code, vetted
in staging, deployed to production, then performance starts to “swirl the bowl” (a
colorful metaphor related to toilets that means “become worse”). What happened?
The cause is usually changes to queries and access patterns, which are closely related.

When to Optimize Queries | 29

Chapter 2 begins to explain why; Chapters 3 and 4 complete the explanation. For
now, the point is: you will be a hero if you review query metrics before and after code
changes.

Once a Month
Even if your code and queries do not change, at least two things around them are
changing: data and access patterns. I hope your application is wildly successful and
stores ever more data as the number of users climbs “up and to the right.” Query
response time changes over time as data and access patterns change. Fortunately,
these changes are relatively slow, usually on the order of weeks or months. Even for
an application experiencing hyper-growth (for example, adding thousands of new
users every day to millions of existing users), MySQL is really good at scaling up so
that query response time remains stable—but nothing lasts forever (even the stars
die). There is always a point at which good queries go bad. This reality becomes
clear after Chapters 3 and 4. For now, the point is: you will rise from hero to legend—
possibly with song and story written about you—if you review query metrics once
a month.

MySQL: Go Faster
There is no magic or secret to make MySQL significantly faster without changing
queries or the application. Here’s another true story to illustrate what I mean.

A team of developers learned that their application was going to be mentioned by
a celebrity. They expected a flood of traffic, so they planned ahead to ensure that
MySQL and the application would survive. An engineer on the team asked me to help
increase MySQL throughput (QPS). I asked, “By how much?” She said, “By 100x”. I
said, “Sure. Do you have a year and a willingness to rearchitect the application?” She
said, “No, we have one day.”

I understand what the engineer was thinking: how much throughput could MySQL
handle if we significantly upgraded the hardware—more CPU cores, more memory,
more IOPS? There’s no simple or single answer because it depends on many factors
that this book explores in the coming chapters. But one thing is certain: time is a hard
limit.

30 | Chapter 1: Query Response Time

There are 1,000 milliseconds in 1 second—no more, no less. If a query takes 100
milliseconds to execute, then its worst-case throughput is 10 QPS per CPU core:
1,000 ms / 100 ms/query = 10 QPS. (Its real throughput is likely higher—more on this
in a moment.) If nothing changes, then there’s simply no more time to execute the
query with greater throughput.

To make MySQL do more work in the same amount of time, you have three options:

• Change the nature of time•
• Decrease response time•
• Increase load•

Option one is beyond the scope of this book, so let’s focus on options two and three.

Decreasing response time frees time that MySQL can use to do more work. It’s simple
math: if MySQL is busy 999 milliseconds out of every second, then it has one free
millisecond to do more work. If that’s not enough free time, then you must decrease
the time that the current work is consuming. The best way to accomplish that: direct
query optimization. Failing that: indirect query optimization. And finally: better,
faster hardware. The following chapters teach you how.

Increasing load—the number of queries executing concurrently—tends to happen
first because it doesn’t require any query or application changes: simply execute
more queries at once (concurrently), and MySQL responds by using more CPU
cores. This happens because one CPU core executes one thread, which executes one
query. Worst case, MySQL uses N CPU cores to execute N queries concurrently. But
the worst case is practically nonexistent because response time is not CPU time. A
nonzero amount of response time is CPU time, and the rest is off-CPU. For example,
response time might be 10 ms of CPU time and 90 ms of disk I/O wait. Therefore,
the worst-case throughput for a query that takes 100 milliseconds to execute is 10
QPS per CPU core, but its real throughput should be higher since the worst case
is practically nonexistent. Sounds great, right? Just push MySQL harder and voilà:
more performance. But you know how the story ends: push MySQL too hard and
it stops working because every system has finite capacity. MySQL can easily push
most modern hardware to its limits, but don’t try it until you’ve read “Performance
Destabilizes at the Limit” on page 125.

Bottom line: MySQL cannot simply go faster. To make MySQL go faster, you must
embark on the journey of direct and indirect query optimization.

MySQL: Go Faster | 31

Summary
This chapter expounded query time so that, in subsequent chapters, you can learn
how to improve it. The central takeaway points are:

• Performance is query response time: how long it takes MySQL to execute a query.•
• Query response time is the North Star of MySQL performance because it is•

meaningful and actionable.
• Query metrics originate from the slow query log or the Performance Schema.•
• The Performance Schema is the best source of query metrics.•
• Query metrics are grouped and aggregated by digest: normalized SQL statements.•
• A query profile shows slow queries; slow is relative to the sort metric.•
• A query report shows all available information for one query; it’s used for query•

analysis.
• The goal of query analysis is understanding query execution, not solving slow•

response time.
• Query analysis uses query metrics (as reported), metadata (EXPLAIN plans, table•

structures, and so on), and knowledge of the application.
• Nine query metrics are essential to every query analysis: query time, lock time,•

rows examined, rows sent, row affected, select scan, select full join, created tmp
disk tables, and query count.

• Improving query response time (query optimization) is a two-part journey:•
direct query optimization, then indirect query optimization.
— Direct query optimization is changes to queries and indexes.—
— Indirect query optimization is changes to data and access patterns.—

• At the very least, review the query profile and optimize slow queries when•
performance affects customers, before and after code changes, and once a month.

• To make MySQL go faster, you must decrease response time (free time to do•
more work) or increase load (push MySQL to work harder).

The next chapter teaches MySQL indexes and indexing—direct query optimization.

32 | Chapter 1: Query Response Time

Practice: Identify Slow Queries
The goal of this practice is to identify slow queries using pt-query-digest: a
command-line tool that generates a query profile and query reports from a slow
query log.

Use a development or staging MySQL instance—do not use pro‐
duction unless you are confident that it will not cause problems.
The slow query log is inherently safe, but enabling it on a busy
server can increase disk I/O.

If you have DBAs who manage MySQL, ask them to enable and configure the
slow query log. Or, you can learn how by reading “The Slow Query Log” in the
MySQL manual. (You need a MySQL user account with SUPER privileges to configure
MySQL.) If you’re using MySQL in the cloud, read the cloud provider documentation
to learn how to enable and access the slow query log.

MySQL configurations vary, but the simplest way to configure and enable the slow
query log is:

SET GLOBAL long_query_time=0;

SET GLOBAL slow_query_log=ON;

SELECT @@GLOBAL.slow_query_log_file;
+-------------------------------+
| @@GLOBAL.slow_query_log_file |
+-------------------------------+
| /usr/local/var/mysql/slow.log |
+-------------------------------+

Zero in the first statement, SET GLOBAL long_query_time=0;, causes MySQL to log
every query. Be careful: on a busy server, this can increase disk I/O and use gigabytes
of disk space. If needed, use a slightly larger value like 0.0001 (100 microseconds) or
0.001 (1 millisecond).

Percona Server and MariaDB Server support slow query log sam‐
pling: set system variable log_slow_rate_limit to log every Nth
query. For example, log_slow_rate_limit = 100 logs every 100th
query, which equals 1% of all queries. Over time, this creates a
representative sample when combined with long_query_time =
0. When using this feature, be sure that the query metric tool
accounts for sampling, else it will under report values. pt-query-
digest accounts for sampling.

Practice: Identify Slow Queries | 33

The last statement, SELECT @@GLOBAL.slow_query_log_file;, outputs the slow
query log filename that you need as the first command line argument to pt-query-
digest. You can dynamically change this variable if you want to log to a different file.

Second, run pt-query-digest with the slow query log filename as the first command
line argument. The tool will print a lot of output; but for now, look at the Profile
near the top of the output:

Profile
Rank Query ID Response time Calls
==== =================================== =============== =====
1 0x95FD3A847023D37C95AADD230F4EB56A 1000.0000 53.8% 452 SELECT tbl
2 0xBB15BFCE4C9727175081E1858C60FD0B 500.0000 26.9% 10 SELECT foo bar
3 0x66112E536C54CE7170E215C4BFED008C 50.0000 2.7% 5 INSERT tbl
MISC 0xMISC 310.0000 16.7% 220 <2 ITEMS>

The preceding output is a text-based table listing the slowest queries from the slow
query log. In this example, SELECT tbl (a query abstract) is the slowest query,
accounting for 53.8% of total execution time. (By default, pt-query-digest sorts
queries by percentage execution time.) Below the query profile, a query report is
printed for each query.

Explore the pt-query-digest output. Its manual documents the output, and there
is a trove of information on the internet because the tool is widely used. Also check
out Percona Monitoring and Management: a comprehensive database monitoring
solution that uses Grafana to report query metrics. Both tools are free, open source,
and supported by Percona.

By reviewing slow queries, you know exactly which queries to optimize for the
most efficient performance gains. More importantly, you’ve begun to practice MySQL
performance like an expert: with a focus on queries, because performance is query
response time.

34 | Chapter 1: Query Response Time

CHAPTER 2

Indexes and Indexing

Many factors determine MySQL performance, but indexes are special because perfor‐
mance cannot be achieved without them. You can remove other factors—queries,
schemas, data, and so on—and still achieve performance, but removing indexes limits
performance to brute force: relying on the speed and capacity of hardware. If this
book were titled Brute Force MySQL Performance, the contents would be as long as
the title: “Buy better, faster hardware.” You laugh, but just a few days ago I met with a
team of developers who had been improving performance in the cloud by purchasing
faster hardware until stratospheric costs compelled them to ask, “How else can we
improve performance?”

MySQL leverages hardware, optimizations, and indexes to achieve performance when
accessing data. Hardware is an obvious leverage because MySQL runs on hardware:
the faster the hardware, the better the performance. Less obvious and perhaps more
surprising is that hardware provides the least leverage. I explain why in a moment.
Optimizations refer to the numerous techniques, algorithms, and data structures that
enable MySQL to utilize hardware efficiently. Optimizations bring the power of hard‐
ware into focus. And focus is the difference between a light bulb and a laser. Conse‐
quently, optimizations provide more leverage than hardware. If databases were small,
hardware and optimizations would be sufficient. But increasing data size deleverages
the benefits of hardware and optimizations. Without indexes, performance is severely
limited.

To illustrate these points, think of MySQL as a fulcrum that leverages hardware,
optimizations, and indexes to figuratively lift data, as shown in Figure 2-1.

35

Figure 2-1. MySQL performance without indexes

Without indexes (on the right side), MySQL achieves limited performance with
relatively small data. But add indexes to the balance, as shown in Figure 2-2, and
MySQL achieves high performance with large data.

Figure 2-2. MySQL performance with indexes

Indexes provide the most and the best leverage. They are required for any nontrivial
amount of data. MySQL performance requires proper indexes and indexing, both of
which this chapter teaches in detail.

Several years ago, I designed and implemented an application that stores a lot of data.
Originally, I estimated the largest table not to exceed a million rows. But there was a
bug in the data archiving code that allowed the table to reach one billion rows. For
years, nobody noticed because response time was always great. Why? Good indexes.

36 | Chapter 2: Indexes and Indexing

It’s commonly said that MySQL uses only one index per table, but
that’s not entirely true. The index merge optimization, for example,
can use two indexes. In this book, however, I focus on the normal
case: one query, one table, one index.

This chapter teaches MySQL indexes and indexing. There are five major sections. The
first argues why you should not be distracted by hardware or MySQL tuning. It’s a
necessary digression in order to fully understand why hardware and MySQL tuning
are not efficient solutions for improving MySQL performance. The second is a visual
introduction to MySQL indexes: what they are and how they work. The third teaches
indexing—applying indexes for maximum leverage—by thinking like MySQL. The
fourth covers common reasons why indexes lose effectiveness (leverage). The fifth
is a brief overview of MySQL table join algorithms because effective joins rely on
effective indexes.

Red Herrings of Performance
Red herring is an idiom that refers to a distraction from a goal. When tracking down
solutions to improve MySQL performance, two red herrings commonly distract
engineers: faster hardware and MySQL tuning.

Better, Faster Hardware!
When MySQL performance isn’t acceptable, do not begin by scaling up (using better,
faster hardware) to “see if that helps.” It probably will help if you scale up significantly,
but you learn nothing because it only proves what you already know: computers run
faster on faster hardware. Better, faster hardware is a red herring of performance
because you miss learning the real causes of, and solutions to, slow performance.

There are two reasonable exceptions. First, if the hardware is blatantly insufficient,
then scale up to reasonable hardware. For example, using 1 GB of memory with
500 GB of data is blatantly insufficient. Upgrading to 32 GB or 64 GB of memory
is reasonable. By contrast, upgrading to 384 GB of memory is sure to help but
is unreasonable. Second, if the application is experiencing hyper-growth (a massive
increase in users, usage, and data) and scaling up is a stopgap solution to keep the
application running, then do it. Keeping the application running is always reasonable.

Otherwise, scaling up to improve MySQL performance happens last. Experts agree:
first optimize queries, data, access patterns, and the application. If all those optimiza‐
tions do not yield sufficient performance, then scale up. Scaling up happens last for
the following reasons.

Red Herrings of Performance | 37

You don’t learn anything by scaling up, you simply clobber the problem with faster
hardware. Since you’re an engineer, not a cave-dwelling protohuman, you solve prob‐
lems by learning and understanding—you don’t clobber them. Admittedly, learning
and understanding is more difficult and time-consuming, but it’s far more effective
and sustainable, which leads to the next reason.

Scaling up is not a sustainable approach. Upgrading physical hardware is nontrivial.
Some upgrades are relatively quick and easy, but it depends on many factors outside
the scope of this book. Sufficient to say, however, that you will drive yourself or the
hardware engineers crazy if you frequently change hardware. Crazy engineers are
not sustainable. Moreover, companies often use the same hardware for several years
because the purchasing process is long and complicated. As a result, easy hardware
scalability is one allure of the cloud. In the cloud, you can scale up (or down) CPU
cores, memory, and storage in a few minutes. But this ease is significantly more
expensive than physical hardware. Cloud costs can increase exponentially. The cost of
Amazon RDS, for example, doubles from one instance size to the next—double the
hardware, double the price. Exponentially increasing costs are not sustainable.

Generally speaking, MySQL can fully utilize all the hardware that it’s given. (There
are limits, which I address in Chapter 4.) The real question is: can the application
fully utilize MySQL? The presumptive answer is yes, but it’s not guaranteed. Faster
hardware helps MySQL but it does not change how the application uses MySQL.
For example, increasing memory might not improve performance if the application
causes table scans. Scaling up is only effective at increasing performance when the
application workload can scale up, too. Not all workloads can scale up.

Workload is the combination of queries, data, and access patterns.

But let’s imagine that you successfully scale up the workload to fully utilize MySQL
on the fastest hardware available. What happens as the application continues to grow,
and its workload continues to increase? This reminds me of a Zen proverb: “When
you reach the top of the mountain, keep climbing.” While I do encourage you to
meditate on that, it presents a less enlightening dilemma for your application. With
nowhere else to go, the only option is doing what should have been done first:
optimize queries, data, access patterns, and the application.

38 | Chapter 2: Indexes and Indexing

1 Unless you’re Vadim Tkachenko, in which case: please keep tuning.

MySQL Tuning
In the television series Star Trek, engineers are able to modify the ship to increase
power to engines, weapons, shields, sensors, transporters, tractor beams—everything.
MySQL is more difficult to operate than a starship because no such modifications are
possible. But that does not stop engineers from trying.

First, let’s clarify three terms.

Tuning
Tuning is adjusting MySQL system variables for research and development
(R&D). It’s laboratory work with specific goals and criteria. Benchmarking is
common: adjusting system variables to measure the effect on performance. The
blog post “MySQL Challenge: 100k Connections” by renowned MySQL expert
Vadim Tkachenko is an example of extreme tuning. Since tuning is R&D, the
results are not expected to be generally applicable; rather, the goal is to expand
our collective knowledge and understanding of MySQL, especially with respect
to its current limits. Tuning influences future MySQL development and best
practices.

Configuring
Configuring is setting system variables to values that are appropriate for the
hardware and environment. The goal is a reasonable configuration with respect
to a few default values that need to be changed. Configuring MySQL is usually
done when the MySQL instance is provisioned or when hardware changes. It’s
also necessary to reconfigure when data size increases by an order of magnitude,
for example from 10 GB to 100 GB. Configuring influences how MySQL runs in
general.

Optimizing
Optimizing is improving MySQL performance by reducing the workload or mak‐
ing it more efficient—usually the latter since application usage tends to increase.
The goal is faster response time and more capacity with the existing hardware.
Optimizing influences MySQL and application performance.

You will undoubtedly encounter these terms in MySQL literature, videos, confer‐
ences, and so forth. The descriptions are more important than the terms. If, for
example, you read a blog post that uses optimizing but describes what is defined here
as tuning, then it’s tuning as defined here.

The distinction of these terms is important because engineers do all three, but only
optimizing (as defined here) is an efficient use of your time.1

Red Herrings of Performance | 39

MySQL tuning is a red herring of performance for two reasons. First, it’s often not
done as a controlled laboratory experiment, which makes the results dubious. In
totality, MySQL performance is complex; experiments must be carefully controlled.
Second, results are unlikely to have a significant effect on performance because
MySQL is already highly optimized. Tuning MySQL is akin to squeezing blood from a
turnip.

Going back to the first paragraph of this section, I realize that we all admire Lieu‐
tenant Commander Geordi La Forge, the Chief Engineer in Star Trek: The Next
Generation. When the captain calls for more power, we feel obligated to make
it so by applying arcane server parameters. Or, on Earth, when the application
needs more power, we want to save the day by applying an ingenious reconfigura‐
tion of MySQL that boosts throughput and concurrency by 50%. Good work, La
Forge! Unfortunately, MySQL 8.0 introduced automatic configuration by enabling
innodb_dedicated_server. Since MySQL 5.7 will be end-of-life (EOL) soon after
this book is published, let’s keep looking to and building the future. Good work
nevertheless, La Forge.

Optimizing is all you need to do because tuning is a red herring and configuration is
automatic as of MySQL 8.0. This book is all about optimizing.

MySQL Indexes: A Visual Introduction
Indexes are the key to performance and, if you recall “Direct Query Optimization”
on page 27, changes to queries and indexes solve a lot of performance problems. The
journey of query optimization requires a solid understanding of MySQL indexes, and
that’s what this section presents—in detail with copious illustrations.

Although this section is detailed and relatively long, I call it an introduction because
there is more to learn. But this section is the key that unlocks the treasure chest of
MySQL query optimizations.

The following nine sections apply only to standard indexes on InnoDB tables—the
type of index created by a simple PRIMARY KEY or [UNIQUE] INDEX table definition.
MySQL supports other specialized index types, but I don’t cover them in this book
because standard indexes are the basis of performance.

Before we dive into the details of MySQL indexes, I begin with a revelation about
InnoDB tables that will change the way you see not only indexes but most of MySQL
performance.

40 | Chapter 2: Indexes and Indexing

InnoDB Tables Are Indexes
Example 2-1 is the structure of table elem (short for elements) and the 10 rows that
it contains. All examples in this chapter refer to table elem—with one clearly noted
exception—so take a moment to study it.

Example 2-1. Table elem

CREATE TABLE `elem` (
 `id` int unsigned NOT NULL,
 `a` char(2) NOT NULL,
 `b` char(2) NOT NULL,
 `c` char(2) NOT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_a_b` (`a`,`b`)
) ENGINE=InnoDB;

+----+------+------+------+
| id | a | b | c |
+----+------+------+------+
1	Ag	B	C
2	Au	Be	Co
3	Al	Br	Cr
4	Ar	Br	Cd
5	Ar	Br	C
6	Ag	B	Co
7	At	Bi	Ce
8	Al	B	C
9	Al	B	Cd
10	Ar	B	Cd
+----+------+------+------+

Table elem has two indexes: the primary key on column id and a nonunique secon‐
dary index on columns a, b. The value for column id is a monotonically increasing
integer. The values for columns a, b, and c are atomic symbols corresponding to
the column name letter: “Ag” (silver) for column a, “B” (boron) for column b, and
so on. The row values are random and meaningless; it’s just a simple table used for
examples.

Figure 2-3 shows a typical view of table elem—just the first four rows for brevity.

MySQL Indexes: A Visual Introduction | 41

Figure 2-3. Table elem: visual model

Nothing special about table elem, right? It’s so simple, one might say it’s elementary.
But what if I told you that it’s not really a table, it’s an index? Get the “F” (fluorine)
out of here! Figure 2-4 shows the true structure of table elem as an InnoDB table.

Figure 2-4. Table elem: InnoDB B-tree index

InnoDB tables are B-tree indexes organized by the primary key. Rows are index
records stored in leaf nodes of the index structure. Each index record has metadata
(denoted by “…”) used for row locking, transaction isolation, and so on.

Figure 2-4 is a highly simplified depiction of the B-tree index that is table elem. Four
index records (at bottom) correspond to the first four rows. Primary key column
values (1, 2, 3, and 4) are shown at the top of each index record. Other column values
(“Ag,” “B,” “C,” and so forth) are shown below the metadata for each index record.

42 | Chapter 2: Indexes and Indexing

You don’t need to know the technical details of InnoDB B-tree indexes to understand
or achieve remarkable MySQL performance. Only two points are important:

• Primary key lookups are extremely fast and efficient•
• The primary key is pivotal to MySQL performance•

The first point is true because B-tree indexes are inherently fast and efficient, which
is one reason why many database servers use them. The second point becomes
increasingly clear in the coming sections—and chapters.

To learn about the fascinating world of database internals, including indexes, read
Database Internals by Alex Petrov (O’Reilly, 2019). For a deep dive into InnoDB
internals, including its B-tree implementation, cancel all your meetings and check out
the website of renowned MySQL expert Jeremy Cole.

An InnoDB primary key is a clustered index. The MySQL manual
occasionally refers to the primary key as the clustered index.

Indexes provide the most and the best leverage because the table is an index. The pri‐
mary key is pivotal to performance. This is especially true because secondary indexes
include primary key values. Figure 2-5 shows the secondary index on columns a, b.

Figure 2-5. Secondary index on columns a, b

Secondary indexes are B-tree indexes, too, but leaf nodes store primary key values.
When MySQL uses a secondary index to find a row, it does a second lookup on

MySQL Indexes: A Visual Introduction | 43

the primary key to read the full row. Let’s put the two together and walk through a
secondary index lookup for query SELECT * FROM elem WHERE a='Au' AND b='Be':

Figure 2-6. Secondary index lookup for value “Au, Be”

44 | Chapter 2: Indexes and Indexing

Figure 2-6 shows the secondary index (columns a, b) on top and the primary key
(column id) on bottom. Six callouts (numbered circles) show the lookup for value
“Au, Be” using the secondary index:

1. Index lookups begin at the root node; branch right to an internal node for value1.
“Au, Be.”

2. At an internal node, branch right to the leaf node for value “Au, Be.”2.
3. Leaf node for secondary index value “Au, Be” contains the corresponding pri‐3.

mary key value: 2.
4. Begin primary key lookup at the root node; branch left to an internal node for4.

value 2.
5. At an internal node, branch right to the leaf node for value 2.5.
6. Leaf node for primary key value 2 contains the full row matching “Au, Be.”6.

A table has only one primary key. All other indexes are secondary
indexes.

This section is short but incredibly important because the correct model provides the
foundation for understanding indexes and more. For example, if you think back to
“Lock time” on page 13, you might see it in a new light since rows are actually leaf
nodes in the primary key. Knowing that an InnoDB table is its primary key is akin to
knowing that heliocentrism, not geocentrism, is the correct model of the solar system.
In the world of MySQL, everything revolves around the primary key.

Table Access Methods
Using an index to look up rows is one of three table access methods. Since tables
are indexes, an index lookup is the best and most common access method. But
sometimes, depending on the query, an index lookup is not possible and the only
recourse is an index scan or a table scan—the other access methods. Knowing which
access method MySQL uses for a query is imperative because performance requires
an index lookup. Avoid index scans and table scans. “EXPLAIN: Query Execution
Plan” on page 51 shows how to see the access method. But first, let’s clarify and
visualize each one.

MySQL Indexes: A Visual Introduction | 45

The MySQL manual uses the terms access method, access type, and
join type. And EXPLAIN uses a field called type or access_type to
refer to those terms. In MySQL, the terms are closely related but
used equivocally.
In this book, for precision and consistency I use only two terms:
access method and access type. There are three access methods:
index lookup, index scan, and table scan. For an index lookup,
there are several access types: ref, eq_ref, range, and so forth.

Index lookup
An index lookup finds specific rows—or ranges of rows—by leveraging the ordered
structure and algorithmic access of an index. This is the fastest access method
because it’s precisely what indexes are designed for: fast and efficient access to
large amounts of data. Consequently, index lookups are essential for direct query
optimization. Performance requires that practically every query uses an index lookup
for every table. There are several access types for an index lookup that I cover in
forthcoming sections such as “WHERE” on page 54.

Figure 2-6 in the previous section shows an index lookup using a secondary index.

Index scan
When an index lookup is not possible, MySQL must use brute force to find rows:
read all rows and filter out non-matching ones. Before MySQL resorts to reading
every row using the primary key, it tries to read rows using a secondary index. This is
called an index scan.

There are two types of index scan. The first is a full index scan, meaning MySQL
reads all rows in index order. Reading all rows is usually terrible for performance, but
reading them in index order can avoid sorting rows when the index order matches
the query ORDER BY.

Figure 2-7 shows a full index scan for query SELECT * FROM elem FORCE INDEX (a)
ORDER BY a, b. The FORCE INDEX clause is required because, since table elem is tiny,
it’s more efficient for MySQL to scan the primary key and sort the rows rather than
scan the secondary index and fetch the rows in order. (Sometimes bad queries make
good examples.)

Figure 2-7 has eight callouts (numbered circles) that show the order of row access:

1. Read first value of secondary index (SI): “Ag, B.”1.
2. Look up corresponding row in primary key (PK).2.
3. Read second value of SI: “Al, Br.”3.
4. Look up corresponding row in PK.4.

46 | Chapter 2: Indexes and Indexing

5. Read third value of SI: “Ar, Br.”5.
6. Look up corresponding row in PK.6.
7. Read fourth value of SI: “Au, Be.”7.
8. Look up corresponding row in PK.8.

Figure 2-7. Full index scan on secondary index

MySQL Indexes: A Visual Introduction | 47

There is a subtle but important detail in Figure 2-7: scanning the secondary index
in order might be sequential reads, but the primary key lookups are almost certainly
random reads. Accessing rows in index order does not guarantee sequential reads;
more than likely, it incurs random reads.

Sequential access (reads and writes) is faster than random access.

The second type of index scan is an index-only scan: MySQL reads column values (not
full rows) from the index. This requires a covering index, which is covered later (pun
intended) in “Covering Indexes” on page 71. It should be faster than a full index
scan because it doesn’t require primary key lookups to read full rows; it only reads
column values from the secondary index, which is why it requires a covering index.

Don’t optimize for an index scan unless the only alternative is a full table scan.
Otherwise, avoid index scans.

Table scan
A (full) table scan reads all rows in primary key order. When MySQL cannot do
an index lookup or an index scan, a table scan is the only option. This is usually
terrible for performance, but it’s also usually easy to fix because MySQL is adept
at using indexes and has many index-based optimizations. Essentially every query
with a WHERE, GROUP BY, or ORDER BY clause can use an index—even if just an index
scan—because those clauses use columns and columns can be indexed. Consequently,
there are nearly zero reasons for an unfixable table scan.

Figure 2-8 shows a full table scan: reading all rows in primary key order. It has four
callouts that show the order of row access. Table elem is tiny and only four rows are
shown here, but imagine MySQL slogging through thousands or millions of rows in a
real table.

The general advice and best practice is to avoid table scans. But for a complete and
balanced discussion, there are two cases when a table scan might be acceptable or
(surprisingly) better:

• When the table is tiny and infrequently accessed•
• When the table selectivity is very low (see “Extreme Selectivity” on page 86)•

48 | Chapter 2: Indexes and Indexing

Figure 2-8. Full table scan

But don’t take any table scan for granted: they’re usually bad for performance. In
very rare cases, MySQL can incorrectly choose a table scan when an index lookup
is possible, as explained in “It’s a Trap! (When MySQL Chooses Another Index)” on
page 87.

Leftmost Prefix Requirement
To use an index, a query must use a leftmost prefix of the index: one or more index
columns starting with the leftmost index column as specified by the index definition.
A leftmost prefix is required because the underlying index structure is ordered by the
index column order, and it can only be traversed (searched) in that order.

Use SHOW CREATE TABLE or SHOW INDEX to see index definitions.

Figure 2-9 shows an index on columns a, b, c and a WHERE clause using each
leftmost prefix: column a; columns a, b; and columns a, b, c.

MySQL Indexes: A Visual Introduction | 49

Figure 2-9. Leftmost prefixes of a three-column index

The top WHERE clause in Figure 2-9 uses column a, which is the leftmost column
of the index. The middle WHERE clause uses columns a and b that, together, form a
leftmost prefix of the index. And the bottom WHERE clause uses the entire index: all
three columns. It’s ideal to use all columns of an index, but it’s not required; only
a leftmost prefix is required. Index columns can be used in other SQL clauses, as
illustrated by many examples in the following sections.

To use an index, a query must use a leftmost prefix of the index.

The leftmost prefix requirement has two logical consequences:

1. Indexes (a, b) and (b, a) are different indexes. They index the same columns1.
but in a different order, which results in different leftmost prefixes. However, a
query that uses both columns (for example, WHERE a = 'Au' AND b = 'Be')
can use either index, but that does not mean the indexes are equivalent in terms
of performance. MySQL will choose the better of the two by calculating many
factors.

2. MySQL can most likely use index (a, b, c) in place of indexes (a) and (a, b)2.
because the latter two are leftmost prefixes of the first. In this case, indexes (a)

50 | Chapter 2: Indexes and Indexing

and (a, b) are duplicates and can be dropped. Use pt-duplicate-key-checker to
find and report duplicate indexes.

Lurking at the end (rightmost) of every secondary index is the primary key. For table
elem (Example 2-1), the secondary index is effectively (a, b, id), but the rightmost
id is hidden. MySQL doesn’t show the primary key appended to secondary indexes;
you have to imagine it.

The primary key is appended to every secondary index: (S, P)
where S are secondary index columns and P are primary key
columns.

In MySQL lingo we say, “The primary key is appended to secondary indexes” even
though it’s not literally appended. (You can literally append it by creating index (a,
b, id), but don’t do that.) “Appended to” really means that secondary index leaf
nodes contain primary key values, as shown earlier in Figure 2-5. This is important
because it increases the size of every secondary index: primary key values are duplica‐
ted in secondary indexes. Larger indexes require more memory, which means fewer
indexes can fit in memory. Keep the size of the primary key small and the number of
secondary indexes reasonable. Just the other day, my colleagues were helping a team
whose database has 693 GB of secondary indexes on 397 GB of data (primary key).

The leftmost prefix requirement is a blessing and a restriction. The restriction is
relatively easy to work around with additional secondary indexes, but wait until you
read “Excessive, Duplicate, and Unused” on page 85. Joining tables is a particular
challenge given the restriction, but I address it in “Join Tables” on page 71. I encour‐
age you to see the leftmost prefix requirement as a blessing. Query optimization with
respect to indexing is not trivial, but the leftmost prefix requirement is a simple and
familiar starting point on the journey.

EXPLAIN: Query Execution Plan
The MySQL EXPLAIN command shows a query execution plan (or, EXPLAIN plan)
that describes how MySQL plans to execute the query: table join order, table access
method, index usage, and other important details.

EXPLAIN output is vast and varied. Moreover, it’s completely dependent on the query.
Changing a single character in a query can significantly change its EXPLAIN plan.
For example, WHERE id = 1 verses WHERE id > 1 yields a significantly different
EXPLAIN plan. And to complicate the matter further, EXPLAIN continues to evolve.
“EXPLAIN Output Format” in the MySQL manual is required reading—even for

MySQL Indexes: A Visual Introduction | 51

experts. Fortunately for the sake of our sanity, the fundamentals have remained the
same for decades.

To illustrate index usage, the next five sections explain queries for each case that
MySQL can use an index:

• Find matching rows: “WHERE” on page 54•
• Group rows: “GROUP BY” on page 60•
• Sort rows: “ORDER BY” on page 65•
• Avoid reading rows: “Covering Indexes” on page 71•
• Join tables: “Join Tables” on page 71•

There are other specific cases like MIN() and MAX(), but these five cases are the bread
and butter of index usage.

But first I need to set the stage by reviewing the meaning of the EXPLAIN output fields
shown in Example 2-2.

Example 2-2. EXPLAIN output (traditional format)

EXPLAIN SELECT * FROM elem WHERE id = 1\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL

For this introduction, we ignore fields id, select_type, partitions, key_len, and
filtered; but the examples include them to habituate you to the output. The remain‐
ing seven fields convey a wealth of information that constitutes the query execution
plan:

table

The table field is the table name (or alias) or subquery reference. Tables are
listed in the join order determined by MySQL, not the order they appear in the
query. The top table is the first table, and the bottom table is the last table.

52 | Chapter 2: Indexes and Indexing

type

They type field is the table access method or index lookup access type—see the
first note in “Table Access Methods” on page 45 for clarification. ALL means a full
table scan (see “Table scan” on page 48). index means an index scan (see “Index
scan” on page 46). Any other value—const, ref, range, and so on—is an access
type for an index lookup (see “Index lookup” on page 46).

possible_keys

The possible_keys field lists indexes that MySQL could use because the query
uses a leftmost prefix. If an index is not listed in this field, then the leftmost
prefix requirement is not met.

key

The key field is the name of the index that MySQL will use, or NULL if no index
can be used. MySQL chooses the best index based on many factors, some of
which are indicated in the Extra field. It’s a safe bet that MySQL will use this
index when executing the query (EXPLAIN does not execute the query), but see
“It’s a Trap! (When MySQL Chooses Another Index)” on page 87.

ref

The ref field lists the source of values used to look up rows in the index (the key
field).

For single-table queries or the first table in a join, ref is often const, which refers
to a constant condition on one or more index columns. A constant condition is
equality (= or <=> [NULL-safe equal]) to a literal value. For example, a = 'Au' is
a constant condition that equals only one value.

For queries that join multiple tables, ref is a column reference from the preced‐
ing table in the join order. MySQL joins the current table (the table field) using
the index to look up rows that match values from column ref in the preceding
table. “Join Tables” on page 71 shows this in action.

rows

The rows field is the estimated number of rows that MySQL will examine to find
matching rows. MySQL uses index statistics to estimate rows, so expect the real
number—“Rows examined” on page 18—to be close but different.

Extra

The Extra field provides additional information about the query execution plan.
This field is important because it indicates query optimizations that MySQL can
apply, if any.

MySQL Indexes: A Visual Introduction | 53

All EXPLAIN output in this book is traditional format: tabular out‐
put (EXPLAIN query;) or list output (EXPLAIN query\G). Other
formats are JSON (EXPLAIN FORMAT=JSON query) and, as of
MySQL 8.0.16, tree (EXPLAIN FORMAT=TREE query). JSON and tree
formats are completely different than traditional format, but all
formats convey the query execution plan.

Don’t expect to glean much information from those fields without context: tables,
indexes, data, and a query. In the following sections, all illustrations refer to table
elem (Example 2-1), its two indexes, and its ten rows.

WHERE
MySQL can use an index to find rows that match table conditions in a WHERE clause.
I’m careful to say that MySQL can use an index, not that MySQL will use an index,
because index usage depends on several factors, primarily: table conditions, indexes,
and the leftmost prefix requirement (see “Leftmost Prefix Requirement” on page 49).
(There are other factors, like index statistics and optimizer costs, but they’re beyond
the scope of this book.)

A table condition is a column and its value (if any) that matches, groups, aggregates,
or orders rows. (For brevity, I use the term condition when it’s unambiguous.) In a
WHERE clause, table conditions are also called predicates.

Figure 2-10 shows the primary key on column id and a WHERE clause with a single
condition: id = 1.

Figure 2-10. WHERE: primary key lookup

A solid box delineates a table condition and an index column (also called an index
part) that MySQL can use because the former (table condition) is a leftmost prefix of
the latter (index). An arrow points from the table condition to the index column that
it uses. Later, we’ll see examples of table conditions and index columns that MySQL
cannot use.

54 | Chapter 2: Indexes and Indexing

In Figure 2-10, MySQL can find rows that match condition id = 1 using primary key
column id. Example 2-3 is the EXPLAIN plan for the full query.

Example 2-3. EXPLAIN plan for primary key lookup

EXPLAIN SELECT * FROM elem WHERE id = 1\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL

In Example 2-3, key: PRIMARY confirms that MySQL will use the primary key—an
index lookup. Correspondingly, the access type (the type field) is not ALL (table
scan) or index (index scan), which is expected given a simple primary key lookup.
The secondary index is not listed in the possible_keys field because MySQL cannot
use it for this query: column id is not a leftmost prefix of the secondary index on
columns a, b.

Access type const is a special case that occurs only when there are constant condi‐
tions (ref: const) on all index columns of the primary key or a unique secondary
index. The result is a constant row. This is a little too in-depth for an introduction,
but since we’re here, let’s keep learning. Given the table data (Example 2-1) and the
fact that column id is the primary key, the row identified by id = 1 can be treated as
constant because, when the query is executed, id = 1 can match only one row (or no
row). MySQL reads that one row and treats its values as constant, which is great for
response time: const access is extremely fast.

Extra: NULL is somewhat rare because real queries are more complex than these
examples. But here, Extra: NULL means that MySQL does not need to match rows.
Why? Because the constant row can match only one row (or no row). But matching
rows is the norm, so let’s see a more realistic example by changing the table condi‐
tions to id > 3 AND id < 6 AND c = 'Cd', as shown in Figure 2-11 and the
corresponding EXPLAIN plan in Example 2-4.

MySQL Indexes: A Visual Introduction | 55

Figure 2-11. WHERE: range access using primary key

Example 2-4. EXPLAIN plan for range access using primary key

EXPLAIN SELECT * FROM elem WHERE id > 3 AND id < 6 AND c = 'Cd'\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
> type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
> ref: NULL
> rows: 2
 filtered: 10.00
> Extra: Using where

To highlight EXPLAIN plan changes, I prepend > characters to
the pertinent fields that changed. These highlights are not part of
EXPLAIN.

By changing the table conditions to id > 3 AND id < 6 AND c = 'Cd', the
EXPLAIN plan changes from Example 2-3 to Example 2-4, which is more realistic
for a single-table query. The query still uses the primary key (key: PRIMARY), but
the access type changes to a range scan (type: range): using an index to read rows
between a range of values. In this case, MySQL uses the primary key to read rows
where the value of column id is between 3 and 6. The ref field is NULL because the
conditions on column id are not constant (and this is a single-table query, so there’s
no preceding table to reference). The condition c = 'Cd' is constant, but it’s not used
for the index lookup (the range scan), so ref does not apply. MySQL estimates that it
will examine two rows in the range (rows: 2). That’s correct for this trivial example,
but remember: rows is an estimate.

“Using where” in the Extra field is so common that it’s expected. It means that
MySQL will find matching rows using the WHERE conditions: for each row read, a row

56 | Chapter 2: Indexes and Indexing

matches if all WHERE conditions are true. Since the conditions on column id define the
range, it’s really just the condition on column c that MySQL will use to match rows in
the range. Glancing back at Example 2-1, one row matches all the WHERE conditions:

+----+------+------+------+
| id | a | b | c |
+----+------+------+------+
| 4 | Ar | Br | Cd |
+----+------+------+------+

The row with id = 5 is in the range, so MySQL examines the row, but its column c
value (“Cd”) does not match the WHERE clause, so MySQL does not return the row.

To illustrate other query execution plans, let’s use both leftmost prefixes of the
secondary index, as shown in Figure 2-12 and the corresponding EXPLAIN plans in
Example 2-5.

Figure 2-12. WHERE: secondary index lookups

Example 2-5. EXPLAIN plans for secondary index lookups

EXPLAIN SELECT * FROM elem WHERE a = 'Au'\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
> type: ref
possible_keys: idx_a_b
> key: idx_a_b
 key_len: 3
 ref: const
 rows: 1
 filtered: 100.00

MySQL Indexes: A Visual Introduction | 57

 Extra: NULL

EXPLAIN SELECT * FROM elem WHERE a = 'Au' AND b = 'Be'\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
> type: ref
possible_keys: idx_a_b
> key: idx_a_b
 key_len: 6
 ref: const,const
 rows: 1
 filtered: 100.00
 Extra: NULL

For each EXPLAIN plan in Example 2-5, key: idx_a_b confirms that MySQL uses
the secondary index because the conditions meet the leftmost prefix requirement.
The first WHERE clause uses only the first index part: column a. The second WHERE
clause uses both index parts: columns a and b. Using only column b would not meet
the leftmost prefix requirement—I show this in a moment.

What’s new and important from previous EXPLAIN plans is the access type: ref. In
simplest terms, the ref access type is an equality (= or <=>) lookup on a leftmost
prefix of the index (the key field). Like any index lookup, ref access is very fast as
long as the estimated number of rows to examine (the rows field) is reasonable.

Although the conditions are constant, the const access type is not possible because
the index (key: idx_a_b) is nonunique, so the lookup can match more than one row.
And even though MySQL estimates that each WHERE clause will examine only one row
(rows: 1), that could change when the query is executed.

Extra: NULL occurs again because MySQL can find matching rows using only the
index since there are no conditions on non-indexed columns—so let’s add one. Fig‐
ure 2-13 shows a WHERE clause with conditions on columns a and c, and Example 2-6
is the corresponding EXPLAIN plan.

Figure 2-13. WHERE: index lookup and non-indexed column

58 | Chapter 2: Indexes and Indexing

Example 2-6. EXPLAIN plan for index lookup and non-indexed column

EXPLAIN SELECT * FROM elem WHERE a = 'Al' AND c = 'Co'\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: ref
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 3
 ref: const
> rows: 3
 filtered: 10.00
> Extra: Using where

In Figure 2-13, there is no box around condition c = 'Co' because the index does
not cover column c. MySQL still uses the secondary index (key: idx_a_b), but the
condition on column c prevents MySQL from matching rows using only the index.
Instead, MySQL uses the index to look up and read rows for the condition on column
a, then it matches rows for the condition on column c (Extra: Using where).

Glancing back at Example 2-1 again, you’ll notice that zero rows match this WHERE
clause, but EXPLAIN reports rows: 3. Why? The index lookup on column a matches
three rows where a = 'Al' is true: row id values 3, 8, and 9. But none of these rows
also matches c = 'Co'. The query examines three rows but matches zero rows.

EXPLAIN output rows is an estimate of the number of rows that
MySQL will examine when it executes the query, not the number of
rows that will match all table conditions.

As a final example of indexes, WHERE, and EXPLAIN, let’s not meet the leftmost prefix
requirement, as shown in Figure 2-14 and Example 2-7.

Figure 2-14. WHERE without leftmost prefix

MySQL Indexes: A Visual Introduction | 59

Example 2-7. EXPLAIN plan for WHERE without leftmost prefix

EXPLAIN SELECT * FROM elem WHERE b = 'Be'\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
> type: ALL
possible_keys: NULL
> key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 filtered: 10.00
 Extra: Using where

A dotted box outline (and lack of arrow) delineates a table condition and an index
column that MySQL cannot use because they do not meet the leftmost prefix
requirement.

In Figure 2-14, there is no condition on column a, therefore the index cannot be
used for the condition on column b. The EXPLAIN plan (Example 2-7) confirms this:
possible_keys: NULL and key: NULL. Without an index, MySQL is forced to do a
full table scan: type: ALL. Likewise, rows: 10 reflects the total number of rows, and
Extra: Using where reflects that MySQL reads and then filters rows not matching
b = 'Be'.

Example 2-7 is an example of the worst possible EXPLAIN plan. Whenever you see
type: ALL, possible_keys: NULL, or key: NULL, stop what you’re doing and analyze
the query.

As simple as these examples have been, they represent the fundamentals of EXPLAIN
with respect to indexes and WHERE clauses. Real queries have more indexes and WHERE
conditions, but the fundamentals don’t change.

GROUP BY
MySQL can use an index to optimize GROUP BY because values are implicitly grouped
by index order. For the secondary index idx_a_b (on columns a, b), there are five
distinct groups of column a values, as shown in Example 2-8.

Example 2-8. Distinct groups of column a values

SELECT a, b FROM elem ORDER BY a, b;

60 | Chapter 2: Indexes and Indexing

+------+------+
| a | b |
+------+------+
| Ag | B | -- Ag group
| Ag | B |

| Al | B | -- Al group
| Al | B |
| Al | Br |

| Ar | B | -- Ar group
| Ar | Br |
| Ar | Br |

| At | Bi | -- At group

| Au | Be | -- Au group
+------+------+

I separated the groups in Example 2-8 with blank lines and annotated the first row in
each group. A query with GROUP BY a can use index idx_a_b because column a is a
leftmost prefix and the index is implicitly grouped by column a values. Example 2-9
is a representative EXPLAIN plan for the simplest type of GROUP BY optimization.

Example 2-9. EXPLAIN plan for GROUP BY a

EXPLAIN SELECT a, COUNT(*) FROM elem GROUP BY a\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
> type: index
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 6
 ref: NULL
 rows: 10
 filtered: 100.00
> Extra: Using index

key: idx_a_b confirms that MySQL uses the index to optimize the GROUP BY. Since
the index is ordered, MySQL is assured that each new value for column a is a new
group. For example, after reading the last “Ag” value, the index order assures that no
more “Ag” values will be read, so the “Ag” group is complete.

MySQL Indexes: A Visual Introduction | 61

“Using index” in the Extra field indicates that MySQL is reading column a values
only from the index; it’s not reading full rows from the primary key. I cover this
optimization in “Covering Indexes” on page 71.

This query uses an index, but not for an index lookup: type: index denotes an index
scan (see “Index scan” on page 46). And since there’s no WHERE clause to filter rows,
MySQL reads all rows. If you add a WHERE clause, MySQL can still use the index
for the GROUP BY, but the leftmost prefix requirement still applies. In this case, the
query is using the leftmost index part (column a), so the WHERE condition must be
on column a or b to meet the leftmost prefix requirement. Let’s first add a WHERE
condition on column a, as shown in Figure 2-15 and Example 2-10.

Figure 2-15. GROUP BY and WHERE on same index column

Example 2-10. EXPLAIN plan for GROUP BY and WHERE on same index column

EXPLAIN SELECT a, COUNT(a) FROM elem WHERE a != 'Ar' GROUP BY a\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
> type: range
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 3
 ref: NULL
 rows: 7
 filtered: 100.00
> Extra: Using where; Using index

“Using where” in the Extra field refers to WHERE a != 'Ar'. The interesting change
is type: range. The range access type works with the not-equal operator (!= or <>).
You can think of it like WHERE a < 'Ar' AND a > 'Ar', as shown in Figure 2-16.

A condition on column b in the WHERE clause can still use the index because the
conditions, regardless of being in different SQL clauses, meet the leftmost prefix
requirement. Figure 2-17 shows this, and Example 2-11 shows the EXPLAIN plan.

62 | Chapter 2: Indexes and Indexing

Figure 2-16. Range for not-equal

Figure 2-17. GROUP BY and WHERE on different index columns

Example 2-11. EXPLAIN plan for GROUP BY and WHERE on different index columns

EXPLAIN SELECT a, b FROM elem WHERE b = 'B' GROUP BY a\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: range
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 6
 ref: NULL
 rows: 6
 filtered: 100.00
> Extra: Using where; Using index for group-by

The query in Example 2-11 has two important details: an equality condition on
column b in the WHERE clause, and selecting columns a and b in the SELECT clause.

MySQL Indexes: A Visual Introduction | 63

These details enable the special “Using index for group-by” optimization revealed
in the Extra field. If, for example, the equality (=) is changed to not-equal (!=), the
query optimization is lost. When it comes to query optimizations like this, details are
critical. You must read the MySQL manual to learn and apply the details. “GROUP
BY Optimization” in the MySQL manual elaborates.

The final GROUP BY example in Figure 2-18 and Example 2-12 might surprise you.

Figure 2-18. GROUP BY without leftmost prefix

Example 2-12. EXPLAIN plan for GROUP BY without leftmost prefix

EXPLAIN SELECT b, COUNT(*) FROM elem GROUP BY b\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
> type: index
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 6
 ref: NULL
 rows: 10
 filtered: 100.00
> Extra: Using index; Using temporary

Notice key: idx_a_b: MySQL uses the index despite the query having no condition
on column a. What happened to the leftmost prefix requirement? It’s being met
because MySQL is scanning the index (type: index) on column a. You can imagine a
condition on column a that’s always true, like a = a.

Would MySQL still index scan on column a for GROUP BY c? No, it would not; it
would do a full table scan. Figure 2-18 works because the index has column b values;
it does not have column c values.

“Using temporary” in the Extra field is a side effect of not having a strict set of
leftmost prefix conditions. As MySQL reads column a values from the index, it
collects column b values in a temporary table (in memory). After reading all column
a values, it table scans the temporary table to group and aggregate for COUNT(*).

64 | Chapter 2: Indexes and Indexing

There is a lot more to learn about GROUP BY with respect to indexes and query
optimizations, but these examples are the fundamentals. Unlike WHERE clauses, GROUP
BY clauses tend to be simpler. The challenge is creating an index to optimize GROUP
BY plus other SQL clauses. MySQL has the same challenge when formulating the
query execution plan, so it might not optimize GROUP BY even when possible. MySQL
almost always chooses the best query execution plan, but if you want to experiment
with different ones, read “Index Hints” in the MySQL manual.

ORDER BY
Unsurprisingly, MySQL can use an ordered index to optimize ORDER BY. This opti‐
mization avoids sorting rows, which takes a little more time, by accessing rows in
order. Without this optimization, MySQL reads all matching rows, sorts them, then
returns the sorted result set. When MySQL sorts rows, it prints “Using filesort” in the
Extra field of the EXPLAIN plan. Filesort means sort rows. It’s a historical (and now
misleading) term but still the prevalent term in MySQL lingo.

Filesort is a consternation for engineers because it has a reputation for being slow.
Sorting rows is extra work, so it does not improve response time, but it’s usually
not the root cause of slow response time. At the end of this section, I use EXPLAIN
ANALYZE, which is new as of MySQL 8.0.18, to measure the real-time penalty of
filesort. (Spoiler: sorting rows is very fast.) But first, let’s examine how to use indexes
to optimize ORDER BY.

There are three ways to use an index to optimize ORDER BY. The first and simplest
way is using a leftmost prefix of an index for the ORDER BY clause. For table elem, that
means:

• ORDER BY id•
• ORDER BY a•
• ORDER BY a, b•

The second way is to hold a leftmost part of the index constant and order by the next
index columns. For example, holding column a constant and ordering by column b,
as shown in Figure 2-19 with corresponding EXPLAIN plan in Example 2-13.

Figure 2-19. ORDER BY and WHERE on different index columns

MySQL Indexes: A Visual Introduction | 65

Example 2-13. EXPLAIN plan for ORDER BY and WHERE on different index columns

EXPLAIN SELECT a, b FROM elem WHERE a = 'Ar' ORDER BY b\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: ref
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 3
 ref: const
 rows: 3
 filtered: 100.00
 Extra: Using index

WHERE a = 'Ar' ORDER BY b can use index (a, b) because the WHERE condition
on the first index part (column a) is constant, so MySQL jumps to a = 'Ar' in the
index and, from there, reads column b values in order. Example 2-14 is the result set,
and although it’s nothing fancy, it shows that column a is constant (value “Ar”) and
column b is sorted.

Example 2-14. Result set of WHERE a = 'Ar' ORDER BY b

+------+------+
| a | b |
+------+------+
Ar	B
Ar	Br
Ar	Br
+------+------+

If table elem had an index on columns a, b, c, a query like WHERE a = 'Au' AND b
= 'Be' ORDER BY c could use the index because the conditions on columns a and b
hold the leftmost part of the index.

The third way is a special case of the second. Before showing the figure that explains
it, see if you can determine why the query in Example 2-15 does not cause a filesort
(why “Using filesort” is not reported in the Extra field).

Example 2-15. EXPLAIN plan for ORDER BY id

EXPLAIN SELECT * FROM elem WHERE a = 'Al' AND b = 'B' ORDER BY id\G

*************************** 1. row ***************************
 id: 1

66 | Chapter 2: Indexes and Indexing

 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: ref
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 16
 ref: const,const
 rows: 2
 filtered: 100.00
> Extra: Using index condition

It’s understandable that the query uses index idx_a_b because the WHERE conditions
are a leftmost prefix, but shouldn’t ORDER BY id cause a filesort? Figure 2-20 reveals
the answer.

Figure 2-20. ORDER BY using primary key appended to secondary index

“Leftmost Prefix Requirement” on page 49 has a paragraph that begins with, “Lurking
at the end (rightmost) of every secondary index is the primary key.” That’s what’s
happening in Figure 2-20: the dark box around index column id reveals the “hidden”
primary key appended to the secondary index. This ORDER BY optimization might
not seem useful with a little table like elem, but with real tables it can be very useful—
worth remembering.

To prove that the “hidden” primary key allows the ORDER BY to avoid a filesort,
let’s remove the condition on column b to invalidate the optimization, as shown in
Figure 2-21 and followed by the resulting EXPLAIN plan in Example 2-16.

Figure 2-21. ORDER BY without leftmost prefix

MySQL Indexes: A Visual Introduction | 67

Example 2-16. EXPLAIN plan for ORDER BY without leftmost prefix

EXPLAIN SELECT * FROM elem WHERE a = 'Al' ORDER BY id\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: ref
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 8
 ref: const
 rows: 3
 filtered: 100.00
> Extra: Using index condition; Using filesort

By removing the condition on column b, there’s no longer a leftmost prefix on the
secondary index that allows MySQL to use the “hidden” primary key to optimize
ORDER BY. Therefore, for this particular query, “Using filesort” appears in the Extra
field.

The new optimization is “Using index condition,” which is called index condition
pushdown. Index condition pushdown means the storage engine uses an index to
matches rows for WHERE conditions. Normally, storage engines only read and write
rows, and MySQL handles the logic of matching rows. This is a clean separation
of concerns (which is a virtue for software design), but it’s inefficient when rows
don’t match: both MySQL and the storage engine waste time reading non-matching
rows. For the query in Example 2-16, index condition pushdown means the storage
engine (InnoDB) uses index idx_a_b to match condition a = 'Al'. Index condition
pushdown helps improve response time, but don’t exert yourself trying to optimize
for it because MySQL uses it automatically when possible. To learn more, read “Index
Condition Pushdown Optimization” in the MySQL manual.

There’s an important detail that affects all ORDER BY optimizations: index order is
ascending by default, and ORDER BY col implies ascending: ORDER BY col ASC.
Optimizing ORDER BY works in only one direction for all columns: ASC (ascending)
or DESC (descending). Consequently, ORDER BY a, b DESC does not work because
column a is an implicit ASC sort, which is different than b DESC.

MySQL 8.0 supports descending indexes.

68 | Chapter 2: Indexes and Indexing

What is the real time penalty of filesort? Prior to MySQL 8.0.18, it was neither
measured nor reported. But as of MySQL 8.0.18, EXPLAIN ANALYZE measures and
reports it. For only Example 2-17, I must use a different table.

Example 2-17. Sysbench table sbtest

CREATE TABLE `sbtest1` (
 `id` int NOT NULL AUTO_INCREMENT,
 `k` int NOT NULL DEFAULT '0',
 `c` char(120) NOT NULL DEFAULT '',
 `pad` char(60) NOT NULL DEFAULT '',
 PRIMARY KEY (`id`),
 KEY `k_1` (`k`)
) ENGINE=InnoDB;

That’s a standard sysbench table; I loaded it with one million rows. Let’s use a
random, meaningless query with a large result set and ORDER BY:

SELECT c FROM sbtest1 WHERE k < 450000 ORDER BY id;
-- Output omitted
68439 rows in set (1.15 sec)

The query takes 1.15 seconds to sort and return a little over 68,000 rows. But it’s not a
bad query; check out its EXPLAIN plan:

EXPLAIN SELECT c FROM sbtest1 WHERE k < 450000 ORDER BY id\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sbtest1
 partitions: NULL
 type: range
possible_keys: k_1
 key: k_1
 key_len: 4
 ref: NULL
 rows: 133168
 filtered: 100.00
 Extra: Using index condition; Using MRR; Using filesort

The only new information in that EXPLAIN plan is “Using MRR” in the Extra field,
which refers to the “Multi-Range Read Optimization”. Otherwise, that EXPLAIN plan
reports information already covered in this chapter.

MySQL Indexes: A Visual Introduction | 69

Does filesort make this query slow? EXPLAIN ANALYZE reveals the answer, albeit
cryptically:

EXPLAIN ANALYZE SELECT c FROM sbtest1 WHERE k < 450000 ORDER BY id\G

*************************** 1. row ***************************
1 -> Sort: sbtest1.id (cost=83975.47 rows=133168)
2 (actual time=1221.170..1229.306 rows=68439 loops=1)
3 -> Index range scan on sbtest1 using k_1, with index condition: (k<450000)
4 (cost=83975.47 rows=133168) (actual time=40.916..1174.981 rows=68439)

The real output of EXPLAIN ANALYZE is wider, but I wrapped and numbered the
lines for print legibility and reference. EXPLAIN ANALYZE output is dense and requires
practice to grok; for now, let’s go straight to the point—or as straight as possible
since the output does not read sequentially. On line 4, 1174.981 (milliseconds)
means the index range scan (line 3) took 1.17 seconds (rounded). On line 2,
1221.170..1229.306 means the filesort (line 1) started after 1,221 milliseconds and
ended after 1,229 milliseconds, which means the filesort took 8 milliseconds. Total
execution time is 1.23 seconds: 95% reading rows and less than 1% sorting rows.
The remaining 4%—roughly 49 milliseconds—is spent in other stages: preparing,
statistics, logging, cleaning up, and so forth.

The answer is no: filesort does not make this query slow. The problem is data access:
68,439 rows is not a small result set. Sorting 68,439 values is practically zero work
for a CPU that does billions of operations per second. But reading 68,439 rows
is appreciable work for a relational database that must traverse indexes, manage
transactions, etc. To optimize a query like this, focus on “Data Access” on page 97.

One last question to address: why does filesort have a reputation for being slow?
Because MySQL uses temporary files on disk when sorting data exceeds the
sort_buffer_size, and hard drives are orders of magnitude slower than memory.
This was especially true decades ago when spinning disks were the norm; but today,
SSD is the norm, and storage in general is quite fast. Filesort might be an issue for a
query at high throughput (QPS), but use EXPLAIN ANALYZE to measure and verify.

EXPLAIN ANALYZE executes the query. To be safe, use EXPLAIN
ANALYZE on a read-only replica, not the source.

Now back to table elem (Example 2-1) and the next case for which MySQL can use an
index: covering indexes.

70 | Chapter 2: Indexes and Indexing

Covering Indexes
A covering index includes all columns referenced in a query. Figure 2-22 shows a
covering index for a SELECT statement.

Figure 2-22. Covering indexes

The WHERE conditions on columns a and b point to the corresponding index columns
as usual, but these index columns also point back to the corresponding columns in
the SELECT clause to signify that the values for these columns are read from the index.

Normally, MySQL reads full rows from the primary key (recall “InnoDB Tables Are
Indexes” on page 41). But with a covering index, MySQL can read only column values
from the index. This is most helpful with secondary indexes because it avoids the
primary key lookup.

MySQL uses the covering index optimization automtically, and EXPLAIN reports it as
“Using index” in the Extra field. “Using index for group-by” is a similar optimization
specific to GROUP BY and DISTINCT, as demonstrated in “GROUP BY” on page 60. But
“Using index condition” and “Using index for skip scan” are completely different and
unrelated optimizations.

An index scan (type: index) plus a covering index (Extra: Using index) is an
index-only scan (see “Index scan” on page 46). There are two examples in “GROUP
BY” on page 60: Example 2-9 and Example 2-12.

Covering indexes are glamorous but rarely practical because realistic queries have too
many columns, conditions, and clauses for one index to cover. Do not spend time
trying to create covering indexes. When designing or analyzing simple queries that
use very few columns, take a moment to see if a covering index might work. If it does,
then congratulations. If not, that’s okay; no one expects covering indexes.

Join Tables
MySQL uses an index to join tables, and this usage is fundamentally the same as
using an index for anything else. The main difference is the source of values used in
join conditions for each table. This becomes more clear when visualized, but first we
need a second table to join. Example 2-18 shows the structure of table elem_names
and the 14 rows that it contains.

MySQL Indexes: A Visual Introduction | 71

Example 2-18. Table elem_names

CREATE TABLE `elem_names` (
 `symbol` char(2) NOT NULL,
 `name` varchar(16) DEFAULT NULL,
 PRIMARY KEY (`symbol`)
) ENGINE=InnoDB;

+--------+-----------+
| symbol | name |
+--------+-----------+
Ag	Silver
Al	Aluminum
Ar	Argon
At	Astatine
Au	Gold
B	Boron
Be	Beryllium
Bi	Bismuth
Br	Bromine
C	Carbon
Cd	Cadmium
Ce	Cerium
Co	Cobalt
Cr	Chromium
+--------+-----------+

Table elem_name has one index: the primary key on column symbol. The values in
column symbol match the values in table elem columns a, b, and c. Therefore, we can
join tables elem and elem_names on these columns.

Figure 2-23 shows a SELECT statement that joins tables elem and elem_names, and a
visual representation of the conditions and indexes for each table.

In previous figures, there’s only one index and SQL clause pair because there’s only
one table. But Figure 2-23 has two pairs—one for each table—delineated by large
rightward-pointing chevrons with the table name commented in each: /* elem */
and /* elem_names */. Like EXPLAIN, these figures list tables in join order: top to
bottom. Table elem (at top) is the first table in the join order and table elem_names (at
bottom) is the second table.

72 | Chapter 2: Indexes and Indexing

Figure 2-23. Join table on primary key lookup

Index usage on table elem is nothing new or special: MySQL uses the index for the
condition a IN (…). So far, so good.

Index usage on table elem_names, which is joined to the preceding table, is funda‐
mentally the same with two minor differences. First, the WHERE clause is a rewrite of
the JOIN…ON clause—more on this later. Second, values for the condition on column
symbol come from the preceding table: elem. To represent this, an arrow points
from the preceding table to a column reference in angle brackets: <elem.a>. On join,
MySQL looks up rows in table elem_names using column a values from matching
rows in table elem for the join condition on column symbol. In MySQL vernacular
we’d say, “symbol is equal to column a from table elem.” Given a value from the
preceding table, the primary key lookup on column symbol is nothing new or special:
if a row matches, it’s returned and joined with the row from the preceding table.

Example 2-19 shows the EXPLAIN plan for the SELECT statement in Figure 2-23.

MySQL Indexes: A Visual Introduction | 73

Example 2-19. EXPLAIN plan for join table on primary key lookup

EXPLAIN SELECT name
 FROM elem JOIN elem_names ON (elem.a = elem_names.symbol)
 WHERE a IN ('Ag', 'Au', 'At')\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: range
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 3
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: Using where; Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem_names
 partitions: NULL
> type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
> ref: test.elem.a
 rows: 1
 filtered: 100.00
 Extra: NULL

On a per-table basis, the EXPLAIN plan in Example 2-19 is nothing new, but the
join reveals two new details in the second table, elem_names. The first is access type
eq_ref: a single-row lookup using the primary key or a unique not-null secondary
index. (In this context, not-null means all secondary index columns are defined as
NOT NULL.) More on the eq_ref access type in the next paragraph. The second is ref:
test.elem.a, which you can read as “reference column elem.a”. (The database name
is test, hence the test. prefix.) To join table elem_names, values from reference
column elem.a are used to look up rows by primary key (key: PRIMARY), which
covers the join column: symbol. This corresponds to the JOIN condition: ON (elem.a
= elem_names.symbol).

74 | Chapter 2: Indexes and Indexing

On a per-table basis, a join does not change how indexes are used.
The main difference is that values for the join condition come from
the preceding table.

MySQL can join a table using any access method (see “Table Access Methods” on
page 45), but an index lookup using the eq_ref access type is the best and fastest
because it matches only one row. The eq_ref access type has two requirements: a
primary key or unique not-null secondary index and equality conditions on all index
columns. Together, these requirements guarantee that an eq_ref lookup matches at
most one row. If both requirements are not met, then MySQL will probably use a ref
index lookup, which is essentially the same but matches any number of rows.

Going back to Figure 2-23, how did I know to rewrite the JOIN…ON clause to a
WHERE clause for table elem_names? If you SHOW WARNINGS immediately after EXPLAIN,
MySQL prints how it rewrites the query. This is the abridged output of SHOW
WARNINGS:

/* select#1 */ select
 `test`.`elem_names`.`name` AS `name`
from
 `test`.`elem`
 join `test`.`elem_names`
where
 ((`test`.`elem_names`.`symbol` = `test`.`elem`.`a`)
 and (`test`.`elem`.`a` in ('Ag','Au','At')))

Now you can see that /* elem_names */ WHERE symbol = <elem.a> in Figure 2-23
is correct.

Sometimes, running SHOW WARNINGS immediately after EXPLAIN to see how MySQL
rewrites a query is necessary to understand the table join order and indexes that
MySQL chose.

Rewritten SQL statements shown by SHOW WARNINGS are not
intended to be valid. They’re only intended to show how MySQL
interprets and rewrites the SQL statement. Do not execute them.

Table join order is critical because MySQL joins tables in the best order possible, not
the order tables are written in the query. You must use EXPLAIN to see the table join
order. EXPLAIN prints tables in the join order from top (first table) to bottom (last
table). The default join algorithm, nested-loop join, follows the join order. I outline
join algorithms at the end of this chapter: “Table Join Algorithms” on page 87.

MySQL Indexes: A Visual Introduction | 75

Never guess or presume the table join order because small changes to a query can
yield a significantly different table join order or query execution plan. To demon‐
strate, the SELECT statement in Figure 2-24 is nearly identically to the SELECT state‐
ment in Figure 2-23 with one tiny difference—can you spot it?

Figure 2-24. Join table on secondary index lookup

Here’s a hint: it’s neither gold nor silver. The tiny difference yields a significantly
different query execution plan, as shown in Example 2-20.

Example 2-20. EXPLAIN plan for join table on secondary index lookup

EXPLAIN SELECT name
 FROM elem JOIN elem_names ON (elem.a = elem_names.symbol)
 WHERE a IN ('Ag', 'Au')\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem_names
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: NULL

76 | Chapter 2: Indexes and Indexing

2 Unless STRAIGHT_JOIN is used, but don’t use this. Let the MySQL query optimizer choose the join order for
the best query execution plan.

 rows: 2
 filtered: 100.00
 Extra: Using where
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: ref
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 3
 ref: test.elem_names.symbol
 rows: 2
 filtered: 100.00
 Extra: Using index

Syntactically, the SELECT statements in Figures 2-23 and 2-24 are identical, but the
execution plans (Examples 2-19 and 2-20) are significantly different. What changed?
In Figure 2-24, a single value was removed from the IN() list: “At.” This is a great
example of how a seemingly innocuous change can trigger something in the MySQL
query execution planner and voilà: a totally new and different EXPLAIN plan. Let’s
examine Example 2-20 table by table.

The first table is elem_names, which is different than how the query is written: elem
JOIN elem_names. MySQL determines the table join order, not the JOIN clause.2 The
type and key fields indicate a range scan on the primary key, but where are the values
coming from? The ref field is NULL, and there are no WHERE conditions on this table.
MySQL must have rewritten the query; this is the abridged output of SHOW WARNINGS:

/* select#1 */ select
 `test`.`elem_names`.`name` AS `name`
from
 `test`.`elem` join `test`.`elem_names`
where
 ((`test`.`elem`.`a` = `test`.`elem_names`.`symbol`)
 and (`test`.`elem_names`.`symbol` in ('Ag','Au')))

Yes, there it is on the last line: MySQL rewrites the query to use the IN() list as the
values for elem_names.symbols instead of elem.a as originally written in the query.
Now you can see (or imagine) that index usage on table elem_names.symbols is a
range scan to look up two values: “Ag” and “Au.” Using the primary key, that will be
an extremely fast index lookup and match only two rows that MySQL will use to join
the second table.

MySQL Indexes: A Visual Introduction | 77

The second table is elem, and the EXPLAIN plan is familiar: using index idx_a_b
to look up index values (not rows, because Extra: Using index) matching the
condition on column a. The values for that condition come from matching rows in
the preceding table, as indicated by ref: test.elem_names.symbol.

MySQL joins tables in the best order possible, not the order that
tables are written in the query.

Although MySQL can change the join order and rewrite the query, index usage for
a join is fundamentally the same—on a per-table basis—as everything previously
demonstrated and explained in this chapter. Use EXPLAIN and SHOW WARNINGS, and
consider the execution plan table by table, from top to bottom.

MySQL can join tables without an index. This is called a full join and it’s the single
worst thing a query can do. A table scan on a single-table query is bad, but a full join
is worse because the table scan on the joined table does not happen once, it happens
for every matching row from the preceding table. Example 2-21 shows a full join on
the second table.

Example 2-21. EXPLAIN plan for full JOIN

EXPLAIN SELECT name
 FROM elem STRAIGHT_JOIN elem_names IGNORE INDEX (PRIMARY)
 ON (elem.a = elem_names.symbol)\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: index
possible_keys: idx_a_b
 key: idx_a_b
 key_len: 6
 ref: NULL
 rows: 10
 filtered: 100.00
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem_names
 partitions: NULL
 type: ALL
possible_keys: NULL

78 | Chapter 2: Indexes and Indexing

3 Strictly speaking, the index-only scan on table elem yields ten values, not rows, because full rows are not
needed: only column a values are needed.

 key: NULL
 key_len: NULL
 ref: NULL
 rows: 14
 filtered: 7.14
 Extra: Using where; Using join buffer (hash join)

Normally, MySQL would not choose this query execution plan, which is why I had to
force it with STRAIGHT_JOIN and IGNORE INDEX (PRIMARY). An index-only scan on
the first table (elem) yields all ten rows.3 For each row, MySQL joins the second table
(elem_names) by doing a full table scan (type: ALL) to find matching rows. Since this
is a joined table (not the first table in the join order), the table scan counts as a full
join. A full join is the single worst thing a query can do because it happens for each
row from the preceding table: ten full table scans on table elem_names. Whenever you
see type: ALL for a joined table, stop everything you’re doing and fix it. There’s a
query metric for full joins: “Select full join” on page 21.

“Using join buffer (hash join)” in the Extra field refers to the hash join algorithm,
which is new as of MySQL 8.0.18. I outline it (and other join algorithms) at the end
of this chapter: “Table Join Algorithms” on page 87. Looking ahead, the one-line
explanation is: hash join builds an in-memory hash table of values and uses that to
lookup rows rather than doing repeated table scans. Hash join is a huge performance
improvement. Regardless, avoiding full joins remains the best practice.

Prior to MySQL 8.0, the query in Example 2-21 reports “Using join
buffer (Block Nested Loop)” in the Extra field because it uses a dif‐
ferent join algorithm: block nested-loop. “Table Join Algorithms”
on page 87 outlines this join algorithm.

At first glance, joining tables appears to be a categorically different type of index
usage, but it’s not. A join involves more tables and indexes, but on a per-table basis,
index usage and requirements are the same. Even the leftmost prefix requirement is
the same. The main difference is that, for joined tables, values for join conditions
come from the preceding table.

It’s been a long read since the first example in “WHERE” on page 54. Now you’ve
seen many full-context examples of indexes, queries, and EXPLAIN plans that cover
the technical details and mechanics of MySQL indexes. This information is the
foundation of direct query optimization on which the next section builds.

MySQL Indexes: A Visual Introduction | 79

Indexing: How to Think Like MySQL
Indexes and indexing are different topics. The previous section introduced indexes:
standard B-tree indexes on InnoDB tables for WHERE, GROUP BY, ORDER BY, cover‐
ing indexes, and table joins. This section introduces indexing: applying indexes for
maximum leverage. You cannot simply index every column to effect amazing perfor‐
mance. If it were that easy, there would be no DBAs. For maximum leverage, you
have to index the columns that allow MySQL to access the least number of rows when
executing a query. To state it metaphorically: maximum leverage is an index that tells
MySQL exactly where to find the needle in the haystack.

In my experience, engineers struggle with indexing because they conflate how they
think about a query with how MySQL “thinks” about a query. As engineers, we think
about a query in the context of the application: what part of the application executes
the query, why (the business logic), and the correct result set. But MySQL does not
know or care about any of that. MySQL thinks about a much smaller, simpler context:
indexes and table conditions. Under the hood, MySQL is considerably more complex,
but part of its indeterminable charm is how well it hides that complexity.

How do we know that MySQL thinks about indexes and table conditions? EXPLAIN.
And what is the primary information that EXPLAIN reports? Tables (in join order),
table access methods, indexes, and Extra information related to the access of those
tables with those indexes.

Thinking like MySQL make indexing easier because it’s a deterministic machine—
algorithms and heuristics. Human thought is entangled with superfluous details.
Clear your mind and get ready to think like a machine. The next four sections walk
through a simple, four-step process.

Know the Query
The first step toward thinking like MySQL is to know basic information about the
query that you’re optimizing. Start by gathering the following metadata for each table:

• SHOW CREATE TABLE•
• SHOW TABLE STATUS•
• SHOW INDEXES•

If the query is already running in production, then get its query report (see “Query
report” on page 10) and familiarize yourself with the current values.

Then answer the following questions:

80 | Chapter 2: Indexes and Indexing

Query
• How many rows should the query access?
• How many rows should the query return?
• Which columns are selected (returned)?
• What are the GROUP BY, ORDER BY, and LIMIT clauses (if any)?
• Are there subqueries? (If yes, repeat the process for each.)

Table access (per-table)
• What are the table conditions?
• Which index should the query use?
• What other indexes could the query use?
• What is the cardinality of each index?
• How large is the table—data size and row count?

Those questions help you mentally parse the query because that’s what MySQL does:
parse the query. This is especially helpful for seeing complex queries in simpler terms:
tables, table conditions, indexes, and SQL clauses.

This information helps you piece together a puzzle that, once complete, reveals query
response time. To improve response time, you’ll need to change some pieces. But
before doing that, the next step is to assemble the current pieces with the help of
EXPLAIN.

Understand with EXPLAIN
The second step is to understand the current query execution plan reported by
EXPLAIN. Consider each table and its conditions with respect to its indexes, starting
with the index that MySQL chose: the key field in the EXPLAIN output. Look at the
table conditions to see how they meet the leftmost prefix requirement for this index.
If the possible_keys field lists other indexes, think about how MySQL would access
rows using those indexes—always with the leftmost prefix requirement in mind. If
the Extra field has information (it usually does), then refer to “EXPLAIN Output” in
the MySQL manual to learn what it means.

Always EXPLAIN the query. Make this a habit because direct query
optimization is not possible without EXPLAIN.

Indexing: How to Think Like MySQL | 81

4 Extremely rare query optimizer bugs notwithstanding.

The query and its response time are a puzzle, but you have all the pieces: execution
plan, table conditions, table structures, table sizes, index cardinalities, and query
metrics. Keep connecting the pieces until the puzzle is complete—until you can see
the query working as MySQL explains it. There is always a reason for the query
execution plan.4 Sometimes MySQL is very clever and uses a nonobvious query
optimization, usually mentioned in the Extra field. If you encounter one for a SELECT
statement, “Optimizing SELECT Statements” in the MySQL manual will elucidate it.

If you get stuck, there are three increasing levels of support:

1. As of MySQL 8.0.16, EXPLAIN FORMAT=TREE prints a more precise and descriptive1.
query execution plan in tree-like output. It’s a completely different output than
the traditional format, so you’ll need to learn how to interpret it, but it’s worth
the effort.

2. Use optimizer tracing to report an extremely detailed query execution plan with2.
costs, considerations, and reasons. This is a very advanced feature with a high
learning curve, so if you’re pressed for time, you might prefer the third option.

3. Ask your DBA or hire an expert.3.

Optimize the Query
The third step is direct query optimization: change the query, its indexes, or both.
This is where all the fun happens, and there’s no risk yet because these changes are
made in development or staging, not production. Be certain that your development
or staging environment has data that is representative of production because data size
and distribution affect how MySQL chooses indexes.

At first, it might seem like the query cannot be modified because it fetches the correct
rows, so the query is written correctly. A query “is what it is,” right? Not always; the
same result can be achieved with different methods. A query has a result—literally, a
result set—and a method of obtaining that result. These two are closely related but
independent. Knowing that is tremendously helpful when considering how to modify
a query. Start by clarifying the intended result of the query. A clear result allows you
to explore new ways of writing the query that achieve the same result.

There can be multiple ways to write a query that execute differently
but return the same result.

82 | Chapter 2: Indexes and Indexing

5 Try to outsmart MySQL if you’re bored, but don’t expect to win. It has seen attack ships on fire off the
shoulder of Orion. It watched C-beams glitter in the dark near the Tannhäuser Gate.

For example, some time ago I was helping an engineer optimize a slow query. His
question to me was technical—something about GROUP BY and indexes—but I asked
him, “What does the query do? What’s it supposed to return?” He said, “Oh! It
returns the maximum value for a group.” After clarifying the intended result of the
query, I realized that he didn’t need the maximum group value, he simply needed the
maximum value. Consequently, the query was completely rewritten to use the ORDER
BY col DESC LIMIT 1 optimization.

When a query is extremely simple, like SELECT col FROM tbl WHERE id = 1, there
might truly be no way to rewrite it. But the simpler the query, the less likely it
needs to be rewritten. If a simple query is slow, the solution is likely a change to
indexes rather than the query. (And if index changes don’t solve the problem, then
the journey continues: indirect query optimization, addressed in Chapters 3 and 4.)

Adding or modifying a index is a trade-off between access methods and query-
specific optimizations. For example, do you trade an ORDER BY optimization for a
range scan? Don’t get stuck trying to weigh the trade-offs; MySQL does that for you.5

Your job is simple: add or alter an index that you think will provide MySQL greater
leverage, then use EXPLAIN to see if MySQL agrees by using the new index. Repeat
until you and MySQL agree on the most optimized way to write, index, and execute
the query.

Do not modify indexes in production until you have thoroughly
verified the changes in staging.

Deploy and Verify
The last step is to deploy the changes and verify that they improve response time.
But first: know how to roll back the deployment—and be ready to do so—in case the
changes have unintended side effects. This happens for many reasons; two examples
are: queries running in production that use the index but were not running in
staging, or production data that is significantly different than staging data. It’s most
likely going to be fine, but be prepared for not fine.

Indexing: How to Think Like MySQL | 83

Always know how to—and be ready to—roll back a deployment to
production.

After deploying, verify the changes with query metrics and MySQL server metrics. If
the query optimization has significant impact, MySQL server metrics will reflect it.
(Chapter 6 elaborates on MySQL server metrics.) It’s awesome when this happens, but
don’t be surprised or discouraged if it doesn’t because the most important change is
query response time—recall “North Star” on page 3.

Wait five to ten minutes (preferably longer), then check response time in the query
profile and query report. (See “Query profile” on page 9 and “Query report” on page
10.) If response time improved, then congratulations: you are doing and accomplish‐
ing what MySQL experts do; with this skill, you can achieve remarkable MySQL
performance. If response time did not improve, don’t worry and don’t give up: even
MySQL experts encounter queries that require elbow grease. Repeat the process, and
consider enlisting another engineer because some queries require heavy lifting. If
you’re certain the query cannot be further optimized, then it’s time for the second
part of the journey: indirect query optimization. Chapter 3 addresses changes to data,
and Chapter 4 addresses changes to the application.

It Was a Good Index Until…
If nothing changes, a good index will stay a good index until the end of time. (But
if truly nothing changes, would time ever end?) Realistically, something will change,
render a good index bad, and decrease performance. Following are common causes of
this regrettable (but avoidable and correctable) decline.

Queries Changed
When queries change—and they often do—the leftmost prefix requirement can be
lost. The worst case is when there are no other indexes that MySQL can use, so
it reverts to brute force: a full table scan. But tables often have many indexes, and
MySQL is determined to use an index, so the more likely case is that query response
time becomes noticeably poor because the other indexes aren’t as good as the original
index. A query analysis and EXPLAIN plan quickly reveal this case. Presuming the
query changes were necessary, which is a safe presumption, the solution is to re-index
for the new variation of the query.

84 | Chapter 2: Indexes and Indexing

Excessive, Duplicate, and Unused
Indexes are necessary for performance, but sometimes engineers go overboard with
them, which results in too many indexes, duplicate indexes (dupes), and unused
indexes.

How many indexes is too many? One more than is necessary. An overabundance
of indexes creates two problems. The first was mentioned in “Leftmost Prefix
Requirement” on page 49: increased index size. More indexes use more RAM which,
ironically, decreases the RAM available for each index. The second problem is a
decrease in write performance because, when MySQL writes data, it must check,
update, and potentially reorganize (the internal B-tree structure of) every index. An
inordinate number of indexes can severely degrade write performance.

When you create a duplicate index, the ALTER statement used to create it generates a
warning, but you have to SHOW WARNINGS to see it. To find existing duplicate indexes,
use pt-duplicate-key-checker: it safely finds and reports duplicate indexes.

Unused indexes are even trickier to identify because, for example, what if the index
is only used once a week by a long-running analytics query? That edge case aside,
execute this query to list unused indexes:

SELECT * FROM sys.schema_unused_indexes
WHERE object_schema NOT IN ('performance_schema');

That query uses the MySQL sys Schema, which is a collection of ready-made
views that return all sorts of information. The view sys.schema_unused_indexes
queries Performance Schema and Information Schema tables to determine which
indexes have not been used since MySQL started. (Execute SHOW CREATE VIEW

sys.schema_unused_indexes to see how this view works.) The Performance Schema
must be enabled; if it is not already enabled, talk with your DBA (or whoever
manages MySQL) because enabling it requires restarting MySQL.

Be careful when dropping an index. As of MySQL 8.0, use invisible indexes to verify
that an index is not used or needed before dropping it: make the index invisible, wait
and verify that performance is not affected, then drop the index. Invisible indexes
are fantastic for this purpose because, when a mistake is made, making an index
visible is nearly instantaneous, whereas re-adding an index can take minutes (or
hours) on large tables, which feels like an eternity if the mistake causes an application
outage. Before MySQL 8.0, caution is the only solution: talk with your team, search
the application code, and use your knowledge of the application to carefully and
thoroughly verify that the index is not used or needed.

It Was a Good Index Until… | 85

Be careful when dropping (removing) indexes. If a dropped index
was used by a query and MySQL cannot use another index, the
query will revert to a full table scan. If a dropped index affects
several queries, which is not uncommon, it can cause a ripple effect
of performance degradation that leads to an application outage.

Extreme Selectivity
Cardinality is the number of unique values in an index. An index on values a, a, b,
b has a cardinality of 2: a and b are the two unique values. Use SHOW INDEX to see
index cardinality.

Selectivity is cardinality divided by the number of rows in the table. Using the same
example, a, a, b, b, where each value is one row, the index selectivity is 2 / 4 =
0.5. Selectivity ranges from 0 to 1, where 1 is a unique index: a value for every row.
MySQL doesn’t show index selectivity; you have to calculate it manually using SHOW
INDEX for cardinality and SHOW TABLE STATUS for the number of rows.

An index with extremely low selectivity provides little leverage because each unique
value could match a large number of rows. A classic example is an index on a column
with only two possible values: yes or no, true or false, coffee or tea, on so on. If the
table has 100,000 rows, then selectivity is practically zero: 2 / 100,000 = 0.00002. It’s
an index, but not a good one because each value could match many rows. How many?
Flip the division: 100,000 rows / 2 unique values = 50,000 rows per value. If MySQL
were to use this index (which is unlikely), a single index lookup could match 50,000
rows. That presumes values are evenly distributed, but what if 99,999 rows have value
coffee and only 1 row has value tea? Then the index works great for tea but terribly
for coffee.

If a query uses an index with extremely low selectivity, see if you can create a better,
more selective index; or, consider rewriting the query to use a more selective index;
or, think about altering the schema to organize the data better with respect to access
patterns—more on this in Chapter 4.

An index with extremely high selectivity might be over-leveraged. As the selectivity of
a nonunique secondary index approaches 1, it begins to raise the question of whether
or not the index should be unique or—even better—if the query can be rewritten to
use the primary key. Such an index doesn’t hurt performance, but it’s worth exploring
alternatives.

If there are many secondary indexes with extremely high selectivity, it likely indicates
access patterns that view or search the whole table by different criteria or dimensions
(presuming the indexes are used and not duplicates). For example: imagine a table
with product inventory that the application searches by many different criteria, each

86 | Chapter 2: Indexes and Indexing

requiring an index to meet the leftmost prefix requirement. In this case, Elasticsearch
might serve the access patterns better than MySQL.

It’s a Trap! (When MySQL Chooses Another Index)
In very rare cases, MySQL chooses the wrong index. This is rare enough that it
should be your last suspicion if MySQL is using an index but query response time
is inexplicably slow. There are several reasons this can occur. A common reason is
that, when updating a large number of rows, the number is just shy of triggering
an automatic update of the index “stats.” Since index statistics are one of many
factors that influence which index MySQL chooses, index statistics that have diverged
significantly from reality can cause MySQL to choose the wrong index. To be clear:
the index itself is never inaccurate; it’s only the index statistics that are inaccurate.

Index statistics are estimates about how values are distributed in the index. MySQL
does random dives into the index to sample pages. (A page is a 16 KB unit of logical
storage. Almost everything is stored in pages.) If index values are evenly distributed,
then a few random dives accurately represent the whole index.

MySQL updates index statistics for a table when:

• The table is first opened•
• ANALYZE TABLE is run•
• 1/16th of the table has been modified since the last update•
• innodb_stats_on_metadata is enabled and one of the following occurs:•

— SHOW INDEX or SHOW TABLE STATUS is run—
— INFORMATION_SCHEMA.TABLES or INFORMATION_SCHEMA.STATISTICS is queried—

Running ANALYZE TABLE is safe and usually very fast, but be careful on a busy server:
it requires a flush lock (except in Percona Server) that can block all queries accessing
the table.

Table Join Algorithms
A brief overview of MySQL table join algorithms helps you think about indexes and
indexing when analyzing and optimizing JOIN. The default table join algorithm is
called nested-loop join (NLJ), and it operates like nested foreach loops in code. For
example, suppose that a query joins three tables with a JOIN clause like:

FROM
 t1 JOIN t2 ON t1.A = t2.B
 JOIN t3 ON t2.B = t3.C

Table Join Algorithms | 87

6 Hash join exists as of MySQL 8.0.18 but replaces block nested-loop as of MySQL 8.0.20.

And suppose that EXPLAIN reports the join order as t1, t2, and t3. The nested-loop
join algorithm works like the pseudocode in Example 2-22.

Example 2-22. NLJ algorithm

func find_rows(table, index, conditions) []rows {
 // Return array of rows in table matching conditions,
 // using index for lookup or table scan if NULL
}

foreach find_rows(t1, some_index, "WHERE ...") {
 foreach find_rows(t2, index_on_B, "WHERE B = <t1.A>") {
 return find_rows(t3, NULL, "WHERE C = <t2.B>")
 }
}

Using the NLJ algorithm, MySQL begins by using some_index to find matching rows
in the outermost table: t1. For each matching row in table t1, MySQL joins table t2
by using an index on the join column, index_on_B, to lookup rows matching t1.A.
For each matching row in table t2, MySQL joins table t3 using the same process,
but—just for fun—let’s say there’s no index on the join column, t3.C: the result is a
full join. (Recall “Select full join” on page 21 and Example 2-21.)

When no more rows in t3 match the join column value from table t2, the next
matching row from t2 is used. When no more rows in t2 match the join column
value from table t1, the next matching row from t1 is used. When no more rows in
t1 match, the query completes.

The nested-loop join algorithm is simple and effective, but there’s one problem: the
innermost table is accessed very frequently, and the full join makes that access very
slow. In this example, table t3 is accessed for every matching row in t1 multiplied
by every matching row in t2. If both t1 and t2 have 10 matching rows, then t3 is
accessed 100 times. The block nested-loop join algorithm addresses this problem. Join
column values from matching rows in t1 and t2 are saved in a join buffer. (The join
buffer size is set by system variable join_buffer_size.) When the join buffer is full,
MySQL scans t3 and joins each t3 row that matches join column values in the join
buffer. Although the join buffer is accessed many times (for each t3 row), it’s fast
because it’s in memory—significantly faster than 100 table scans required for the NLJ
algorithm.

As of MySQL 8.0.20, the hash join algorithm replaces the block nested-loop join
algorithm.6 Hash join creates an in-memory hash table of join tables, like table t3 in

88 | Chapter 2: Indexes and Indexing

this example. MySQL uses the hash table to look up rows in the join table, which is
extremely fast because a hash table lookup is a constant time operation. For details,
read “Hash Join Optimization” in the MySQL manual.

EXPLAIN indicates a hash join by printing “Using join buffer (hash
join)” in the Extra field.

There are more details and nuances to MySQL joins, but this brief overview helps you
to think about joins like MySQL: one table at a time and one index per table.

Summary
This chapter taught indexes and indexing with MySQL. The key takeaway points are:

• Indexes provide the most and the best leverage for MySQL performance.•
• Do not scale up hardware to improve performance until exhausting other•

options.
• Tuning MySQL is not necessary to improve performance with a reasonable•

configuration.
• An InnoDB table is a B-tree index organized by the primary key.•
• MySQL accesses a table by index lookup, index scan, or full table scan—index•

lookup is the best access method.
• To use an index, a query must use a leftmost prefix of the index—the leftmost•

prefix requirement.
• MySQL uses an index to find rows matching WHERE, group rows for GROUP BY,•

sort rows for ORDER BY, avoid reading rows (covering index), and join tables.
• EXPLAIN prints a query execution plan (or EXPLAIN plan) that details how•

MySQL executes a query.
• Indexing requires thinking like MySQL to understand the query execution plan.•
• Good indexes can lose effectiveness for a variety of reasons.•
• MySQL uses three algorithms to join tables: NLJ, block nested-loop, and hash•

join.

The next chapter begins to address indirect query optimization with respect to data.

Summary | 89

Practice: Find Duplicate Indexes
The goal of this practice is to identify duplicate indexes using pt-duplicate-key-
checker: a command-line tool that prints duplicate indexes.

The practice is simple but useful: download and run pt-duplicate-key-checker. By
default, it checks all tables and prints a report for each duplicate index, such as the
following:

##
db_name.table_name
##

idx_a is a left-prefix of idx_a_b
Key definitions:
KEY `idx_a` (`a`),
KEY `idx_a_b` (`a`,`b`)
Column types:
`a` int(11) default null
`b` int(11) default null
To remove this duplicate index, execute:
ALTER TABLE `db_name`.`table_name` DROP INDEX `idx_a`;

For each index and its duplicate, the report includes:

• A reason: why one index duplicates the other•
• Both index definitions•
• Column definitions that the indexes cover•
• An ALTER TABLE statement to drop the duplicate index•

pt-duplicate-key-checker is mature and well tested, but always think carefully before
dropping an index—especially in production.

Like “Practice: Identify Slow Queries” on page 33, this practice is simple—but you
would be surprised how many engineers never check for duplicate indexes. Checking
for and removing duplicate indexes is practicing MySQL performance like an expert.

90 | Chapter 2: Indexes and Indexing

CHAPTER 3

Data

This chapter begins the second part of the journey: indirect query optimization. As
mentioned in “Improving Query Response Time” on page 27, direct query optimiza‐
tion solves a lot of problems, but not all. Even when you surpass the knowledge and
skills in Chapter 2, which focuses on direct query optimization, you will encounter
queries that are simple and properly indexed but still slow. That’s when you begin to
optimize around the query, starting with the data that it accesses. To understand why,
let’s think about rocks.

Imagine that your job is to move rocks, and you have three piles of different sized
rocks. The first pile contains pebbles: very light, no larger than your thumbnail. The
second pile contains cobbles: heavy but light enough to pick up, no larger than your
head. The third pile contains boulders: too large and heavy to pick up; you need
leverage or a machine to move them. Your job is to move one pile from the bottom of
a hill to the top (no matter why; but if it helps, imagine that you’re Sisyphus). Which
pile do you choose?

I presume that you choose the pebbles because they’re light and easy to move. But
there’s a critical detail that might change your decision: weight. The pile of pebbles
weighs two metric tons (the weight of a mid-size SUV). The pile of cobbles weighs
one metric ton (the weight of a very small car). And there’s only one boulder that
weighs half a metric ton (the weight of ten adult humans). Now which pile do you
choose?

On the one hand, the pebbles are still a lot easier to move. You can shovel them
into a wheelbarrow and roll it up the hill. There’s just a lot of them (pebbles, not
wheelbarrows). The boulder is a fraction of the weight, but its singular size makes it
unwieldy. Special equipment is need to move it up the hill, but it’s a one-time task.
Tough decision. Chapter 5 provides an answer and an explanation, but we have much
more to cover before that chapter.

91

Data is analogous to a pile of rocks, and executing queries is analogous to moving the
rocks uphill. When data size is small, direct query optimization is usually sufficient
because the data is trivial to handle—like walking (or running) up a hill with a
handful of pebbles. But as data size increases, indirect query optimization becomes
increasingly important—like lugging a heavy cobble up a hill and stopping midway to
ask, “Can we do something about these rocks?”

Chapter 1 provided a “proof ” that data size affects performance: TRUNCATE TABLE
dramatically increases performance—but don’t use this “optimization.” That’s a joke,
but it also proves a point that is not frequently followed through to its logical conse‐
quence: less data is more performance. That’s the tagline; the full statement is: you
can improve performance by reducing data because less data requires fewer system
resources (CPU, memory, storage, and so on).

You can tell by now that this chapter is going to argue for less data. But isn’t more data
the reality and reason that drives engineers to learn about performance optimization?
Yes, and Chapter 5 addresses MySQL at scale, but first it’s imperative to learn to
reduce and optimize data when it’s relatively small and problems are tractable. The
most stressful time to learn is when you’ve ignored data size until it’s crushing the
application.

This chapter examines data with respect to performance and argues that reducing
data access and storage is a technique—an indirect query optimization—for improv‐
ing performance. There are three major sections. The first reveals three secrets about
MySQL performance. The second introduces what I call the principle of least data
and its numerous implications. The third covers how to quickly and safely delete or
archive data.

Three Secrets
To keep a secret is to conceal a truth. The following truths are not always revealed in
books about MySQL performance for two reasons. First, they complicate matters. It’s
a lot easier to write about and explain performance without mentioning the caveats
and gotchas. Second, they’re counterintuitive. That doesn’t make them false, but it
does make them difficult to clarify. Nevertheless, the following truths are important
for MySQL performance, so let’s dig into the details with an open mind.

Indexes May Not Help
Ironically, you can expect the majority of slow queries to use an index lookup. That’s
ironic for two reasons. First, indexes are the key to performance, but a query can
be slow even with a good index. Second, after learning about indexes and indexing
(as discussed in Chapter 2), engineers become so good at avoiding index scans and

92 | Chapter 3: Data

1 MySQL does not support sparse or partial indexes.

table scans that only index lookups remain, which is a good problem but ironic
nonetheless.

Performance cannot be achieved without indexes, but that doesn’t mean that indexes
provide infinite leverage for infinite data size. Don’t lose faith in indexes, but be aware
of the following cases in which indexes may not help. For each case, presuming the
query and its indexes cannot be optimized any further, the next step is indirect query
optimization.

Index scan
An index scan provides diminishing leverage as a table grows because the index also
grows: more table rows, more index values.1 (By contrast, the leverage that an index
lookup provides almost never diminishes as long as the index fits in memory.) Even
an index-only scan tends not to scale because it almost certainly reads a large number
of values—a safe presumption because MySQL would have done an index lookup to
read fewer rows if possible. An index scan only delays the inevitable: as the number
of rows in the table increases, response time for queries that use an index scan also
increases.

Finding rows
When I optimize a slow query that uses an index lookup, the first query metric I
check is rows examined (see “Rows examined” on page 18). Finding matching rows is
the fundamental purpose of a query, but even with a good index, a query can examine
too many rows. Too many is the point at which response time becomes unacceptable
(and the root cause is not something else, like insufficient memory or disk IOPS).
This happens because several index lookup access types can match many rows. Only
the access types listed in Table 3-1 match at most one row.

Table 3-1. Index lookup access types that match at most one row
☐ system

☐ const

☐ eq_ref

☐ unique_subquery

If the type field in an EXPLAIN plan is not one of the access types listed in Table 3-1,
then pay close attention to the rows field and the query metric rows examined (see
“Rows examined” on page 18). Examining a very large number of rows is slow
regardless of the index lookup.

Three Secrets | 93

“EXPLAIN Output Format” in the MySQL manual enumerates
access types, which it calls join types because MySQL treats every
query as a join. In this book, for precision and consistency I use
only two terms: access method and access type, as written through‐
out Chapter 2.

Very low index selectivity is a likely accomplice. Recall “Extreme Selectivity” on page
86: index selectivity is cardinality divided by the number of rows in the table. MySQL
is unlikely to chose an index with very low selectivity because it can match too many
rows. Since secondary indexes require a second lookup in the primary key to read
rows, it can be faster to eschew an index with extremely low selectivity and do a
full table scan instead—presuming there’s no better index. You can detect this in
an EXPLAIN plan when the access method is a table scan (type: ALL) but there
are indexes that MySQL could use (possible_keys). To see the execution plan that
MySQL is not choosing, EXPLAIN the query with FORCE INDEX to use an index listed
in the possible_keys field. Most likely, the resulting execution plan will be an index
scan (type: index) with a large number of rows, which is why MySQL chooses a
table scan instead.

Recall “It’s a Trap! (When MySQL Chooses Another Index)” on
page 87: in very rare cases, MySQL chooses the wrong index. If a
query examines too many rows but you’re certain there’s a better
index that MySQL should use, there’s a small chance that the index
statistics are wrong, which causes MySQL to not choose the better
index. Run ANALYZE TABLE to update index statistics.

Remember that index selectivity is a function of cardinality and the number of rows
in the table. If cardinality remains constant but the number of rows increases, then
selectivity decreases. Consequently, an index that helped when the table was small
may not help when the table is huge.

Joining tables
When joining tables, a few rows in each table quickly obliterate performance. If you
recall from “Table Join Algorithms” on page 87, the nested-loop join (NLJ) algorithm
(Example 2-22) entails that the total number of rows accessed for a join is the product
of rows accessed for each table. In other words, multiply the values for rows in an
EXPLAIN plan. A three-table join with only one hundred rows per table can access
one million rows: 100 × 100 × 100 = 1,000,000. To avoid this, the index lookup
on each table joined should match only one row—one of the access types listed in
Table 3-1 is best.

94 | Chapter 3: Data

MySQL can join tables in almost any order. Use this to your advantage: sometimes
the solution to a poor join is a better index on another table that allows MySQL to
change the join order.

Without an index lookup, a table join is doomed. The result is a full join, as fore‐
warned in “Select full join” on page 21. But even with an index, a table join will
struggle if the index does not match a single row.

Working set size
Indexes are only useful when they’re in memory. If the index values that a query
looks up are not in memory, then MySQL reads them from disk. (More accurately,
the B-tree nodes that constitute the index are stored in 16 KB pages, and MySQL
swaps pages between memory and disk as needed.) Reading from disk is orders of
magnitude slower than reading from memory, which is one problem, but the main
problem is that indexes compete for memory.

If memory is limited but indexes are numerous and frequently used to look up a
large percentage of values (relative to the table size), then index usage can increase
storage I/O as MySQL attempts to keep frequently used index values in memory. This
is possible but rare for two reasons. First, MySQL is exceptionally good at keeping
frequently used index values in memory. Second, frequently used index values and
the primary key rows to which they refer are called the working set, and it’s usually a
small percentage of the table size. For example, a database can be 500 GB large, but
the application frequently accesses only 1 GB of data. In light of this fact, MySQL
DBAs commonly allocate memory for only 10% of total data size, usually rounded to
standard memory values (64 GB, 128 GB, and so forth). 10% of 500 GB is 50 GB, so
a DBA would probably err on the side of caution and round up to 64 GB of memory.
This works surpassingly well and is a good starting point.

As a starting point, allocate memory for 10% of total data size. The
working set size is usually a small percentage of total data size.

When the working set size becomes significantly larger than available memory,
indexes may not help. Instead, like a fire that burns so hot that water fuels it rather
than extinguishing it, index usage puts pressure on storage I/O and everything slows
down. More memory is a quick fix, but remember “Better, Faster Hardware!” on page
37: scaling up is not a sustainable approach. The best solution is to address the data
size and access patterns responsible for the large working set. If the application truly
needs to store and access so much data that the working set size cannot fit within
a reasonable amount of memory on a single MySQL instance, then the solution is
sharding, which is covered in Chapter 5.

Three Secrets | 95

Less Data Is Better
Experienced engineers don’t celebrate a huge database, they cope with it. They cele‐
brate when data size is dramatically reduced because less data is better. Better for
what? Everything: performance, management, cost, and so on. It’s simply a lot faster,
easier, and cheaper to deal with 100 GB of data than 100 TB on a single MySQL
instance. The former is so small that a smartphone can handle it. The latter requires
specialized handling: optimizing performance is more challenging, managing the
data can be risky (what’s the backup and restore time?), and good luck finding
affordable hardware for 100 TB. It’s easier to keep data size reasonable than to cope
with a huge database.

Any amount of data that’s legitimately required is worth the time and effort to
optimize and manage. The problem is less about data size and more about unbridled
data growth. It’s not uncommon for engineers to hoard data: storing any and all
data. If you’re thinking, “Not me. I don’t hoard data,” then wonderful. But your
colleagues may not share your laudable sense of data asceticism. If not, raise the issue
of unbridled data growth before data size becomes a problem.

Don’t let an unwieldy database catch you by surprise. Monitor data
size (see “Data Size” on page 203) and, based on the current rate of
growth, estimate data size for the next four years. If future data size
is not feasible with the current hardware and application design,
then address the issue now before it becomes a problem.

Less QPS Is Better
You may never find another book or engineer that says less QPS is better. Cherish the
moment.

I realize that this secret is counterintuitive, perhaps even unpopular. To see its truth
and wisdom, consider three less objectionable points about QPS:

QPS is only a number—a measurement of raw throughput
It reveals nothing qualitative about the queries or performance in general. One
application can be effectively idle at 10,000 QPS, while another is overloaded
and having an outage at half that throughput. Even at the same QPS, there
are numerous qualitative differences. Executing SELECT 1 at 1,000 QPS requires
almost zero system resources, but a complex query at the same QPS could be
very taxing on all system resources. And high QPS—no matter how high—is only
as good as query response time.

96 | Chapter 3: Data

QPS values have no objective meaning
They’re neither good nor bad, high nor low, typical nor atypical. QPS values are
only meaningful relative to an application. If one application averages 2,000 QPS,
then 100 QPS could be a precipitous drop that indicates a outage. But if another
application averages 300 QPS, then 100 QPS could be a normal fluctuation. QPS
can also be relative to external events: time of day, day of week, seasons, holidays,
and so on.

It is difficult to increase QPS
By contrast, data size can increase with relative ease from 1 GB to 100 GB—a
100x increase. But it’s incredibly difficult to increase QPS by 100x (except for
extremely low values, like 1 QPS to 100 QPS). Even a 2x increase in QPS can be
very challenging to achieve. Maximum QPS—relative to an application—is even
more challenging to increase because you cannot purchase more QPS, unlike
storage and memory.

In summary of these points: QPS is not qualitative, only relative to an application,
and difficult to increase. To put a point on it: QPS does not help you. It’s more of a
liability than an asset. Therefore, less QPS is better.

Experienced engineers celebrate when QPS is reduced (intentionally) because less
QPS is more capacity for growth.

Principle of Least Data
I define the principle of least data as: store and access only needed data. That sounds
obvious in theory, but it’s far from the norm in practice. It’s also deceptively simple,
which is why the next two sections have many fine details.

Common sense is not so common.
—Voltaire

Data Access
Do not access more data than needed. Access refers to all the work that MySQL does
to execute a query: find matching rows, process matching rows, and return the result
set—for both reads (SELECT) and writes. Efficient data access is especially important
for writes because it’s more difficult to scale writes.

Table 3-2 is a checklist that you can apply to a query—hopefully every query—to
verify its data access efficiency.

Principle of Least Data | 97

Table 3-2. Efficient data access checklist
☐ Return only needed columns

☐ Reduce query complexity

☐ Limit row access

☐ Limit the result set

☐ Avoid sorting rows

To be fair and balanced, ignoring a single checklist item is unlikely to affect per‐
formance. For example, the fifth item—avoid sorting rows—is commonly ignored
without affecting performance. These items are best practices. If you practice them
until they become habit, you will have greater success and performance with MySQL
than engineers who ignore them completely.

Before I explain each item in Table 3-2, let’s take one paragraph to revisit an example
in Chapter 1 that I deferred to this chapter.

Perhaps you recall this example from “Query profile” on page 9: “As I write this,
I’m looking at a query with load 5,962. How is that possible?” That query load is
possible thanks to incredibly efficient data access and an extremely busy application.
The query is like SELECT col1, col2 WHERE pk_col = 5: a primary key look up
that returns only two columns from a single row. When data access is that efficient,
MySQL functions almost like an in-memory cache, and it executes the query at
incredible QPS and query load. Almost, but not entirely, because every query is a
transaction that entails overhead. (Chapter 8 focuses on transactions.) To optimize
a query like this, you must change access patterns because the query cannot be
optimized any further and the data size cannot be reduced. I revisit this query one
more time in Chapter 4.

Return only needed columns
Queries should return only needed columns.

Do not SELECT *. This is especially important if the table has any BLOB, TEXT, or JSON
columns.

You’ve probably heard this best practice before because the database industry (not
just MySQL) has been harping on it for decades. I can’t recall the last time I saw
SELECT * in production, but it’s important enough to keep repeating.

Reduce query complexity
Queries should be as simple as possible.

98 | Chapter 3: Data

Query complexity refers to all tables, conditions, and SQL clauses that constitute a
query. In this context, complexity is relative only to a query, not to engineers. Query
SELECT col FROM tbl WHERE id = 1 is less complex than a query that joins five
tables with many WHERE conditions.

Complex queries are a problem for engineers, not MySQL. The more complex a
query, the more difficult it is to analyze and optimize. If you’re lucky, a complex
query works well and never shows up as a slow query (see “Query profile” on page 9).
But luck is not a best practice. Keep queries simple from the start (when first written),
and reduce query complexity when possible.

With respect to data access, simple queries tend to access less data because they have
fewer tables, conditions, and SQL clauses—less work for MySQL. But be careful: the
wrong simplification can yield a worse EXPLAIN plan. For example, Figure 2-21
in Chapter 2 demonstrates how removing a condition negates an ORDER BY optimiza‐
tion, resulting in a (slightly) worse EXPLAIN plan. Always confirm that a simpler
query has an equivalent or better EXPLAIN plan—and the same result set.

Limit row access
Queries should access as few rows as possible.

Accessing too many rows usually comes as a surprise; it’s not something engineers
do intentionally. Data growth over time is a common cause: a fast query starts by
accessing a few rows, but years and gigabytes later, it becomes a slow query because
it accesses too many rows. Simple mistakes are another cause: an engineer writes a
query that they think will access a few rows, but they’re wrong. At the intersection of
data growth and simple mistakes is the most important cause: not limiting ranges and
lists. An open-ended range like col > 75 can access countless rows if MySQL does a
range scan on col. Even if this is intended because the table is presumed to be small,
be aware that row access is virtually unbounded as the table grows, especially if the
index on col is nonunique.

A LIMIT clause does not limit row access because LIMIT applies to the result set after
matching rows. The exception is the ORDER BY…LIMIT optimization: if MySQL can
access rows in index order, then it stops reading rows when the LIMIT number of
matching rows are found. But here’s the fun part: EXPLAIN does not report when this
optimization is used. You must infer the optimization from what an EXPLAIN does
and does not report. Let’s take a moment to see this optimization in action and prove
that it limits row access.

Using table elem (Example 2-1) from Chapter 2, let’s first execute a query that does
not have a LIMIT clause. Example 3-1 shows that the query returns eight rows.

Principle of Least Data | 99

Example 3-1. Rows for query without LIMIT

SELECT * FROM elem WHERE a > 'Ag' ORDER BY a;

+----+----+----+----+
| id | a | b | c |
+----+----+----+----+
8	Al	B	Cd
9	Al	B	Cd
3	Al	Br	Cr
10	Ar	B	Cd
4	Ar	Br	Cd
5	Ar	Br	C
7	At	Bi	Ce
2	Au	Be	Co
+----+----+----+----+
8 rows in set (0.00 sec)

Without a LIMIT clause, the query accesses (and returns) eight rows. Accordingly,
EXPLAIN reports rows: 8 even with a LIMIT 2 clause—as shown in Example 3-2—
because MySQL cannot know how many rows in the range will not match until it
executes the query. Worst case: MySQL reads all rows because none match. But for
this simple example, we can see that the first two rows (id values 8 and 9) will match
the only table condition. If we’re right, query metrics will report two rows examined,
not eight. But first, let’s see how to infer the optimization from the EXPLAIN plan in
Example 3-2.

Example 3-2. EXPLAIN plan for ORDER BY…LIMIT optimization

EXPLAIN SELECT * FROM elem WHERE a > 'Ag' ORDER BY a LIMIT 2\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: elem
 partitions: NULL
 type: range
possible_keys: a
 key: a
 key_len: 8
 ref: NULL
 rows: 8
 filtered: 100.00
 Extra: Using index condition

You can infer that MySQL uses the ORDER BY…LIMIT optimization to access only two
rows (LIMIT 2) because:

100 | Chapter 3: Data

• The query uses an index (type: range)•
• The ORDER BY column is a leftmost prefix of that index (key: a)•
• The Extra field does not report “Using filesort”•

The proof is shown in Example 3-3: a snippet of the slow query log after MySQL
executed the query.

Example 3-3. Query metrics for ORDER BY…LIMIT optimization

Query_time: 0.000273 Lock_time: 0.000114 Rows_sent: 2 Rows_examined: 2
SELECT * FROM elem WHERE a > 'Ag' ORDER BY a LIMIT 2;

Rows_examined: 2 at the end of the first line in Example 3-3 proves that MySQL used
the ORDER BY…LIMIT optimization to access only two rows instead of all eight rows.
To learn more about this query optimization, read “LIMIT Query Optimization” in
the MySQL manual.

With respect to limiting ranges and lists, there’s an important factor to verify: does
the application limit the input used in a query? Way back in “Average, Percentile, and
Maximum” on page 25, I related a story: “Long story short, the query was used to
look up data for fraud detection, and occasionally a big case would look up several
thousand rows at once, which caused MySQL to switch query execution plans.” In
that case, the solution was simple: limit application input to one thousand values per
request. That case also highlights the fact that a human can input a flood of values.
Normally, engineers are careful to limit input when the user is another computer, but
their caution relaxes when the user is another human because they think a human
wouldn’t or couldn’t input too many values. But they’re wrong: with copy-paste and a
looming deadline, the average human can overload any computer.

For writes, limiting row access is critical because, generally speaking, InnoDB locks
every row that it accesses before it updates matching rows. Consequently, InnoDB
can lock more rows than you might expect. “Row Locking” on page 260 goes into
detail.

For table joins, limiting row access is also critical: recall from “Joining tables” on page
94 that, on join, a few rows in each table quickly obliterates performance. In that
section, I was pointing out that a table join is doomed without an index lookup. In
this section, I’m pointing out that a table join is double-doomed unless it also accesses
very few rows. Remember: an index lookup on a nonunique index can access any
number of duplicate rows.

Know your access patterns: for each query, what limits row access? Use EXPLAIN to
see estimated row access (the rows field), and monitor rows examined (see “Rows
examined” on page 18) to avoid the surprise of accessing too many rows.

Principle of Least Data | 101

Limit the result set
Queries should return as few rows as possible.

This is more involved than putting a LIMIT clause on a query, although that certainly
helps. It refers to the application not using the entire result set: the rows returned by a
query. This problem has three variations.

The first variation occurs when the application uses some rows, but not all. This can
be done intentionally or unintentionally. Unintentionally, it indicates that the WHERE
clause needs better (or more) conditions to match only needed rows. You can spot
this in application code that filters rows instead of using WHERE conditions. If you spot
this, talk with your team to make sure it’s not intentional. Intentionally, an application
might select more rows to avoid a complex query by shifting row matching from
MySQL to the application. This technique is useful only when it reduces response
time—akin to MySQL choosing a table scan in rare cases.

The second variation occurs when a query has an ORDER BY clause and the application
uses an ordered subset of rows. Row order doesn’t matter for the first variation, but
it’s the defining characteristic of the second variation. For example, a query returns
1,000 rows but the application only uses the first 20 rows in order. In this case, the
solution might be as simple as adding a LIMIT 20 clause to the query.

What does the application do with the remaining 980 rows? If those rows are never
used, then definitely the query should not return them—add the LIMIT 20 clause. But
if those rows are used, then the application is most likely paginating: using 20 rows
at a time (for example, showing 20 results per page). In that case, it might be faster
and more efficient to use LIMIT 20 OFFSET N to fetch pages on demand—where N =
20 × (page number – 1)—only if the ORDER BY…LIMIT optimization can be used (see
the previous section, “Limit row access” on page 99). The optimization is required
because, without it, MySQL must find and sort all matching rows before it can apply
the OFFSET part of the LIMIT clause—a lot of wasted work to return only 20 rows. But
even without the optimization, there’s another solution: a large but reasonable LIMIT
clause. If, for example, you measure application usage and find that most requests
only use the first five pages, then use a LIMIT 100 clause to fetch the first five pages
and reduce the result set size by 90% for most requests.

The third variation occurs when the application only aggregates the result set. If the
application aggregates the result set and uses the individual rows, that’s acceptable.
The antipattern is only aggregating the result set instead of using a SQL aggregate
function, which limits the result set. Table 3-3 lists four antipatterns and correspond‐
ing SQL solutions.

102 | Chapter 3: Data

Table 3-3. Four result set antipatterns in an application

Antipattern in Application Solution in SQL
Adding a column value SUM(column)

Counting the number of rows COUNT(*)

Counting the number of values COUNT(column)…GROUP BY column

Counting the number of distinct values COUNT(DISTINCT column)

Extracting distinct values DISTINCT

Adding a column value applies to other statistical functions: AVG(), MAX(), MIN(), and
so on. Let MySQL do the calculation rather than returning the rows.

Counting the number of rows is an extreme antipattern, but I’ve seen it, so I’m sure
there are other applications quietly wasting network bandwidth on needless rows.
Never use the application only to count rows; use COUNT(*) in the query.

As of MySQL 8.0.14, SELECT COUNT(*) FROM table (without a
WHERE clause) uses multiple threads to read the primary key in
parallel. This is not parallel query execution; the MySQL manual
calls it “parallel clustered index reads.”

Counting the number of values is, perhaps, easier for programmers to express in code
than a SQL GROUP BY clause, but the latter should be used to limit the result set. Using
table elem (Example 2-1) again, Example 3-4 demonstrates how to count the number
of values for a column using COUNT(column)…GROUP BY column.

Example 3-4. Counting the number of values

SELECT a, COUNT(a) FROM elem GROUP BY a;

+----+----------+
| a | COUNT(a) |
+----+----------+
Ag	2
Al	3
Ar	3
At	1
Au	1
+----+----------+

For column a in table elem, two rows have value “Ag,” three rows have value “Al,” and
so forth. The SQL solution returns five rows, whereas the antipattern would return all
ten rows. These aren’t dramatic numbers—five versus ten rows—but they make the
point: a query can limit its result set by aggregating in SQL, not application code.

Principle of Least Data | 103

COUNT(*) Versus COUNT(column)
COUNT(*) counts the number of matching rows—the result set size. COUNT(column)
counts the number of non-NULL values in the column of the matching rows. When
COUNT(column) is used with other columns (including itself), you need a GROUP BY
clause for proper aggregation, as shown in Example 3-4.

Extracting distinct values—deduplicating column values—is trivial in the application
with an associative array; but MySQL can do it, too, with DISTINCT, which limits the
result set. (DISTINCT qualifies as an aggregate function because it’s a special case of
GROUP BY.) DISTINCT is especially clear and useful with a single column. For example,
SELECT DISTINCT a FROM elem returns a list of unique values from column a. (If
you’re curious, column a has five unique values: “Ag,” “Al,” “Ar,” “At,” and “Au.”) The
gotcha with DISTINCT is that it applies to all columns. SELECT DISTINCT a, b FROM
elem returns a list of unique rows with values from columns a and b. To learn more,
check out “DISTINCT Optimization” in the MySQL manual.

Avoid sorting rows
Queries should avoid sorting rows.

Sorting rows in the application instead of MySQL reduces query complexity by
removing the ORDER BY clause, and it scales better by distributing work to application
instances, which are much easier to scale out than MySQL.

An ORDER BY clause without a LIMIT clause is a telltale sign that the ORDER BY clause
can be dropped and the application can sort the rows. (It might also be the second
variation of the problem discussed in the preceding section.) Look for queries with an
ORDER BY clause but no LIMIT clause, then determine whether the application can sort
the rows instead of MySQL—the answer should be yes.

Data Storage
Do not store more data than needed.

Although data is valuable to you, it’s dead weight to MySQL. Table 3-4 is a checklist
for efficient data storage.

I highly encourage you to audit your data storage because surprises are easy to
discover. I mentioned one such surprise at the beginning of Chapter 2: the application
I created that accidentally stored one billion rows.

104 | Chapter 3: Data

Table 3-4. Efficient data storage checklist
☐ Only needed rows are stored

☐ Every column is used

☐ Every column is compact and practical

☐ Every value is compact and practical

☐ Every secondary index is used and not a duplicate

☐ Only needed rows are kept

If you can check off all six items, then you will be very well positioned to scale data
to any size. But it’s not easy: some items are easier to ignore than to implement,
especially when the database is small. But don’t delay: the very best time to find and
correct storage inefficiencies is when the database is small. At scale, a byte or two can
make a big difference when multiplied by high throughput and all 86,400 seconds in a
typical Earth day. Design for scale and plan for success.

Only needed rows are stored
As an application changes and grows, engineers can lose track of what it stores. And
when data storage is not an issue, engineers have no reason to look at or ask about
what it stores. If it’s been a long time since you or anyone else reviewed what the
application is storing, or if you’re new to the team or application, then take a look. I
have seen, for example, forgotten services writing data (for years, no less) that no one
was using.

Every column is used
One level deeper than storing only needed rows is having only needed columns.
Again, as the application changes and grows, engineers can lose track of columns,
especially when using object-relational mapping (ORM).

Unfortunately, there’s no tool or automated way to find unused columns in MySQL.
MySQL tracks which databases, tables, and indexes are used, but it does not track
column usage. Nothing is more furtive than an unused column. The only solution is a
manual review: compare columns used by application queries to columns that exist in
the tables.

Every column is compact and practical
Two levels deeper than storing only needed rows is having every column be compact
and practical. Compact means using the smallest data type to store values. Practical
means not using a data type so small that it’s onerous or error-prone for you or the
application. For example, using an unsigned INT as a bit field is compact (nothing
smaller than a bit) but usually not practical.

Principle of Least Data | 105

Familiarize yourself with all the MySQL data types.

The classic antipattern is data type VARCHAR(255). This specific data type and size
are a common but inefficient default for many programs and engineers, who likely
copied the practice from another program or engineer. You will see it used to store
anything and everything, which is why it’s inefficient.

For example, let’s reuse table elem (Example 2-1). Atomic symbols are one or two
characters. Column definition atomic_symbol VARCHAR(255) is technically compact
—a VARCHAR is variable length, so it would use only one or two characters—but it
allows garbage in, garbage out: invalid values like “Carbon” instead of “C,” which
could have unknown consequences for the application. A better column definition is
atomic_symbol CHAR(2), which is compact and practical.

Is column definition atomic_symbol ENUM(…) even better for table elem? ENUM is
more compact than CHAR(2), but is it more practical with over one hundred atomic
symbols? That’s a trade-off you could decide; either choice is patently better than
VARCHAR(255).

ENUM is one of the great unsung heroes of efficient data storage.

Beware the column character set. If not explicitly defined, it defaults to the table
character set which, if also not explicitly defined, defaults to the server character
set. As of MySQL 8.0, the default server character set is utf8mb4. For MySQL 5.7
and older, the default server character set is latin1. Depending on the character set,
a single character like é might be stored as multiple bytes. For example, using the
latin1 character set, MySQL stores é as a single byte: 0xE9. But using the utf8mb4
character set, MySQL stores é as two bytes: 0xC3A9. (Emoji use four bytes per
character.) Character sets are a special and erudite world beyond the scope of most
books. For now, all you need to know is this: one character can require several bytes of
storage, depending on the character and character set. Bytes add up quickly in large
tables.

Be very conservative with BLOB, TEXT, and JSON data types. Do not use them as a
dumping ground, a catch-all, or generic buckets. For example, do not store images in
a BLOB—you can, it works, but don’t. There are far better solutions, like Amazon S3.

106 | Chapter 3: Data

Compact and practical extend all the way down to the bit level. Another surprisingly
common yet easily avoidable column storage inefficiency is wasting the high-order
bit of integer data types. For example, using INT instead of INT UNSIGNED: the
maximum value is roughly two billion versus four billion, respectively. If the value
cannot be negative, then use an unsigned data type.

As of MySQL 8.0.17, UNSIGNED is deprecated for data types FLOAT,
DOUBLE, and DECIMAL.

In the world of software engineering, details like these might be considered micro-
optimizations or premature optimization, which are frowned upon, but in the world
of schema design and database performance, they’re best practices.

Every value is compact and practical
Three levels deeper than storing only needed rows is having every value be compact
and practical. Practical has the same meaning as defined in the previous section, but
compact means the smallest representation of the value. Compact values are highly
dependent on how the application uses them. For example, consider a string with one
leading and one trailing space: “ and ”. Table 3-5 lists six ways that an application
could compact this string.

Table 3-5. Six ways to compact the string “ and ”

Compact value Possible use

“and” Strip all whitespace. This is common for strings.

“ and” Strip trailing whitespace. In many syntaxes (like YAML and Markdown), leading whitespace is
syntactically significant.

“and ” Strip leading whitespace. Perhaps less common but still possible. Sometimes used by programs to join
space-separated arguments (like command-line arguments).

“” Delete the value (empty string). Maybe the value is optional, like AS in FROM table AS
table_alias, which can be written as FROM table table_alias.

“&” Replace string with equivalent symbol. In written language, the ampersand character is semantically
equivalent to the word “and”.

NULL No value. Maybe the value is completely superfluous and can be removed, resulting in no value (not even
an empty string, which is still technically a value).

The transformations in Table 3-5 represent three ways to compact a value: minimize,
encode, and deduplicate.

Principle of Least Data | 107

Minimize. To minimize a value, remove superfluous and extraneous data: white
space, comments, headers, and so on. Let’s consider a more difficult yet familiar value
in Example 3-5.

Example 3-5. Formatted SQL statement (not minimized)

SELECT
 /*!40001 SQL_NO_CACHE */
 col1,
 col2
FROM
 tbl1
WHERE
 /* comment 1 */
 foo = ' bar '
ORDER BY col1
LIMIT 1; — comment 2

If an application stores only the the functional parts of the SQL statement in Exam‐
ple 3-5, then it can minimize the value by collapsing white space between keywords
(not within values) and removing the last two comments (not the first). Example 3-6
is the minimized (compact) value.

Example 3-6. Minimized SQL statement

SELECT /*!40001 SQL_NO_CACHE */ col1, col2 FROM tbl1 WHERE foo=' bar ' LIMIT 1

Examples 3-5 and 3-6 are functionally equivalent (same EXPLAIN plan), but the data
size of the minimized value is almost 50% smaller (48.9%): 137 bytes to 70 bytes,
respectively. For long-term data growth, a 50% reduction—or even just 25%—is
significant and impactful.

Minimizing a SQL statement illustrates an important point: minimizing a value is not
always trivial. A SQL statement isn’t a meaningless string: it’s a syntax that requires
syntactical awareness to minimize correctly. The first comment cannot be removed
because it’s functional. (See “Comments” in the MySQL manual.) Likewise, the white
space in the quoted value ' bar ' is functional: ' bar ' is not equal to 'bar'. And
you might have noticed a tiny detail: the trailing semicolon was removed because it’s
not functional in this context, but it is functional in other contexts.

When considering how to minimize a value, begin with its data format. The syntax
and semantics of the data format dictate which data is superfluous and extraneous.
In YAML, for example, comments # like this are pure comments (unlike certain
SQL comments) and can be removed if the application doesn’t need them. Even if
your data format is custom-built, it must have some syntax and semantics, else the

108 | Chapter 3: Data

application could not programmatically read and write it. It’s necessary to know the
data format to minimize a value correctly.

The most minimal value is no value at all: NULL. I know that dealing with NULL can
be a challenge, but there’s an elegant solution that I highly encourage you to use:
COALESCE(). For example, if column middle_name is nullable (not all people have
middle names), then use COALESCE(middle_name, '') to return the value if set,
else return an empty string. This way, you get the benefits of NULL storage—which
requires only one bit—without the hassle of handling null strings (or pointers) in the
application. Use NULL instead of empty strings, zero values, and magical values when
practical. It requires a little extra work, but it’s the best practice.

NULL and NULL are unique; that is, two null values are unique.
Avoid unique indexes on nullable columns, or be certain that the
application properly handles duplicate rows with NULL values.

If you really want to avoid using NULL, the previous warning is your technical reason.
These two sets of values are unique: (1, NULL) and (1, NULL). That is not a typo.
To humans, those values look identical, but to MySQL they are unique because the
comparison of NULL to NULL is undefined. Check out “Working with NULL Values”
in the MySQL manual. It begins with a humble admission: “The NULL value can be
surprising until you get used to it.”

Encode. To encode a value, convert it from human-readable to machine-encoded.
Data can be encoded and stored one way for computers, and decoded and displayed
another way for humans. The most efficient way to store data on a computer is to
encode it for the computer.

Store for the machine, display for the human.

The quintessential example and antipattern is storing an IP address as a string.
For example, storing 127.0.0.1 as a string in a CHAR(15) column. IP addresses are
four-byte unsigned integers—that’s the true machine encoding. (If you’re curious,
127.0.0.1 is decimal value 2130706433.) To encode and store IP addresses, use data
type INT UNSIGNED and functions INET_ATON() and INET_NTOA() to convert to and
from a string, respectively. If encoding IP addresses is impractical, then data type
CHAR(15) is an acceptable alternative.

Principle of Least Data | 109

Another similar example and antipattern is storing a UUID as a string. A UUID is
a multibyte integer represented as a string. Since UUID byte lengths vary, you need
to use data type BINARY(N), where N is the byte length, and functions HEX() and
UNHEX() to convert the value. Or, if you’re using MySQL 8.0 (or newer) and RFC 4122
UUIDs (which MySQL UUID() generates), you can use functions UUID_TO_BIN() and
BIN_TO_UUID(). If encoding UUIDs is impractical, at least store the string representa‐
tion using data type CHAR(N), where N is the string length in characters.

There is a more compact, computer-encoded method to store data: compression. But
this is an extreme method that creeps into the gray zone of space-speed trade-offs,
which are beyond the scope of this book. I have not seen a case where compression
was required for performance or scale. A rigorous application of the efficient data
storage checklist (Table 3-4) scales data to sizes so large that other problems become
blockers: backup and restore time, online schema changes, and so forth. If you think
you need compression to scale performance, consult with an expert to verify.

While we’re on the topic of encoding, there’s an important best practice that I’ll
shoehorn into this section: store and access dates and times only as UTC. Convert
dates and times to local time (or whatever time zone is appropriate) only on display
(or on print). Also be aware that the MySQL TIMESTAMP data type ends on January 19,
2038. If you received this book as a holiday gift in December 2037 and your databases
have TIMESTAMP columns, you might want to go back to work a little earlier.

Deduplicate. To deduplicate a value, normalize the column into another table with a
one-to-one relationship. This method is entirely application-specific, so let’s consider
a concrete example. Imagine an overly simple catalogue of books stored in a table
with only two columns: title and genre. (Let’s focus on the data and ignore the
details like data types and indexes.) Example 3-7 shows a table with five books and
three unique genres.

Example 3-7. Book catalogue with duplicate genre values

+--------------------------------+-----------+
| title | genre |
+--------------------------------+-----------+
Efficient MySQL Performance	computers
TCP/IP Illustrated	computers
The C Programming Language	computers
Illuminations	poetry
A Little History of the World	history
+--------------------------------+-----------+

Column genre has duplicate values: three instances of value computers. To dedu‐
plicate, normalize the column into another table with a one-to-one-relationship.

110 | Chapter 3: Data

Example 3-8 shows the new table at top and the modified original table at bottom.
The two tables have a one-to-one relationship on column genre_id.

Example 3-8. Normalized book catalogue

+----------+-----------+
| genre_id | genre |
+----------+-----------+
1	computers
2	poetry
3	history
+----------+-----------+

+--------------------------------+-----------+
| title | genre_id |
+--------------------------------+-----------+
Efficient MySQL Performance	1
TCP/IP Illustrated	1
The C Programming Language	1
Illuminations	2
A Little History of the World	3
+--------------------------------+-----------+

The original table (at bottom) still has duplicate values for column genre_id, but the
reduction in data size at scale is huge. For example, it takes 9 bytes to store the string
“computers” but only 2 bytes to store the integer 1 as data type SMALLINT UNSIGNED,
which allows for 65,536 unique genres (probably enough). That’s a 77.7% reduction
in data size: 9 bytes to 2 bytes.

Deduplicating values in this way is accomplished by database normalization: separat‐
ing data into tables based on logical relationships (one to one, one to many, and
so forth). However, deduplicating values data is not the goal or purpose of database
normalization.

Database normalization is beyond the scope of this book, so I won’t
explain it further. There are many books on the subject, so you
won’t have any trouble finding a great one to learn about database
normalization.

From this example, it looks like database normalization causes deduplication of
values, but that’s not strictly true. The single table in Example 3-7 is technically
valid first, second, and third normal forms (presuming there’s a primary key)—fully
normalized, just poorly designed. It’s more accurate to say that deduplication of
values is a common (and desired) side effect of database normalization. And since
you should normalize your databases in any case, you’re likely to avoid duplicate
values.

Principle of Least Data | 111

There’s an interesting flip side: denormalization. Denormalization is the opposite
of normalization: combining related data into one table. The single table in Exam‐
ple 3-7 could be a denormalized table, if that was the intention behind its design.
Denormalization is a technique to increase performance by eliminating table joins
and attendant complexities. But don’t rush to denormalize your schemas because
there are details and trade-offs to consider that are beyond the scope of this book.
In fact, denormalization is the opposite of less data because it intentionally duplicates
data to trade space for speed.

The safe bet and best practice is database normalization and less
data. Incredible scale and performance are possible with both.

Every secondary index is used and not a duplicate
Second to last on the efficient data storage checklist (Table 3-4): every secondary
index is used and not a duplicate. Avoiding unused indexes and duplicate indexes
is always a great idea, but it’s especially important for data size because indexes are
copies of data. Granted, secondary indexes are much smaller than the full table (the
primary key) because they only contain index column values and corresponding
primary key column values, but these add up as the table grows.

Dropping unused and duplicate secondary indexes is an easy way to reduce data
size, but be careful. As mentioned in “Excessive, Duplicate, and Unused” on page 85,
finding unused indexes is tricky because an index might not be used frequently, so
be sure to check index usage over a sufficiently long period. By contrast, duplicate
indexes are easier to find: use pt-duplicate-key-checker. Again: be careful when
dropping indexes.

Dropping an index only recovers a data size equal to the index size. There are three
methods to see index sizes. Let’s use the employees sample database because it has
a few megabytes of index data. The first and preferred method to see index sizes is
querying table INFORMATION_SCHEMA.TABLES, as shown in Example 3-9.

Example 3-9. Index sizes of employees sample database (INFORMATION_SCHEMA)

SELECT
 TABLE_NAME, DATA_LENGTH, INDEX_LENGTH
FROM
 INFORMATION_SCHEMA.TABLES
WHERE
 TABLE_TYPE = 'BASE TABLE' AND TABLE_SCHEMA = 'employees';

+--------------+-------------+--------------+

112 | Chapter 3: Data

| TABLE_NAME | DATA_LENGTH | INDEX_LENGTH |
+--------------+-------------+--------------+
departments	16384	16384
dept_emp	12075008	5783552
dept_manager	16384	16384
employees	15220736	0
salaries	100270080	0
titles	20512768	0
+--------------+-------------+--------------+

TABLE_NAME is the table name in the employees sample database—only six tables.
(The database has some views that are filtered out by condition TABLE_TYPE = 'BASE
TABLE'.) DATA_LENGTH is the size of the primary key (in bytes). INDEX_LENGTH is
the size of all secondary indexes (in bytes). The last four tables have no secondary
indexes, only a primary key.

The second and historical (but still widely used) method to see index sizes is SHOW
TABLES STATUS. You can add a LIKE clause to show only one table, as demonstrated in
Example 3-10.

Example 3-10. Index sizes of table employees.dept_emp (SHOW TABLE STATUS)

SHOW TABLE STATUS LIKE 'dept_emp'\G

*************************** 1. row ***************************
 Name: dept_emp
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 331143
 Avg_row_length: 36
 Data_length: 12075008
Max_data_length: 0
 Index_length: 5783552
 Data_free: 4194304
 Auto_increment: NULL
 Create_time: 2021-03-28 11:15:15
 Update_time: 2021-03-28 11:15:24
 Check_time: NULL
 Collation: utf8mb4_0900_ai_ci
 Checksum: NULL
 Create_options:
 Comment:

The fields Data_length and Index_length in the SHOW TABLE STATUS output are
the same columns and values from INFORMATION_SCHEMA.TABLES. It’s better to query
INFORMATION_SCHEMA.TABLES because you can use functions in the SELECT clause like

Principle of Least Data | 113

ROUND(DATA_LENGTH / 1024 / 1024) to convert and round the values from bytes to
other units.

The third method to see index sizes is currently the only method to see the size of
each index: query table mysql.innodb_index_stats, as shown in Example 3-11 for
table employees.dept_emp.

Example 3-11. Size of each index on table employees.dept_emp
(mysql.innodb_index_stats)

SELECT
 index_name, SUM(stat_value) * @@innodb_page_size size
FROM
 mysql.innodb_index_stats
WHERE
 stat_name = 'size'
 AND database_name = 'employees'
 AND table_name = 'dept_emp'
GROUP BY index_name;

+------------+----------+
| index_name | size |
+------------+----------+
| PRIMARY | 12075008 |
| dept_no | 5783552 |
+------------+----------+

Table employees.dept_emp has two indexes: a primary key and a secondary index
named dept_no. Column size contains the size of each index in bytes, which is
actually the number of index pages multiplied by the InnoDB page size (16 KB by
default).

The employees sample database is not a spectacular display of secondary index size,
but real-world databases can be overflowing with secondary indexes that account for
a significant amount of total data size. Regularly check index usage and index sizes,
and reduce total data size by carefully dropping unused and duplicate indexes.

Only needed rows are kept
Last item on the efficient data storage checklist (Table 3-4): only needed rows are
kept. This item brings us full circle, closing the loop with the first item: “Only needed
rows are stored” on page 105. A row might be needed when stored, but that need
changes over time. Delete (or archive) rows that are no longer needed. That sounds
obvious, but it’s common to find tables with forgotten or abandoned data. I’ve lost
count of how many times I’ve seen teams drop entire tables that were forgotten.

114 | Chapter 3: Data

Deleting (or archiving) data is a lot easier said than done, and the next section takes
on the challenge.

Delete or Archive Data
I hope this chapter instills in you a desire to delete or archive data. Too much data has
woken me from too many pleasant dreams: it’s as if MySQL has a mind of its own and
waits until 3 a.m. to fill up the disk. I once had an application page me in the middle
of the night in three different time zones (my time zone changed due to meetings in
different parts of the world). But enough about me; let’s talk about how to delete or
archive data without negatively impacting the application.

For brevity, I refer only to deleting data, not deleting or archiving data, because the
challenge lies almost entirely in the former: deleting data. Archiving data requires
copying the data first, then deleting it. Copying data should use nonlocking SELECT
statements to avoid impacting the application, then write the copied rows to another
table or data store that the application doesn’t access. Even with nonlocking SELECT
statements, you must rate-limit the copy process to avoid increasing QPS beyond
what MySQL and the application can handle. (Recall from “Less QPS Is Better” on
page 96 that QPS is relative to the application and difficult to increase.)

Tools
You will have to write your own tools to delete or archive data. Sorry to lead with
bad news, but it’s the truth. The good news is that deleting and archiving data is not
difficult—it’s probably trivial compared to your application. The critically important
part is throttling the loop that executes SQL statements. Never do this:

for {
 rowsDeleted = execute(“DELETE FROM table LIMIT 1000000”)
 if rowsDeleted == 0 {
 break
 }
}

The LIMIT 1000000 clause is probably too large, and the for loop has no delay
between statements. That pseudocode is likely to cause an application outage. Batch
size is the key to a safe and effective data archiving tool.

Batch Size
First, a shortcut that might allow you to skip reading this section until needed: it’s
safe to manually delete 1,000 rows or less in a single DELETE statement if the rows are
small (no BLOB, TEXT, or JSON columns) and MySQL is not heavily loaded. Manually
means that you execute each DELETE statement in series (one after the other), not in

Delete or Archive Data | 115

2 Check out freno by GitHub Engineering: an open source throttle for MySQL.

parallel. Do not write a program to execute the DELETE statements. Most humans are
too slow for MySQL to notice, so no matter how fast you are, you cannot manually
execute DELETE…LIMIT 1000 statements fast enough to overload MySQL. Use this
shortcut judiciously, and have another engineer review any manual deletes.

The method described in this section focuses on DELETE but applies
in general to INSERT and UPDATE. For INSERT, batch size is con‐
trolled by the number of rows inserted, not a LIMIT clause.

The rate at which you can quickly and safely delete rows is determined by the batch
size that MySQL and the application can sustain without impacting query response
time or replication lag. (Chapter 7 covers replication lag.) Batch size is the number
of rows deleted per DELETE statement, which is controlled by a LIMIT clause and
throttled by a simple delay, if necessary.

Batch size is calibrated to an execution time; 500 milliseconds is a good starting point.
This means that each DELETE statement should take no longer than 500 ms to execute.
This is critically important for two reasons:

Replication lag
Execution time on a source MySQL instance creates replication lag on replica
MySQL instances. If a DELETE statement takes 500 ms to execute on the source,
then it also takes 500 ms to execute on a replica, which creates 500 ms of repli‐
cation lag. You cannot avoid replication lag, but you must minimize it because
replication lag is data loss. (For now, I gloss over many details about replication
that I clarify in Chapter 7.)

Throttling
In some cases, it’s safe to execute DELETE statements with no delay—no throt‐
tling—because the calibrated batch size limits query execution time, which limits
QPS. A query that takes 500 ms to execute can only execute at 2 QPS in series.
But these are no ordinary queries: they’re purpose-built to access and write
(delete) as many rows as possible. Without throttling, bulk writes can disrupt
other queries and impact the application.

Throttling is paramount when deleting data: always begin with a delay between
DELETE statements, and monitor replication lag.2

116 | Chapter 3: Data

Always build a throttle into bulk operations.

To calibrate the batch size to a 500 ms execution time (or whatever execution time
you chose), start with batch size 1,000 (LIMIT 1000) and a 200 ms delay between
DELETE statements: 200 ms is a long delay, but you decrease it after calibrating the
batch size. Let that run for at least 10 minutes while monitoring replication lag and
MySQL stability—don’t let MySQL lag or destabilize. (Replication lag and MySQL
stability are covered in Chapters 7 and 6, respectively.) Use query reporting (see
“Reporting” on page 8) to inspect the maximum execution time of the DELETE state‐
ment, or measure it directly in your data archiving tool. If the maximum execution
time is well below the target—500 ms—then double the batch size and re-run for
another 10 minutes. Keep doubling the batch size—or making smaller adjustments—
until the maximum execution time is consistently on target—preferably just a little
below target. When you’re done, record the calibrated batch size and execution time
because deleting old data should be a recurring event.

To set the throttle using the calibrated batch size, repeat the process by slowly reduc‐
ing the delay on each 10-minute rerun. Depending on MySQL and the application,
you might reach zero (no throttling). Stop at the first sign of replication lag or
MySQL destabilizing, then increase the delay to the previous value that didn’t cause
either problem. When you’re done, record the delay for the same reason as before:
deleting old data should be a recurring event.

With the batch size calibrated and the throttle set, you can finally calculate the
rate: how many rows per second you can delete without impacting query response
time: batch size * DELETE QPS. (Use query reporting to inspect the QPS of the
DELETE statement, or measure it directly in your data archiving tool.) Expect the rate
to change throughout the day. If the application is extremely busy during business
hours, the only sustainable rate might be zero. If you’re an ambitious go-getter who’s
on a rocket ride to the top of your career, your industry, and the world, then wake
up in the middle of the night and try a higher rate when the database is quiet: larger
batch size, lower delay, or both. Just remember to reset the batch size and delay before
the sun rises and database load increases.

MySQL backups almost always run in the middle of the night. Even
if the application is quiet in the dead of night, the database might
be busy.

Delete or Archive Data | 117

Row Lock Contention
For write-heavy workloads, bulk operations can cause elevated row lock contention:
queries waiting to acquire row locks on the same (or nearby) rows. This problem
mainly affects INSERT and UPDATE statements, but DELETE statements could be affec‐
ted, too, if deleted rows are interspersed with kept rows. The problem is that the
batch size is too large even though it executes within the calibrated time. For example,
MySQL might be able to delete 100,000 rows in 500 ms, but if the locks for those rows
overlap with rows that the application is updating, then it causes row lock contention.

The solution is to reduce the batch size by calibrating for a much smaller execution
time—100 ms, for example. In extreme cases, you might need to increase the delay,
too: small batch size, long delay. This reduces row lock contention, which is good for
the application, but it makes data archiving slower. There’s no magical solution for
this extreme case; it’s best to avoid with less data and fewer QPS.

Space and Time
Deleting data does not free disk space. Row deletes are logical, not physical, which is
a common performance optimization in many databases. When you delete 500 GB of
data, you don’t get 500 GB of disk space, you get 500 GB of free pages. Internal details
are more complex and beyond the scope of this book, but the general idea is correct:
deleting data yields free pages, not free disk space.

Free pages do not affect performance, and InnoDB reuses free pages when new rows
are inserted. If deleted rows will soon be replaced by new rows, and disk space isn’t
limited, then free pages and unclaimed disk space are not a concern. But please be
mindful of your colleagues: if your company runs its own hardware and MySQL for
your application shares disk space with MySQL for other applications, then don’t
waste disk space that can be used by other applications. In the cloud, storage costs
money, so don’t waste money: reclaim the disk space.

The best way to reclaim disk space from InnoDB is to rebuild the table by executing a
no-op ALTER TABLE…ENGINE=INNODB statement. This is a solved problem with three
great solutions:

• pt-online-schema-change•
• gh-ost•
• ALTER TABLE…ENGINE=INNODB•

Each solution works differently, but they have one thing in common: all of them can
rebuild huge InnoDB tables online: in production without impacting the application.
Read the documentation for each to decide which one works best for you.

118 | Chapter 3: Data

To rebuild a table with ALTER TABLE…ENGINE=INNODB, replace …
with the table name. Do not make any other changes.

Deleting large amounts of data takes time. You might read or hear about how fast
MySQL can write data, but that’s usually for benchmarks (see “MySQL Tuning” on
page 39). In the glamorous world of laboratory research, sure: MySQL will consume
every clock cycle and disk IOP you can give it. But in the quotidian world that you
and I slog through, data must be deleted with significant restraint to avoid impacting
the application. To put it bluntly: it’s going to take a lot longer than you think. The
good news is: if done correctly—as detailed in “Batch Size” on page 115—then time
is on your side. A well-calibrated, sustainable bulk operation can run for days and
weeks. This includes the solution that you use to reclaim disk space from InnoDB
because rebuilding the table is just another type of bulk operation. It takes time to
delete rows, and it takes additional time to reclaim the disk space.

The Binary Log Paradox
Deleting data creates data. This paradox happens because data changes are written to
the binary logs. Binary logging can be disabled, but it never is in production because
the binary logs are required for replication, and no sane production system runs
without replicas.

If the table contains large BLOB, TEXT, or JSON columns, then binary log size could
increase dramatically because the MySQL system variable binlog_row_image defaults
to full. That variable determines how row images are written to the binary logs; it
has three settings:

full

Write the value of every column (the full row).

minimal

Write the value of columns that changed and columns required to identify the
row.

noblob

Write the value of every column except BLOB and TEXT columns that aren’t
required.

It’s both safe and recommended to use minimal (or noblob) if there are no external
services that rely on full row images in the binary logs—for example, a data pipeline
service that stream changes to a data lake or big data store.

Delete or Archive Data | 119

If you use pt-online-schema-change or gh-ost to rebuild the table, these tools copy
the table (safely and automatically), and that copy process writes even more data
changes to the binary logs. However, ALTER TABLE…ENGINE=INNODB defaults to an
in-place alter—no table copy.

When deleting a lot of data, disk usage will increase because of
binary logging and the fact that deleting data does not free disk
space.

Paradoxically, you must ensure that the server has enough free disk space to delete
data and rebuild the table.

Summary
This chapter examined data with respect to performance and argued that reducing
data access and storage is a technique—an indirect query optimization—for improv‐
ing performance. The primary takeaway points are:

• Less data yields better performance.•
• Less QPS is better because it’s a liability, not an asset.•
• Indexes are necessary for maximum MySQL performance, but there are cases•

when indexes may not help.
• The principle of least data means: store and access only needed data.•
• Ensure that queries access as few rows as possible.•
• Do not store more data than needed: data is valuable to you, but it’s dead weight•

to MySQL.
• Deleting or archiving data is important and improves performance.•

The next chapter centers on access patterns that determine how you can change the
application to use MySQL efficiently.

120 | Chapter 3: Data

Practice: Audit Query Data Access
The goal of this practice is to audit queries for inefficient data access. This is the
efficient data access checklist (Table 3-2):

☐ Return only needed columns
☐ Reduce query complexity
☐ Limit row access
☐ Limit the result set
☐ Avoid sorting rows

Apply the checklist to the top 10 slow queries. (To get slow queries, refer back to
“Query profile” on page 9 and “Practice: Identify Slow Queries” on page 33.) An
easy fix is any SELECT *: explicitly select only the columns needed. Also pay close
attention to any query with an ORDER BY clause: is it using an index? Does it have a
LIMIT? Can the application sort rows instead?

Unlike “Practice: Identify Slow Queries” on page 33 and “Practice: Find Duplicate
Indexes” on page 90, there is no tool to audit query data access. But the checklist
is only five items, so it doesn’t take long to audit queries manually. Carefully and
methodically auditing queries for optimal data access is expert-level MySQL perfor‐
mance practice.

Practice: Audit Query Data Access | 121

CHAPTER 4

Access Patterns

Access patterns describe how an application uses MySQL to access data. Changing
access patterns has a powerful effect on MySQL performance, but it usually requires
a greater level of effort than other optimizations. That’s why it’s the last leg of the
journey mapped out in “Improving Query Response Time” on page 27: first optimize
queries, indexes, and data—then optimize access patterns. Before we begin, let’s think
again about the rocks from Chapter 3.

Suppose you have a truck, which is analogous to MySQL. If used efficiently, the
truck makes moving any pile of rocks uphill easy. But if used inefficiently, the truck
provides little value, and it might even make the job take longer than necessary. For
example, you could use the truck to haul the cobbles one by one up the hill. That’s
easy for you (and the truck), but it’s terribly inefficient and time-consuming. A truck
is only as useful as the person who uses it. Likewise, MySQL is only as useful as the
application that uses it.

Sometimes, an engineer puzzles over why MySQL isn’t running faster. For example,
when MySQL is executing 5,000 QPS and the engineer wonders why it’s not executing
9,000 QPS instead. Or when MySQL is using 50% CPU and the engineer wonders
why it’s not using 90% CPU instead. The engineer is unlikely to find an answer
because they’re focused on the effect (MySQL) rather than the cause: the application.
Metrics like QPS and CPU usage say very little—almost nothing—about MySQL; they
only reflect how the application uses MySQL.

MySQL is only as fast and efficient as the application that uses it.

123

An application can outgrow the capacity of a single MySQL instance, but again: that
says more about the application than MySQL because there are innumerable large,
high-performance applications using a single MySQL instance. Without a doubt,
MySQL is fast enough for the application. The real question is: does the applica‐
tion use MySQL efficiently? After many years with MySQL, hundreds of different
applications, and thousands of different MySQL instances, I assure you: MySQL
performance is limited by the application, not the other way around.

This chapter centers on data access patterns that determine how you can change the
application to use MySQL efficiently. There are six major sections. The first clarifies
what MySQL does apart from the application and why it’s important. The second
proves that database performance does not scale linearly; instead, there is a limit past
which performance destabilizes. The third contemplates why a Ferrari is faster than
a Toyota even though both car brands work roughly the same. The answer explains
why some applications excel with MySQL while others can’t get out of first gear. The
fourth enumerates data access patterns. The fifth presents several application changes
to improve or modify data access patterns. The sixth revisits an old friend: better,
faster hardware.

MySQL Does Nothing
When the application is idle, MySQL is idle. When the application is busy executing
queries, MySQL is busy executing those queries. MySQL has several background
tasks (like “Page flushing” on page 212), but they are only busy reading and writing
data for those queries. In fact, background tasks increase performance by allowing
foreground tasks—executing queries—to defer or avoid slow operations. Therefore, if
MySQL is running slowly and there are no external issues, the cause can only be what
drives MySQL: the application.

QPS is directly and only attributable to the application. Without
the application, QPS is zero.

Some data stores have ghosts in the machine: internal processes that can run at any
time and degrade performance if they run at the worst time: when the data store is
busy executing queries. (Compaction and vacuuming are two examples—MySQL has
neither.) MySQL has no ghosts in the machine—unless the application is executing
queries that you don’t know about. Knowing this helps you avoid looking for non‐
existent causes and, more importantly, focus on what MySQL is busy doing: executing
queries. From Chapter 1, you know how to see that: “Query profile” on page 9. A
query profile shows more than just slow queries, it shows what MySQL is busy doing.

124 | Chapter 4: Access Patterns

Queries affect other queries. The general term for this is query contention: when
queries compete and wait for shared resources. There are specific types of contention:
row lock contention, CPU contention, and so forth. Query contention can make it
seem like MySQL is busy doing other things, but don’t be misled: MySQL is only busy
executing application queries.

It’s nearly impossible to see or prove query contention because MySQL reports only
one type of contention: row lock contention. (Even row lock contention is difficult
to see precisely because row locking is complex.) Moreover, contention is fleeting—
almost imperceptible—because the problem is intrinsic to high QPS (where high is
relative to the application). Query contention is like a traffic jam: it requires a lot of
cars on the road. Although it’s nearly impossible to see or prove, you need to be aware
of it because it might explain inexplicably slow queries.

Query contention plays a major role when performance is pushed to the limit.

Performance Destabilizes at the Limit
At the end of “MySQL: Go Faster” on page 30, I said that MySQL can easily push
most modern hardware to its limits. That’s true, but the limit might surprise you.
Figure 4-1 illustrates what engineers expect: as load increases, database performance
increases until it utilizes 100% of system capacity—throughput of the hardware and
operating system—then performance remains steady. This is called linear scaling (or
linear scalability), and it’s a myth.

Figure 4-1. Expected database performance (linear scalability)

Linear scaling is the dream of every DBA and engineer, but it cannot happen. Instead,
Figure 4-2 illustrates the reality of database performance with respect to load and
system capacity.

Performance Destabilizes at the Limit | 125

Figure 4-2. Real database performance

Database performance increases with load only to a limit that is less than 100% of
system capacity. Realistically, the limit of database performance is 80% to 95% of sys‐
tem capacity. When load increases past the limit, database performance destabilizes:
throughput, response time, and other metrics fluctuate markedly—sometimes wildly
—from their normal value. At best, the result is decreased performance for some (or
most) queries; at worst, it causes an outage.

Equation 4-1 shows the Universal Scalability Law articulated by Neil Gunther: an
equation that models the scalability of hardware and software systems.

Equation 4-1. Equation 4-1. Universal Scalability Law

X N = γN
1 + α N − 1 + βN N − 1

Table 4-1 outlines what each term in the Universal Scalability Law equation
represents.

Table 4-1. Universal Scalability Law terms

Term Represents

X Throughput

N Load: concurrent requests, running processes, CPU cores, nodes in a distributed system, and so on

γ Concurrency (ideal parallelism)

α Contention: waiting for shared resources

β Coherency: coordinating shared resources

126 | Chapter 4: Access Patterns

1 Watch the video Universal Scalability Law Modeling Workbook by renowned MySQL expert Baron Schwartz
to see the USL in action with values from real MySQL servers.

A deep dive into the Universal Scalability Law is beyond the
scope of this book, so I limit the explanation to the current topic:
the limit of database performance. To learn more, read Guerrilla
Capacity Planning by Neil Gunther.

Throughput is a function of load: X(N). Concurrency (γ) helps throughput increase
as load (N) increases. But contention (α) and coherency (β) reduce throughput as load
increases. This precludes linear scalability and limits database performance.

Worse than limiting performance, coherency causes retrograde performance: decreas‐
ing performance at high load. The term retrograde is an understatement. It suggests
that MySQL simply reverts to less throughput when it cannot handle the load, but the
reality is worse than that. I prefer the terms instability and destabilize because they
convey the reality: the system is breaking down, not just running more slowly.

The Universal Scalability Law models real-world MySQL performance surprisingly
well.1 But as a model, it only describes and predicts the scalability of a workload;
it does not say anything about how or why the workload scales (or fails to scale).
The USL is primarily used by experts who measure and fit data to the model to
determine the parameters (γ, α, and β), then toil heroically to reduce them. Everyone
else just watches graphs (Chapter 6 covers MySQL metrics) and waits until MySQL
performance destabilizes—that’s the limit.

Figure 4-3 shows three charts from a real outage when the application pushed
MySQL past the limit.

The outage had three periods:

The Rise (6 a.m. to 9 a.m.)
The application was stable at the beginning of the rise, but its developers were
beginning to worry because the metrics shown were rising slowly but steadily.
In the past, the application had outages that began with steadily rising metrics.
In response, the application developers increased transaction throughput to cope
with the rising demand. (The application is able to throttle transaction through‐
put; this isn’t a feature of MySQL.) The rise and the response repeated until it no
longer worked: MySQL had reached the limit.

Performance Destabilizes at the Limit | 127

Figure 4-3. Database performance past the limit

The Limit (9 a.m. to noon)
The application was completely unstable and effectively offline during the limit.
Although CPU usage and QPS were high and steady, threads running told a
different story. The whipsaw pattern of threads running shown in Figure 4-3
was a telltale sign that MySQL had destabilized. Since one query requires one
thread to run, the big swings in threads running indicated that queries were not
flowing smoothly through the system. Instead, queries were hammering MySQL
in uneven, disconcerted strikes.

128 | Chapter 4: Access Patterns

High and steady CPU usage and QPS were misleading: steady is only good with
a little variation, as seen before and after the limit. Steady with no variation, as
seen during the limit, is flatline. To understand why, here’s a strange but effective
analogy. Imagine an orchestra. When the orchestra is playing correctly, there
are variations in all aspects of the music. In fact, those variations are the music:
rhythm, tempo, pitch, tone, melody, dynamics, and so forth. A flatline metric is
analogous to a deranged clarinetist playing a single, continuous note fortissimo:
steady, but not music.

During the limit, application developers kept trying to increase transaction
throughput, but it didn’t work. MySQL would not use the last 5% of CPU, QPS
would not increase, and threads running would not stabilize. From the USL
(Equation 4-1), you know why: contention and coherency. As load increased (N),
transaction throughput (X) increased, but so did the limiting effects of contention
(α) and coherency (β) until MySQL reached the limit.

The Fix (noon to 3 p.m.)
Since increasing transaction throughput was its own demise, the fix was to reduce
transaction throughput. That seems counterintuitive, but the math doesn’t lie.
At noon, application developers reduced transaction throughput, and the results
are clear in the charts: CPU usage dropped to 50%, QPS returned to a steady
variation (and even increased a little), and threads running also returned to a
steady variation (with a few spikes, which MySQL had spare capacity to absorb).

To imagine how this works, consider another analogy. Imagine a highway. When
there are many cars on the road, they all slow down (hopefully) because humans
need time to think and react to others cars, especially at highway speeds. When
there are too many cars on the road, they cause a traffic jam. The only solution
(apart from adding more lanes) is to reduce the number of cars on the highway:
fewer cars can drive faster. Reducing transaction throughput is analogous to
reducing the number of cars on the highway, which lets the remaining cars go
faster and traffic flow smoothly.

This example nicely models the limit of database performance according to the
Universal Scalability Law (Equation 4-1), but it’s also an exceptional case because the
application was able to push MySQL and the hardware to the limit. More typically,
high load destabilizes the application, and that prevents it from increasing load on
MySQL. In other words: the application fails before it can push MySQL to the limit.
But in this example, the application didn’t fail, it kept scaling up until it pushed
MySQL to the limit.

Performance Destabilizes at the Limit | 129

2 In fact, renowned MySQL expert Baron Schwartz put it there. Neil Gunther wrote in a blog post, “USL
Scalability Modeling with Three Parameters”, that Baron added the third parameter because it allowed the
USL to fit data from real databases.

Two more points about MySQL performance at the limit before we turn our attention
to the application:

• The limit is difficult to reach unless the hardware is blatantly insufficient. As•
mentioned in “Better, Faster Hardware!” on page 37, this is one of two exceptions
for which you should scale up to reasonable hardware. It’s also difficult for
an application to fully and simultaneously utilize all hardware—CPU, memory,
and storage. An application is most likely to incur a bottleneck in one piece of
hardware long before it can fully and simultaneously utilize all hardware. When
this happens, the application has not reached the limit of database performance,
only the limit of that one piece of hardware.

• When high load causes MySQL to respond slowly, this does not mean the limit•
has been reached. The reason is simple: γ. Gamma (γ) represents concurrency or
ideal parallelism. Recall from the Universal Scalability Law equation (Equation
4-1) that gamma is in the numerator.2 Slow database performance does not mean
the limit has been reached because increasing concurrency (γ) raises the limit.
Decreasing contention (α) also raises the limit. (Coherency [β] is out of our
control: it’s inherent to MySQL and the operating system, but it’s usually not a
problem.)

The second point leads to the question: how do we increase concurrency, or decrease
contention, or both? That seems like a critically important question, but it’s not: it’s
misleading because the North Star of MySQL performance is query response time.
The values of concurrency (γ) and contention (α) are not directly measurable. They
are determined by fitting throughput and load measurements to the model. Experts
use the Universal Scalability Law to understand system capacity, not to improve
performance. And this section has used it to prove that performance destabilizes at
the limit.

Toyota and Ferrari
Some applications achieve incredible MySQL performance while others struggle with
low throughput. Some applications can fully utilize the hardware—up to the limit—
while others barely warm the CPUs. Some applications don’t have any performance
problems while others continually struggle with slow queries. It’s a sweeping general‐
ization, but I’m going to claim that every engineer wants their application be on
the left side of while: incredible performance, fully utilizing the hardware, and no

130 | Chapter 4: Access Patterns

3 Toyota: 210 Km/h; Ferrari: 320 Km/h.

problems. The difference between applications on the left of while versus those on the
right is understood by contemplating why a Ferrari is faster than a Toyota.

Both car brands use roughly the same parts and design, but the top speed of a Toyota
is generally 130 MPH, whereas the top speed of a Ferrari is 200 MPH.3 A Ferrari does
not have special parts that make it 70 MPH faster than a Toyota. So why is a Ferrari
so much faster than a Toyota? The answer is the difference in engineering design and
details.

A Toyota is not designed for high speed. Achieving high speed (like high perfor‐
mance) requires careful attention to many details. For a car, those details include:

• Engine size, configuration, and timing•
• Transmission gear ratios, shift points, and timing•
• Tire size, traction, and rotational force•
• Steering, suspension, and braking•
• Aerodynamics•

Both car brands design and engineer for those details, but the exacting level of detail
in a Ferrari explains why it achieves greater performance. You can see this in one of
those details: aerodynamics. The unique exterior design of a Ferrari is flamboyant but
also functional: it lowers the drag coefficient, which increases efficiency.

High performance, like high speed, is not accomplished accidentally or by brute
force. It is the result of meticulous engineering with the goal of high performance. A
Ferrari is faster than a Toyota because it’s designed and engineered in every detail to
be faster.

Is your application designed and engineered in every detail for maximum MySQL
performance? If yes, then I suppose you can skip the rest of this chapter. If not,
which is the usual answer, then the next section addresses the fundamental technical
differences that separate Toyota-like applications from Ferrari-like applications: data
access patterns.

Data Access Patterns
Data access patterns describe how an application uses MySQL to access data.

The term data access patterns (or access patterns for short) is commonly used but
rarely explained. Let’s change that by clarifying three details about access patterns:

Data Access Patterns | 131

• It’s so common to discuss access patterns in the plural that they begin to blur•
together. But it’s important to realize that they are not an undifferentiated blob.
An application has many access patterns. For convenience, they’re discussed in
the plural. But in practice, you modify access patterns individually.

• An access pattern ultimately refers to a query, and you change queries (and•
the application) to change access patterns, but queries are not the focus. In Go
programming language terms, an access pattern is an interface and a query is an
implementation. Focus on the interface, not the implementation. This makes it
possible to envision (and possibly apply) access patterns to different data stores.
For example, certain access patterns executed on MySQL are better suited for
a key-value data store, but that’s difficult to see by focusing on SQL queries
that bear no resemblance to key-value queries. In this book, I discuss modifying
access patterns, but in practice you modify queries (and the application).

• An access pattern comprises a name and a list of technical traits. The name•
is used to identify and communicate the access pattern with other engineers.
(Access patterns do not have intrinsic names.) Choose a name that’s succinct
and meaningful. The list of technical traits depends on and varies by data store.
MySQL data access, for example, is quite different than Redis data access. This
section enumerates and explains nine traits for MySQL data access.

In theory, application developers should identify every individual access pattern, but
let’s be honest: that is very tedious. (I’ve never seen it done, and it might not even
be feasible if the application changes quickly.) Nevertheless, that is the goal. Here are
three reasonable and achievable approaches toward that goal:

• Brainstorm with your team to identify the most obvious and common access•
patterns.

• Use the query profile (see “Query profile” on page 9) to identify the top, slowest•
access patterns.

• Peruse the code for lesser-known (or forgotten) access patterns.•

At the very least, you need to follow the first or second approach one time to
accomplish the goal of this chapter: indirect query optimization by changing access
patterns.

Once you have identified (and named) an access pattern, ascertain the value or
answer to each of the following nine traits. Not knowing the value or answer to a trait
is a great opportunity to learn and possibly improve part of the application. Don’t
leave a trait unknown; find or figure out the value or answer.

Before explaining each of the nine traits, there’s one more question to settle: how
do you use access patterns? Access patterns are pure knowledge, and that knowledge

132 | Chapter 4: Access Patterns

forms a bridge between the previous section and the next section. The previous
section, “Toyota and Ferrari” on page 130, makes the point that high-performance
MySQL requires a high-performance application. The next section, “Application
Changes” on page 140, presents common application changes that help re-engineer
the application for high performance with respect to the database. Access patterns
help decide (and sometimes dictate) how to re-engineer the application from a
Toyota to a Ferrari.

Without further ado, let’s examine nine traits of data access patterns for MySQL.

Read/Write
Does the access read or write data?

Read access is clear: SELECT. Write is less clear when you consider the fine details.
For example, INSERT is write access, but INSERT…SELECT is read and write access.
Likewise, UPDATE and DELETE should use a WHERE clause, which makes them read and
write access, too. For simplicity: INSERT, UPDATE, and DELETE are always considered
write access.

Internally, reads and writes are not equal: they have different technical impacts and
invoke different internal parts of MySQL. An INSERT and a DELETE, for example, are
different writes under the hood—not simply because the former adds and the latter
removes. For simplicity again: all reads are equal and all writes are equal.

The read/write trait is one of the most fundamental and ubiquitous because scal‐
ing reads and writes requires different application changes. Scaling reads is usually
accomplished by offloading reads, which I cover later in “Offload Reads” on page 141.
Scaling write is more difficult, but enqueuing writes is one technique (see “Enqueue
Writes” on page 145), and Chapter 5 covers the ultimate solution: sharding.

Although this trait is quite simple, it’s important because knowing if an application
is read-heavy or write-heavy quickly focuses your attention on relevant application
changes. Using a cache, for example, is not relevant for a write-heavy application.
Furthermore, other data stores are optimized for reads or writes, and there is a
write-optimized storage engine for MySQL: MyRocks.

Throughput
What is the throughput (in QPS) and variation of the data access?

First of all, throughput is not performance. Low throughput access—even just
1 QPS—can wreak havoc. You can probably imagine how; in case not, here’s an
example: a SELECT…FOR UPDATE statement that does a table scan and locks every
row. It’s rare to find access that terrible, but it proves the point: throughput is not
performance.

Data Access Patterns | 133

Terrible access notwithstanding, very high QPS (where high is relative to the appli‐
cation) is usually an issue to abate for all the reasons eloquently stated in “Less
QPS Is Better” on page 96. For example, if the application executes stock trades, it
probably has a huge burst of read and write access at 9:30 a.m. Eastern Time when the
American stock exchanges open. That level of throughput conjures entirely different
considerations than a steady 500 QPS.

Variation—how QPS increases and decreases—is equally important. The previous
paragraph mentioned burst and steady; another type of variation is cyclical: QPS
increases and decreases over a period of time. A common cyclical pattern is higher
QPS during business hours—9 a.m. to 5 p.m. Eastern Time, for example—and lower
QPS in the middle of the night. A common problem is that high QPS during business
hours prevents developers from making schema changes (ALTER TABLE) or backfill‐
ing data.

Data Age
What is the age of the data accessed?

Age is relative to access order, not time. If an application inserts one million rows in
10 minutes, the first row is the oldest because it was the last row accessed, not because
it’s 10 minutes old. If the application updates the first row, then it becomes the newest
because it was the most recent row accessed. And if the application never accesses the
first row again, but it continues to access other rows, then the first row becomes older
and older.

This trait is important because it affects the working set. Recall from “Working set
size” on page 95 that the working set is frequently used index values and the primary
key rows to which they refer—which is a long way of saying frequently accessed
data—and it’s usually a small percentage of the table size. MySQL keeps as much data
in memory as possible, and data age affects whether or not the data in memory is
part of the working set. It usually is because MySQL is exceptionally good at keeping
the working set in memory thanks to a mélange of algorithms and data structures.
Figure 4-4 is a highly simplified illustration of the process.

The rectangle in Figure 4-4 represents all data. The working set is a small amount of
data: from the dashed line to the top. And memory is smaller than both: from the
solid line to the top. In MySQL lingo, data is made young when accessed. And when
data is not accessed, it becomes old and is eventually evicted from memory.

134 | Chapter 4: Access Patterns

4 It’s technically possible by inspecting the LSN of data pages in the InnoDB buffer pool, but that’s disruptive, so
it’s practically never done.

Figure 4-4. Data aging

Since accessing data keeps it young and in memory, the working set stays in memory
because it’s frequently accessed. This is how MySQL is very fast with a little memory
and a lot of data.

Frequently accessing old data is problematic in more than one way. To explain why,
I must delve into technical details beyond the scope of this section, but I clarify
later in “InnoDB” on page 205. Data is loaded into free pages (in memory): pages
that don’t already contain data. (A page is a 16 KB unit of logical storage inside
InnoDB.) MySQL uses all available memory, but it also keeps a certain number of free
pages. When there are free pages, which is normal, the problem is only that reading
data from storage is slow. When there are zero free pages, which is abnormal, the
problem worsens threefold. First, MySQL must evict old pages, which it tracks in a
least recently used (LRU) list. Second, if an old page is dirty (has data changes not
persisted to disk) MySQL must flush (persist) it before it can evict it, and flushing is
slow. Third, the original problem remains: reading data from storage is slow. Long
story short: frequently dredging up old data is problematic for performance.

Occasionally accessing old data is not a problem because MySQL is clever: the
algorithms driving the process in Figure 4-4 prevent occasional access of old data
from interfering with new (young) data. Therefore, take data age and throughput into
consideration together: old and slow access is probably harmless, but old and fast is
bound to cause trouble.

Data age is nearly impossible to measure.4 Fortunately, you only need to estimate
the age of the data accessed, which you can do with your understanding of the
application, the data, and the access pattern. If, for example, the application stores

Data Access Patterns | 135

financial transactions, you know that access is mostly limited to new data: the last 90
days of transactions. Accessing data older than 90 days should be infrequent because
transactions have settled and become immutable. By contrast, another part of the
same application that manages user profiles might frequently access old data if the
percentage of active users is high. Remember: old data is relative to access, not time.
The profile of a user who last logged in a week ago isn’t necessarily old by time, but
their profile data is relatively old because millions of other profile data have since
been accessed, which means their profile data was evicted from memory.

Knowing this trait is a prerequisite for understanding “Partition Data” on page 146
and sharding in Chapter 5.

Data Model
What data model does the access exhibit?

Although MySQL is a relational data store, it’s commonly used with other data
models: key-value, document, complex analytics, graph, and so forth. You should be
keenly aware of nonrelational access because it’s not the best fit for MySQL; therefore,
it cannot yield the best performance. MySQL excels with other data models but only
to a point. For example, MySQL works well as a key-value data store, but RocksDB is
incomparably better because it’s a purpose-built key-value data store.

The data model trait cannot be programmatically measured like other traits. Instead,
you need to determine which data model the access exhibits. The verb exhibits is
meaningful: the access might be relational only because MySQL was the only available
data store when the access was created, but it exhibits another data model when you
consider all data stores. Access is often jammed into the data model of the available
data stores. But the best practice is the reverse: determine the ideal data model for the
access, then use a data store built for that data model.

Transaction Isolation
What transaction isolation does the access require?

Isolation is one of four ACID properties: atomicity, consistency, isolation, and dura‐
bility. Since the default MySQL storage engine, InnoDB, is transactional, every query
executes in a transaction by default—even a single SELECT statement. (Chapter 8
examines transactions.) Consequently, the access has isolation whether it needs it or
not. This trait clarifies whether isolation is required and if so, what level.

When I ask engineers this question, the answer falls into one of three categories:

136 | Chapter 4: Access Patterns

None
No, the access does not require any isolation. It would execute correctly on a
nontransactional storage engine. Isolation is just useless overhead, but it doesn’t
cause any problems or noticeably impact performance.

Default
Presumably, the access requires isolation, but it’s unknown or unclear which
level is required. The application works correctly with the default transaction
isolation level for MySQL: REPEATABLE READ. Careful thought would be required
to determine if another isolation level—or no isolation—would work correctly.

Specific
Yes, the access requires a specific isolation level because it’s part of a transaction
that executes concurrently with other transactions that access the same data.
Without the specific isolation level, the access could see incorrect versions of the
data, which would be a serious problem for the application.

In my experience, Default is the most common category, and that makes sense
because the default transaction isolation level for MySQL, REPEATABLE READ, is cor‐
rect for most cases. But the answer to this trait should lead to None or Specific. If the
access does not require any isolation, then it might not require a transactional data
store. Else, if the access requires isolation, now you specifically know which isolation
level and why.

Other data stores have transactions—even data stores that are not fundamentally
transactional. For example, the document store MongoDB introduced multidocu‐
ment ACID transactions in version 4.0. Knowing which isolation level is required and
why allows you to translate and move access from MySQL to another data store.

Transactions in other data stores can be very different than MySQL
transactions, and transactions affect other aspects, like locking.

Read Consistency
Does the read access require strong or eventual consistency?

Strong consistency (or strongly consistent reads) means that a read returns the most
current value. Reads on the source MySQL instance (not replicas) are strongly consis‐
tent, but the transaction isolation level determines the current value. A long-running
transaction can read an old value, but it’s technically the current value with respect
to the transaction isolation level. Chapter 8 delves into these details. For now, remem‐
ber that strong consistency is the default (and only option) on the source MySQL
instance. This is not true for all data stores. Amazon DynamoDB, for example,

Data Access Patterns | 137

defaults to eventually consistent reads, and strongly consistent reads are optional,
slower, and more expensive.

Eventual consistency (or eventually consistent reads) means that a read might return
an old value, but eventually it will return the current value. Reads on MySQL replicas
are eventually consistent because of replication lag: the delay between when data is
written on the source and when it’s written (applied) on the replica. The duration
of eventually is roughly equal to replication lag, which should be less than a second.
Replicas used to serve read access are called read replicas. (Not all replicas serve reads;
some are only for high availability, or other purposes.)

In the world of MySQL, it’s common for all access to use the source instance, which
makes all reads strongly consistent by default. But it’s also common for reads not
to require strong consistency, especially when replication lag is subsecond. When
eventual consistency is acceptable, offloading reads (see “Offload Reads” on page 141)
becomes possible.

Concurrency
Is the data accessed concurrently?

Zero concurrency means that the access does not read (or write) the same data at
the same time. If it reads (or writes) the same data at different times, that’s also
zero concurrency. For example, an access pattern that inserts unique rows has zero
concurrency.

High concurrency means that the access frequently reads (or writes) the same data at
the same time.

Concurrency indicates how important (or troublesome) row locking will be for write
access. Unsurprisingly, the higher the write concurrency on the same data, the greater
the row lock contention. Row lock contention is acceptable as long as the increased
response time that it causes is also acceptable. It becomes unacceptable when it causes
lock wait timeouts, which is a query error that the application must handle and retry.
When this begins to happen, there are only two solutions: decrease concurrency
(change the access pattern), or shard (see Chapter 5) to scale out writes.

Concurrency also indicates how applicable a cache might be for read access. If the
same data is read with high concurrency but infrequently changed, then it’s a good fit
for a cache. I discuss this in “Offload Reads” on page 141.

As addressed in “Data Age” on page 134, concurrency is nearly impossible to
measure, but you only need to estimate concurrency, which you can do with your
understanding of the application, the data, and the access pattern.

138 | Chapter 4: Access Patterns

Row Access
How are rows accessed? There are three types of row access:

Point access
A single row

Range access
Ordered rows between two values

Random access
Several rows in any order

Using the English alphabet (A to Z), point access is any single character (A, for
example); range access is any number of characters in order (ABC, or AC if B doesn’t
exist); and random access is any number of random characters (ASMR).

This trait seems simplistic, but it’s important for write access for two reasons:

• Gap locking: range and random access writes that use nonunique indexes exacer‐•
bate row lock contention due to gap locks. “Row Locking” on page 260 goes into
detail.

• Deadlocks: random access writes are a setup for deadlocks, which is when two•
transactions hold row locks that the other transaction needs. MySQL detects
and breaks deadlocks, but they kill performance (MySQL kills one transaction to
break the deadlock) and they’re annoying.

Row access is also important when planning how to shard. Effective sharding requires
that access patterns use a single shard. Point access works best with sharding: one
row, one shard. Range and random access work with sharding but require careful
planning to avoid negating the benefits of sharding by accessing too many shards.
Chapter 5 covers sharding.

Result Set
Does the access group, sort, or limit the result set?

This trait is easy to answer: does the access have a GROUP BY, ORDER BY, or LIMIT
clause? Each of these clauses affects if and how the access might be changed or run
on another data store. “Data Access” on page 97 covers several changes. At the very
least, optimize access that groups or sorts rows. Limiting rows is not a problem—it’s a
benefit—but it works differently on other data stores. Likewise, other data stores may
or may not support grouping or sorting rows.

Data Access Patterns | 139

Application Changes
You must change the application to change its data access patterns. The changes
presented in this section are common, not exhaustive. They are highly effective but
also highly dependent on the application: some could work, others might not. (Except
the first change, “Audit the Code” on page 140: that always works.) Consequently,
each change is an idea that needs further discussion and planning with your team.

All changes except the first have a subtle commonality: they require additional
infrastructure. I point that out to mentally prepare you for the fact that, in addition to
code changes, you will need infrastructure changes, too. As foretold from the begin‐
ning, “Improving Query Response Time” on page 27, indirect query optimization
requires a greater level of effort. Whereas changing data (Chapter 3) is potentially
work, changing access patterns is certainly work. But it’s worth the effort because
these changes are, by definition, transformative: how the application changes from a
Toyota to a Ferrari.

You might wonder: if these changes are so powerful, why not make them first—
before optimizing queries and data? Since the focus of this book is efficient MySQL
performance, I planned the journey to end with application changes because they
require the most effort. By contrast, direct query optimization (Chapter 2) and
changes to data (Chapter 3) require far less effort, and the former solves a lot of—if
not most—performance problems. But if you have the time and energy to jump
straight into re-engineering the application, you have my support. Just remember the
lesson from Chapter 2: indexes provide the most and the best leverage. Bad queries
ruin wonderful access patterns; or, to quote renowned MySQL expert Bill Karwin:

Your unoptimized queries are killing the database server.

Audit the Code
You might be surprised by how long code can exist and run without any human
looking at it. In a certain sense, that’s a sign of good code: it just works and doesn’t
cause problems. But “doesn’t cause problems” does not necessarily mean that the code
is efficient or even required.

You don’t have to audit all the code (although that’s not a bad idea), just the code
that accesses the database. Look at the actual queries, of course, but also consider the
context: the business logic that the queries accomplish. You might realize a different
and better way to accomplish the same business logic.

With respect to queries, look for the following:

• Queries that are no longer needed•
• Queries that execute too frequently•

140 | Chapter 4: Access Patterns

• Queries that retry too fast or too often•
• Large or complex queries—can they be simplified?•

If the code uses ORM—or any kind of database abstraction—double check its defaults
and configuration. One consideration is that some database libraries execute SHOW
WARNINGS after every query to check for warnings. That’s usually not a problem,
but it’s also quite wasteful. Also double-check the driver defaults, configuration, and
release notes. For example, the MySQL driver for the Go programming language has
had very useful developments over the years, so Go code should be using the latest
version.

Indirectly audit the code by using the query profile to see what queries the application
executes—no query analysis required; just use the query profile as an auditing tool.
It’s quite common to see unknown queries in the profile. Given “MySQL Does
Nothing” on page 124, unknown queries likely originate from the application—either
your application code or any kind of database abstraction, like ORM—but there is
another possibility: ops. Ops refers to whoever runs and maintains the data store:
DBAs, cloud providers, and so on. If you find unknown queries and you’re certain
that the application isn’t executing them, check with whoever operates the data store.

To make query auditing easier, add application metadata to queries
in /* SQL comments */. For example, SELECT…/* file:app.go

line:75 */ reveals where the query originates in the application
source code. SQL comments are removed from digest texts, so your
query metric tool must include samples (see Example 1-1) or parse
metadata from SQL comments.

Lastly and most overlooked: review the MySQL error log. It should be quiet: no
errors, warnings, and so forth. If it’s noisy, look into the errors because they signify
a wide array of issues: network, authentication, replication, MySQL configuration,
nondeterministic queries, and so forth. These types of problems should be incredibly
rare, so don’t ignore them.

Offload Reads
By default, a single MySQL instance called the source serves all reads and writes. In
production, the source should have at least one replica: another MySQL instance that
replicates all writes from the source. Chapter 7 addresses replication, but I mention it
here to set the stage for a discussion about offloading reads.

Performance can be improved by offloading reads from the source. This technique
uses MySQL replicas or cache servers to serve reads. (More on these two in a
moment.) It improves performance in two ways. First, it reduces load on the source,
which frees time and system resources to run the remaining queries faster. Second, it

Application Changes | 141

improves response time for the offloaded reads because the replicas or caches serving
those reads are not loaded with writes. It’s a win-win technique that’s commonly used
to achieve high-throughput, low-latency reads.

Data read from a replica or cache is not guaranteed to be current (the latest value)
because there is inherent and unavoidable delay in MySQL replication and writing
to a cache. Consequently, data from replicas and caches is eventually consistent: it
becomes current after a (hopefully very) short delay. Only data on the source is
current (transaction isolation levels notwithstanding). Therefore, before serving reads
from a replica or cache, the following must be true: reading data that is out-of-date
(eventually consistent) is acceptable, and it will not cause problems for the application or
its users.

Give that statement some thought because more than once I’ve seen developers think
about it and realize, “Yeah, it’s fine if the application returns slightly out-of-date
values.” A commonly cited example is the number of “likes” or up-votes on a post
or video: if the current value is 100 but the cache returns 98, that’s close enough
—especially if the cache returns the current value a few milliseconds later. If that
statement is not true for your application, do not use this technique.

In addition to the requirement that eventual consistency is acceptable, offloaded
reads must not be part of a multi-statement transaction. Multi-statement transactions
must be executed on the source.

Always ensure that offload reads are acceptable with eventual con‐
sistency and not part of a multi-statement transaction.

Before serving reads from replicas or caches, thoroughly address this question: how
will the application run degraded when the replicas or caches are offline?

The only wrong answer to that question is not knowing. Once an application offloads
reads, it tends to depend heavily on the replicas or caches to serve those reads. It’s
imperative to design, implement, and test the application to run degraded when the
replicas or caches are offline. Degraded means that the application is running but
noticeably slower, limiting client requests, or not fully functional because some parts
are offline or throttled. As long as the application is not hard down—completely
offline and unresponsive with no human-friendly error message—then you’ve done a
good job making the application run degraded.

Last point before we discuss using MySQL replicas versus cache servers: do not
offload all reads. Offloading reads improves performance by not wasting time on the
source for work that a replica or cache can accomplish. Therefore, start by offloading
slow (time-consuming) reads: reads that show up as slow queries in the query profile.

142 | Chapter 4: Access Patterns

This technique is potent, so offload reads one by one because you might only need to
offload a few to significantly improve performance.

MySQL replica
Using MySQL replicas to serve reads is common because every production MySQL
setup should already have at least one replica, and more than two replicas is common.
With the infrastructure (the replicas) already in place, you only have to modify the
code to use the replicas for offloaded reads instead of the source.

Before stating why replicas are preferable to cache servers, there’s one important
issue to settle: can the application use the replicas? Since replicas are used for high
availability, whoever manages MySQL might not intend for replicas to serve reads.
Be sure to find out because, if not, replicas might be taken offline without notice for
maintenance.

Presuming your replicas can be used to serve reads, they are preferable to cache
servers for three reasons:

Availability
Since replicas are the foundation of high availability, they should have the
same availability as the source—99.95% or 99.99% availability, for example. That
makes replicas nearly worry-free: whoever manages MySQL is also managing the
replicas.

Flexibility
In the previous section, I said that you should start by offloading slow (time-
consuming) reads. For caches, this is especially true because the cache server
most likely has limited CPU and memory—resources not to be wasted on trivial
reads. By contrast, replicas used for high availability should have the same hard‐
ware as the source, so they have resources to spare. Offloading trivial reads to
a replica doesn’t matter as much, hence the flexibility when choosing what to
offload. On the off chance that you have pure read replicas—replicas not used
for high availability—with less powerful hardware, then don’t waste resources on
trivial reads. This is more common in the cloud because it’s easy to provision
read replicas with large storage but small CPU and memory (to save money).

Simplicity
The application doesn’t have to do anything to keep replicas in sync with the
source—that’s intrinsic to being a replica. With a cache, the application must
manage updates, invalidation, and (possibly) eviction. But the real simplicity is
that replicas don’t require any query changes: the application can execute the
exact same SQL statements on a replica.

Application Changes | 143

Those are three compelling reasons to prefer MySQL replicas to cache servers, but the
latter has one important point in its favor: a cache server can be incredibly faster than
MySQL.

Cache server
A cache server is not encumbered with SQL, transactions, or durable storage. That
makes it incredibly faster than MySQL, but it also takes more work in the application
to use properly. As mentioned in the previous section, the application must manage
cache updates, invalidation, and (possibly) eviction. Moreover, the application needs
a data model that works with the cache, which is usually a key-value model. The
extra work is worth the effort because practically nothing is faster than a cache.
Memcached and Redis are two popular and widely-used cache servers.

If you hear that MySQL has a built-in query cache: forget it and
never use it. It was deprecated as of MySQL 5.7.20 and removed as
of MySQL 8.0.

Caching is ideal for data that’s frequently accessed but infrequently changed. This
is not a consideration for MySQL replicas because all changes replicate, but a cache
stores only what the application puts in it. A bad example is the current Unix
timestamp in seconds: it’s always changing. The exception in a bad case like this:
if the frequency of access is significantly greater than the frequency of change. For
example, if the current Unix timestamp in seconds is requested one million times per
second, then caching the current timestamp might be appropriate. A good example is
the current year: it changes infrequently. However, the exception in a good case like
this: if the frequency of access is significantly less than the frequency of change. For
example, if the current year is requested only once per second, then a cache provides
almost no value because 1 QPS doesn’t make any difference for this data access.

A word of caution when using a cache: decide whether the cache is ephemeral or
durable. This, too, is not a consideration for MySQL replicas because they are always
durable, but some cache servers can be either. If the cache is truly ephemeral, then
you should be able to do the equivalent of TRUNCATE TABLE on the cache data without
affecting the application. You also need to decide how the ephemeral cache is rebuilt.
Some applications rebuild the cache on cache miss: when the requested data is not
in the cache. Other applications have an external process to rebuild the cache from
another data source (for example, loading the cache with images stored in Amazon
S3). And some applications rely so heavily on the cache, or the cache is so large,
that rebuilding it is not feasible. For such applications, a durable cache is required.
Either way—ephemeral or durable—test your decision to verify that the application
functions as expected when the cache fails and recovers.

144 | Chapter 4: Access Patterns

Enqueue Writes
Use a queue to stabilize write throughput. Figure 4-5 illustrates unstable—erratic—
write throughput that spikes above 30,000 QPS and dips below 10,000 QPS.

Figure 4-5. Erratic write throughput

Even if performance is currently acceptable with unstable write throughput, it’s not
a recipe for success because unstable throughput worsens at scale—it never spontane‐
ously stabilizes. (And if you recall Figure 4-3 from “Performance Destabilizes at the
Limit” on page 125, a flatline value is not stable.) Using a queue allows the application
to process changes (writes) at a stable rate, as shown in Figure 4-6.

Figure 4-6. Stable write throughput

The real power of enqueueing writes and stable write throughput is that they allow
the application to respond gracefully and predictably to a thundering herd: a flood
of requests that overwhelms the application, or the database, or both. For example,
imagine that the application normally processes 20,000 changes per second. But it
goes offline for five seconds, which results in 100,000 pending changes. The moment
the application comes back online, it’s hit with the 100,000 pending changes—a

Application Changes | 145

thundering herd—plus the normal 20,000 changes for the current second. How will
the application and MySQL handle the thundering herd?

With a queue, the thundering herd does not affect MySQL: it goes into the queue,
and MySQL processes the changes as usual. The only difference is that some changes
happen later than usual. As long as write throughput is stable, you can increase the
number of queue consumers to process the queue more quickly.

Without a queue, experience teaches that one of two things will happen. Either
you’ll be super lucky and MySQL will handle the thundering herd, or it won’t. Don’t
count on luck. MySQL does not throttle query execution, so it will try to execute
all queries when the thundering herd hits. (However, MySQL Enterprise Edition,
Percona Server, and MariaDB Server have a thread pool that limits the number of
concurrently executing queries, which acts as a throttle.) This never works because
CPU, memory, and disk I/O are inherently limited—not to mention the Universal
Scalability Law (Equation 4-1). Regardless, MySQL always tries because it’s incredibly
ambitious and a little foolhardy.

This technique bestows other advantages that make it worth the effort to implement.
One advantage is that it decouples the application from MySQL availability: the
application can accept changes when MySQL is offline. Another advantage is that it
can be used to recover lost or abandoned changes. Suppose a change requires various
steps, some of which might be long-running or unreliable. If a step fails or times
out, the application can re-enqueue the change to try again. A third advantage is the
ability to replay changes if the queue is an event stream, like Kafka.

For write-heavy applications, enqueueing writes is the best practice
and practically a requirement. Invest the time to learn and imple‐
ment a queue.

Partition Data
After Chapter 3, it should be no surprise that it’s easier to improve performance with
less data. Data is valuable to you, but it’s dead weight to MySQL. If you cannot delete
or archive data (see “Delete or Archive Data” on page 115), then you should at least
partition (physically separate) the data.

First, let’s briefly address then put aside MySQL partitioning. MySQL supports parti‐
tioning, but it requires special handling. It’s not trivial to implement or maintain, and
some third-party MySQL tools don’t support it. Consequently, I don’t recommend
using MySQL partitioning.

The type of data partitioning that is most useful, more common, and easier for
application developers to implement is separating hot and cold data: frequently and

146 | Chapter 4: Access Patterns

infrequently accessed data, respectively. Separating hot and cold data is a combina‐
tion of partitioning and archiving. It partitions by access, and it archives by moving
the infrequently accessed (cold) data out of the access path of the frequently accessed
(hot) data.

Let’s use an example: a database that stores payments. The hot data is the last 90 days
of payments for two reasons. First, payments usually do not change after settling,
but there are exceptions like refunds that can be applied later. After some period,
however, payments are finalized and cannot be changed. Second, the application
shows only the last 90 days of payments. To see older payments, users have to look up
past statements. The cold data is payments after 90 days. For a year, that’s 275 days,
which is roughly 75% of data. Why have 75% of data sit idly in a transactional data
store like MySQL? That’s a rhetorical question: there’s no good reason.

Separating hot and cold data is primarily an optimization for the former. Storing
cold data elsewhere yields three immediate advantages: more hot data fits in memory,
queries don’t waste time examining cold data, and operations (like schema changes)
are faster. Separating hot and cold data is also an optimization for the latter when
it has completely different access patterns. In the preceding example, old payments
might be grouped by month into a single data object that no longer requires a row
for each payment. In that case, a document store or key-value store might be better
suited for storing and accessing the cold data.

At the very least, you can archive cold data in another table in the same database.
That’s relatively easy with a controlled INSERT…SELECT statement to select from the
hot table and insert into the cold table. Then DELETE the archived cold data from the
hot table. Wrap it all up in a transaction for consistency. See “Delete or Archive Data”
on page 115.

This technique can be implemented many different ways, especially with respect to
how and where the cold data is stored and accessed. But fundamentally it’s very
simple and highly effective: move infrequently accessed (cold) data out of the access
path of frequently accessed (hot) data to improve performance for the latter.

Don’t Use MySQL
I want to put a figurative capstone on the current discussion about application
changes: the most significant change is not using MySQL when it’s clearly not the
best data store for the access patterns. Sometimes it’s very easy to see when MySQL
is not the best choice. For example, in previous chapters I made reference to a query
with load 5,962. That query is used to select vertices in a graph. Clearly, a relational
database is not the best choice for graph data; the best choice is a graph data store.
Even a key-value store would be better because graph data has nothing to do with
relational database concepts like normalization and transactions. Another easy and

Application Changes | 147

common example is time series data: a row-oriented transactional database is not the
best choice; the best choice is a time series database, or perhaps a columnar store.

MySQL scales surprising well for a wide range of data and access patterns even when
it’s not the best choice. But never take that for granted: be the first engineer on your
team to say, “Maybe MySQL isn’t the best choice.” It’s okay: if I can say that, then you
can too. If anyone gives you grief, tell them I support your decision to use the best
tool for the job.

That said, MySQL is amazing. Please at least finish this chapter and the next, Chap‐
ter 5, before you swipe left on MySQL.

Better, Faster Hardware?
“Better, Faster Hardware!” on page 37 cautions against scaling up hardware to
increase performance. But the first sentence of that section is carefully worded:
“When MySQL performance isn’t acceptable, do not begin by scaling up…” The key
word in that sentence is begin, and the pivotal question that it leads to is: when is the
correct time to scale up hardware?

That question is difficult to answer because it depends on a combination of factors:
queries, indexes, data, access patterns, and how those utilize the current hardware.
For example, let’s say that the application has a super inefficient access pattern: it uses
MySQL as a queue and polls it very quickly from many application instances. I would
not scale up hardware until fixing the access pattern first. But sometimes, engineers
don’t have the luxury of time necessary to make such application changes.

Table 4-2 is a checklist to help determine if it’s time to scale up the hardware. When
you can check all items in column 1 and at least two items in column 2, then it’s a
strong indication that it’s time to scale up the hardware.

Table 4-2. Hardware upgrade checklist

1. Check all 2. Check at least two
☐ Response time is too high ☐ CPU utilization is greater than 80%

☐ Slow queries have been optimized ☐ Threads running greater than number of CPU cores

☐ Data has been deleted or archived ☐ Memory is less than 10% of total data size

☐ Access patterns have been reviewed and optimized ☐ Storage IOPS utilization is greater than 80%

Column 1 is an unapologetic reiteration of everything since Chapter 1, but it’s also
an unequivocal justification for spending money to upgrade the hardware. Column 2
requires at least two checks because hardware works together. Heavily utilizing only
one piece of hardware doesn’t guarantee a problem or slow performance. Instead,
it’s probably a good sign: you’re fully utilizing that piece of hardware. But when one
piece of hardware is overloaded, it usually begins to affect other pieces of hardware.

148 | Chapter 4: Access Patterns

For example, when slow storage causes a backlog of queries which causes a backlog
of clients which causes high CPU utilization because MySQL is trying to execute too
many threads. That’s why column 2 requires two checks.

Values in column 2 should be consistently greater or less than the suggested thresh‐
olds. Occasional spikes and dips are normal.

The maximum number of storage IOPS is determined by the storage device, if
running your own hardware. If you’re not sure, check the device specifications, or
ask the engineers who manage the hardware. In the cloud, storage IOPS are allocated
or provisioned, so it’s usually easier to tell the maximum because you purchase the
IOPS. But if you’re not sure, check the MySQL storage settings, or ask the cloud
provider. “IOPS” on page 208 shows which metrics report storage IOPS.

Storage IOPS utilization has an additional consideration based on whether the appli‐
cation is read-heavy or write-heavy (see “Read/Write” on page 133):

Read-heavy
For read-heavy access patterns, consistently high IOPS is probably due to insuffi‐
cient memory, not insufficient IOPS. MySQL reads data from disk when it’s not
in memory, and it’s exceptionally good at keeping the working set in memory
(see “Working set size” on page 95). But a combination of two factors can cause
high IOPS for reads: the working set size is significantly larger than memory,
and read throughput is exceptionally high (see “Throughput” on page 133). That
combination causes MySQL to swap so much data between disk and memory
that the problem shows up as high IOPS. This is rare, but possible.

Write-heavy
For write-heavy access patterns, consistently high IOPS is probably due to insuf‐
ficient IOPS. Simply put: the storage can’t write data fast enough. Normally,
storage achieves high throughput (IOPS) with write caches, but caches are not
durable. MySQL requires durable storage: data physically on disk, not in caches.
(The phrase “on disk” is still used even for flash-based storage that doesn’t have
disks.) Consequently, MySQL must flush data—force it to be written to disk.
Flushing severely limits storage throughput, but MySQL has sophisticated techni‐
ques and algorithms to achieve performance with durability—“Page flushing” on
page 212 goes into detail. The only solution at this point—because you’ve already
optimized queries, data, and access patterns—is more storage IOPS.

With a cautious nod to scaling up hardware, it might seem that we’ve reached the
end. No matter how many pebbles, or cobbles, or boulders we have to move, we can
always use a bigger truck to move them. But what if you have to move a mountain?
Then you need the next chapter: sharding.

Better, Faster Hardware? | 149

Summary
This chapter centered on data access patterns that determine how you can change the
application to use MySQL efficiently. The important takeaway points are:

• MySQL does nothing but execute application queries.•
• Database performance destabilizes at a limit that is less than 100% of hardware•

capacity.
• Some applications have far greater MySQL performance because every detail is•

engineered for high performance.
• Access patterns describe how an application uses MySQL to access data.•
• You must change the application to change its data access patterns.•
• Scale up hardware to improve performance after exhausting other solutions.•

The next chapter introduces the basic mechanics of sharding MySQL to achieve
MySQL at scale.

Practice: Describe an Access Pattern
The goal of this practice is to describe the access pattern of the slowest query. (To
get slow queries, refer back to “Query profile” on page 9 and “Practice: Identify
Slow Queries” on page 33.) For the slowest query, describe all nine access pattern
traits from “Data Access Patterns” on page 131. As mentioned in that section, access
patterns are pure knowledge. Use that knowledge to consider what “Application
Changes” on page 140 could be made to indirectly optimize the query by changing its
access pattern. Even if no application changes are possible, knowing access patterns is
an expert practice because MySQL performance depends on queries, data, and access
patterns.

150 | Chapter 4: Access Patterns

CHAPTER 5

Sharding

On a single instance of MySQL, performance depends on queries, data, access pat‐
terns, and hardware. When direct and indirect query optimization—assiduously
applied—no longer deliver acceptable performance, you have reached the relative
limit of single-instance MySQL performance for the application workload. To surpass
that relative limit, you must divide the application workload across multiple instances
of MySQL to achieve MySQL at scale.

Sharding a database is the common and widely used technique of scaling out (or,
horizontal scaling): increasing performance by distributing the workload across mul‐
tiple databases. (By contrast, scaling up, or vertical scaling, increases performance by
increasing hardware capacity.) Sharding divides one database into many databases.
Each database is a shard, and each shard is typically stored on a separate MySQL
instance running on separate hardware. Shards are physically separate but logically
the same (very large) database.

MySQL at scale requires sharding. I’m going to repeat that sentence several times
in this chapter because it’s a fact that engineers hesitate to accept. Why? Because
sharding is not an intrinsic feature or capability of MySQL. Consequently, sharding is
complex and entirely application-specific, which means there’s no easy solution. But
don’t be discouraged: sharding is a solved problem. Engineers have been scaling out
MySQL for decades.

This chapter introduces the basic mechanics of sharding to achieve MySQL at scale.
There are four major sections. The first explains why a single database does not
scale—why sharding is necessary. The second completes the analogy from Chapters 3
and 4: why pebbles (database shards) are better than boulders (huge databases). The
third is a brief introduction to the complex topic of relational database sharding. The
fourth presents alternatives to sharding.

151

Why a Single Database Does Not Scale
Nobody questions that a single application can overload a single server—that’s why
scaling out is necessary for all types of servers and applications, not just MySQL.
Sharding is therefore necessary because it’s how MySQL scales out: more databases.
But it’s reasonable to wonder why a single MySQL database does not scale given that
very powerful hardware is available and some benchmarks demonstrate incredible
performance on that hardware. Five reasons follow, beginning with the most funda‐
mental: the application workload can significantly outpace the speed and capacity of
single-server hardware.

Application Workload
Figure 5-1 is a simple illustration of hardware capacity on a single server with zero
load.

Figure 5-1. Hardware without load

Figure 5-1 is intentionally simple—but not simplistic—because it subtly conveys a
critically important point: hardware capacity is finite and limited. The circle represents
the limits of the hardware. Let’s presume the hardware is dedicated to running a
single MySQL instance for one application—no virtualization, crypto coin mining,
or other load. Everything that runs on the hardware must fit inside the circle. Since
this is dedicated hardware, the only thing running on it is the application workload
shown in Figure 5-2: queries, data, and access patterns.

152 | Chapter 5: Sharding

Figure 5-2. Hardware with standard MySQL workload

It’s no coincidence that Queries refer to Chapter 2, Data to Chapter 3, and Access
Patterns to Chapter 4. These constitute the application workload: everything that
causes load on MySQL which, in turn, causes load on the hardware (CPU utilization,
disk I/O, and so forth). The box sizes are important: the bigger the box, the bigger the
load. In Figure 5-2, the workload is within the capacity of the hardware, with a little
room to spare because the operating system needs hardware resources, too.

Queries, data, and access patterns are inextricable with respect to performance. (I
proved this with TRUNCATE TABLE in “Indirect Query Optimization” on page 28.) Data
size is a common reason for scaling out because, as shown in Figure 5-3, it causes the
workload to exceed the capacity of a single server.

Figure 5-3. Hardware with too much data

Why a Single Database Does Not Scale | 153

Data size cannot increase without eventually affecting queries and access patterns.
Buying a bigger hard drive won’t solve the problem because, as Figure 5-3 shows,
there’s plenty of capacity for the data, but the data is not the only part of the
workload.

Figure 5-4 illustrates a common misconception that leads engineers to think that a
single database can scale to maximum data size, which is currently 64 TB for a single
InnoDB table.

Figure 5-4. Hardware with only data (scaling misconception)

Data is only one part of the workload, and the other two parts (queries and access
patterns) cannot be ignored. Realistically, for acceptable performance with a lot of
data on a single sever, the workload must look like Figure 5-5.

Figure 5-5. Hardware with large data

154 | Chapter 5: Sharding

If the queries are simple and have exceptionally good indexes, and the access patterns
are trivial (for example, very low-throughput reads), then a single server can store a
lot of data. This isn’t just a clever illustration; real applications have workloads like
Figure 5-5.

These five illustrations reveal that a single database cannot scale because the applica‐
tion workload—which comprises queries, data, and access patterns—must fit within
the capacity of the hardware. After “Better, Faster Hardware!” on page 37 and “Better,
Faster Hardware?” on page 148, you already know that hardware won’t solve this
problem.

MySQL at scale requires sharding because application workloads can significantly
outpace the speed and capacity of single-server hardware.

Benchmarks Are Synthetic
Benchmarks use synthetic (fake) queries, data, and access patterns. These are neces‐
sarily fake because they’re not real applications and certainly not your application.
Therefore, benchmarks cannot tell you—or even suggest—how your application will
perform and scale—even on the same hardware. Moreover, benchmarks largely focus
on one or more access pattern (see “Data Access Patterns” on page 131), which
produces a workload like the one pictured in Figure 5-6.

Figure 5-6. Hardware with benchmark workload

Most applications don’t have a workload where performance is dominated by one
or more access pattern. But it’s common for benchmarks because it allows MySQL
experts to stress and measure a particular aspect of MySQL. For example, if a MySQL
expert wants to measure the effectiveness of a new page flushing algorithm, they
might use a 100% write-only workload with a few perfectly optimized queries and
very little data.

Why a Single Database Does Not Scale | 155

But let me be perfectly clear: benchmarks are important and necessary for MySQL
experts and the MySQL industry. (As mentioned in “MySQL Tuning” on page 39,
benchmarking is laboratory work.) Benchmarks are used to do the following:

• Compare hardware (one storage device against another)•
• Compare server optimizations (one flushing algorithm against another)•
• Compare different data stores (MySQL versus PostgreSQL—the classic rivalry)•
• Test MySQL at the limit (see “Performance Destabilizes at the Limit” on page•

125)

That work is incredibly important for MySQL, and it’s why MySQL is capable of
amazing performance. But conspicuously absent from that list is anything related
to your application and its particular workload. Consequently, whatever amazing
MySQL performance you read or hear about in benchmarks will not translate to your
application, and the very same experts producing those benchmarks will tell you:
MySQL at scale requires sharding.

Writes
Writes are difficult to scale on a single MySQL instance for several reasons:

Single writable (source) instance
For high availability, MySQL in production employs several instances connected
in a replication topology. But writes are effectively limited to a single MySQL
instance to avoid write conflicts: multiple writes to the same row at the same time.
MySQL supports multiple writable instances, but you will have a difficult time
finding anyone who uses this feature because write conflicts are too troublesome.

Transactions and locking
Transactions use locking to guarantee consistency—the C in an ACID-compliant
database. Writes must acquire row locks, and sometimes they lock significantly
more rows than you might expect—“Row Locking” on page 260 explains why.
Locks lead to lock contention, which makes access pattern trait “Concurrency”
on page 138 a critical factor in how well writes scale. If the workload is write-
heavy on the same data, even the best hardware in the world won’t help.

Page flushing (durability)
Page flushing is the delayed process by which MySQL persists changes (from
writes) to disk. The entire process is too complex to explain in this section,
but the salient point is: page flushing is the bottleneck of write performance.
Although MySQL is very efficient, the process is inherently slow because it
must ensure that data is durable: persisted to disk. Without durability, writes

156 | Chapter 5: Sharding

are incredibly fast due to caching, but durability is a requirement because all
hardware crashes eventually.

Write amplification
Write amplification refers to writes requiring more writes. Secondary indexes are
the simplest example. If a table has 10 secondary indexes, a single write could
write 10 additional writes to update those indexes. Page flushing (durability)
incurs additional writes, and replication incurs even more writes. This is not
unique to MySQL; it affects other data stores, too.

Replication
Replication is required for high availability, so all writes must replicate to other
MySQL instances—replicas. Chapter 7 addresses replication, but here are a few
salient points with respect to scaling writes. MySQL supports asynchronous
replication, semisynchronous replication, and Group Replication. Asynchronous
replication has a small effect on write performance because data changes are
written and flushed to binary logs on transaction commit—but after that, there’s
no effect. Semisynchronous replication has a greater effect on write performance:
it attenuates transaction throughput to network latency because every commit
must be acknowledged by at least one replica. Since network latency measures in
milliseconds, the effect on write performance is noticeable, but it’s a worthwhile
trade-off because it guarantees that no committed transactions are lost, which is
not true for asynchronous replication. Group Replication is more complex and
it’s more difficult to scale writes. For various reasons explained in Chapter 7, I do
not cover Group Replication in this book.

These five reasons are formidable challenges to scaling writes on a single MySQL
instance—even for MySQL experts. MySQL at scale requires sharding to overcome
these challenges and scale write performance.

Schema Changes
Schema changes are more than routine; they’re practically required. Furthermore, it’s
not uncommon for the largest tables to change frequently because their size reflects
their usage, and usage leads to development, which leads to changes. Even if you
manage to overcome all other obstacles and scale a single table to an enormous size,
the time required to change that table will be untenable. How long? It can take days
or weeks to alter a large table.

The long wait is not a problem for MySQL or the application because online schema
change (OSC) tools like pt-online-schema-change and gh-ost and certain built-in
online DDL operations can run for days or weeks while allowing the application to
function normally—which is why they’re called online. But it is a problem for engi‐
neers developing the application because waiting that long does not go unnoticed;

Why a Single Database Does Not Scale | 157

rather, it tends to become an increasingly annoying blocker to you, other engineers,
and possibly other teams.

For example, just a few weeks ago I helped a team alter several tables, each with
one billion rows, that had failed to complete after nearly two weeks of trying (for
various technical reasons not related to MySQL). The blocker went far beyond the
table or the team: long story short, it blocked an organization-level goal—months of
work by several other teams. Luckily, the needed schema change happened to be an
instant online DDL operation. But instant schema changes are exceedingly rare, so
don’t count on them. Instead, don’t let a table become so large that you cannot alter it
in a reasonable amount of time—whatever you, your team, and your company deem
reasonable.

MySQL at scale requires sharding because engineers cannot wait days or weeks to
change a schema.

Operations
If you directly and indirectly optimize queries with exacting precision and unmitiga‐
ted meticulousness, you can scale up a single database to a size that people won’t
believe until you show them. But the illustrations of hardware and workload in
“Application Workload” on page 152 do not depict the following operations (or ops as
they’re more commonly called):

• Backup and restore•
• Rebuilding failed instances•
• Upgrading MySQL•
• MySQL shutdown, startup, and crash recovery•

The larger the database, the longer those operations take. As an application developer,
you might not manage any of those operations, but they will affect you unless the
engineers managing the database are exceptionally adept at—and deeply committed
to—zero-downtime operations. Cloud providers, for example, are neither adept nor
committed; they only attempt to minimize downtime, which can mean anything from
20 seconds to hours of the database being offline.

MySQL at scale requires sharding to efficiently manage the data, which leads us to the
next section: pebbles, not boulders.

158 | Chapter 5: Sharding

Pebbles, Not Boulders
It’s significantly easier to move pebbles than boulders. I belabor this analogy because
it’s apt: MySQL at scale is achieved by using many small instances. (To refresh your
memory on the analogy, read the introductory sections of Chapters 3 and 4.)

Small, in this context, means two things:

• The application workload runs with acceptable performance on the hardware.•
• Standard operations (including OSC) take an acceptable amount of time.•

At first glance, that makes small seem so relative that it’s useless, but in practice
the limited range of hardware capacity significantly narrows the scope to an almost
objective measure. For example, at the time of this writing, I advise engineers to limit
the total data size of a single MySQL instance to 2 or 4 TB:

2 TB
For average queries and access patterns, commodity hardware is sufficient for
acceptable performance, and operations complete in reasonable time.

4 TB
For exceptionally optimized queries and access patterns, mid- to high-end hard‐
ware is sufficient for acceptable performance, but operations might take slightly
longer than acceptable.

These limits only reflect the hardware capacity that you can readily purchase today
(December 2021). Years ago, the limits were significantly lower. (Remember when
disks would physically spin and make crackling sounds? Weird.) Years from now, the
limits will be significantly greater.

Once a database is sharded, the number of shards is trivial to the application because
it accesses them programmatically. But to operations—especially the engineers oper‐
ating the MySQL instances—the size of shards is critically important: it’s significantly
easier to manage a 500 GB database than a 7 TB database. And since operations are
automated, it’s easy to mange any number of small databases.

MySQL performance is truly unlimited when sharded and operated as many small
databases—pebbles, not boulders.

Pebbles, Not Boulders | 159

Sharding: A Brief Introduction
The solution and implementation of sharding are necessarily coupled to the appli‐
cation workload. This is true even for the alternative solutions presented in the
next section, “Alternatives” on page 170. Consequently, no one can tell you how to
shard, and there are no fully-automated solutions. Prepare for a long but worthwhile
journey.

Sharding has two paths from idea to implementation:

Designing a new application for sharding
The first and rarest path is when an application is designed from the beginning
for sharding. If you’re developing a new application, I highly encourage you to
take this path if needed because it’s incomparably easier to shard from the start
than to migrate later.

To determine whether sharding is needed, estimate data size and growth for the
next four years. If the estimated data size in four years fits within the capacity
of your hardware today, then sharding might not be needed. I call this the
four-year fit. Also try to estimate the four-year fit for the other two aspects of the
application workload: queries and access patterns. These are difficult to estimate
(and likely to change) for a new application, but you should have some ideas and
expectations because they’re a necessary part of designing and implementing an
application.

Also consider whether the data set is bounded or unbounded. A bounded data
set has an intrinsic maximum size or intrinsically slow growth. For example, the
number of new smart phones released every year is very small, and its growth
is intrinsically slow because there’s no reason to believe that manufacturers will
ever release thousands of new phones per year. An unbounded data set has no
intrinsic limits. For example, pictures are unbounded: people can post unlimi‐
ted pictures. Since hardware capacity is bounded, applications should always
define and impose extrinsic limits on unbounded data sets. Never let data grow
unbounded. An unbounded data set strongly indicates the need for sharding,
unless old data is frequently deleted or archived (see “Delete or Archive Data” on
page 115).

Migrating an existing application to sharding
The second and more common path is migrating an existing database and appli‐
cation to sharding. This path is significantly more difficult, time-consuming, and
risky because, by the time it’s required, the database is large—MySQL is hauling a
boulder uphill. With a team of experienced developers, plan for the migration to
take a year or longer.

160 | Chapter 5: Sharding

In this book, I cannot cover how to migrate a single database to a sharded
database because it’s a bespoke process: it depends on the sharding solution
and application workload. But one thing is certain: you will copy data from the
original (single) database to the new shards—probably many times—because the
initial migration is essentially the first resharding, which is a challenge addressed
in “Resharding” on page 168.

Four-Year Fit
Why estimate data size and growth for the next four years? One or two years is too
soon: it takes at least a year to implement a big project like sharding. Three years is
reasonable, and four years is safe: better hardware is a safe bet in four years. Also,
stock grants commonly vest after four years, which causes turnover. Read “Tours of
Duty: The New Employer-Employee Compact” by Reid Hoffman, Ben Casnocha, and
Chris Yeh. A responsible engineer improves the system for future engineers. If the
database won’t scale past one’s four-year tenure, they should fix it now to ensure that
future engineers inherit a scalable system.

Sharding is a complex process for either path. To begin, choose a shard key and
strategy, and understand the challenges that you will face. This knowledge gives the
journey a destination: a sharded database that you can operate with relative ease.
Then chart a path from one database to that destination.

Shard Key
To shard MySQL, the application must programmatically map data to shards. There‐
fore, the most fundamental decision is the shard key: the column (or columns) by
which the data is sharded. The shard key is used with a sharding strategy (discussed
in the next section) to map data to shards. The application, not MySQL, is responsible
for mapping and accessing data by shard key because MySQL has no built-in concept
of sharding—MySQL is oblivious to sharding.

The term shard is used interchangeably for the database or the
MySQL instance where the database is stored.

An ideal shard key has three properties:

High cardinality
An ideal shard key has high cardinality (see “Extreme Selectivity” on page 86) so
that data is evenly distributed across shards. A great example is a website that lets

Sharding: A Brief Introduction | 161

you watch videos: it could assign each video a unique identifier like dQw4w9WgXcQ.
The column that stores that identifier is an ideal shard key because every value is
unique, therefore cardinality is maximal.

Reference application entities
An ideal shard key references application entities so that access patterns do not
cross shards. A great example is an application that stores payments: although
each payment is unique (maximal cardinality), the customer is the application
entity. Therefore, the primary access pattern for the application is by customer,
not by payment. Sharding by customer is ideal because all payments for a single
customer should be located on the same shard.

Small
An ideal shard key is as small as possible because it’s heavily used: most—if
not all—queries include the shard key to avoid scatter queries—one of several
“Challenges” on page 167.

It should go without saying, but to ensure that it has been said: an ideal shard key, in
combination with the sharding strategy, avoids or mitigates the “Challenges” on page
167, especially transactions and joins.

Spend ample time to identify or create the ideal shard key for your application. This
decision is half of the foundation: the other half is the sharding strategy that uses the
shard key.

Strategies
A sharding strategy maps data to shards by shard key value. The application imple‐
ments the sharding strategy to route queries to the shard with the data corresponding
to the shard key value. This decision is the other half of the foundation. Once the
shard key and strategy are implemented, it’s exceedingly difficult to change, so choose
very carefully.

There are three common strategies: hash, range, and lookup (or directory). All
three are widely used. The best choice depends on the application access patterns—
especially row access (see “Row Access” on page 139), as mentioned in the next three
sections.

Hash
Hash sharding maps hash key values to shards using a hashing algorithm (to produce
an integer hash value), the modulo operator (mod), and the number of shards (N).
Figure 5-7 depicts the strategy starting with the hash key value at top and following
the solid arrows to a shard at bottom.

162 | Chapter 5: Sharding

Figure 5-7. Hash sharding

A hashing algorithm outputs a hash value using the shard key value as input. The
hash value (which is an integer) mod the number of shards (N) returns the shard
number: an integer between zero and N – 1, inclusive. In Figure 5-7, the hash value
75482 mod 3 = 2, so the data for the shard key value is located on shard 2.

How to map shard numbers to MySQL instances is your choice.
For example, you could deploy a map of shard numbers to MySQL
hostnames with each application instance. Or, applications could
query a service like etcd to discover how shard numbers map to
MySQL instances.

Sharding: A Brief Introduction | 163

If you’re thinking, “Won’t changing the number of shards (N) affect the mapping of
data to shards?” you are correct. For example, 75483 mod 3 = 0, but increase the
number of shards to five and the same shard key value maps to a new shard number:
75483 mod 5 = 3. Luckily, this is a solved problem: a consistent hashing algorithm
outputs a consistent hash value independent of N. The key word is consistent: it’s still
possible, but far less likely, that hash values will change when shards change. Since
shards are likely to change, you should choose a consistent hashing algorithm.

Hash sharding works for all shard keys because it abstracts the value to an integer.
That doesn’t mean it’s better or faster, only that it’s easier because the hashing algo‐
rithm automatically maps all shard key values. However, automatically is also its
downside because, as “Rebalancing” on page 169 discusses, it’s virtually impossible to
manually relocate data.

Point access (see “Row Access” on page 139) works well with hash sharding because
one row can map to only one shard. By contrast, range access is probably infeasi‐
ble with hash sharding—unless the ranges are very small—because of “Cross-shard
queries” on page 167 (one of the common challenges). Random access is probably
infeasible, too, for the same reason.

Range
Range sharding defines contiguous key value ranges and maps a shard to each, as
depicted in Figure 5-8.

Figure 5-8. Range sharding

You must define the key value ranges in advance. This gives you flexibility when
mapping data to shards, but it requires a thorough knowledge of data distribution
to ensure that the data is evenly distributed across shards. Since data distribution
changes, expect to deal with resharding (see “Resharding” on page 168). A benefit to

164 | Chapter 5: Sharding

range sharding is that, unlike hash sharding, you can change (redefine) the ranges,
which helps to manually relocate data.

All data can be sorted and divided into ranges, but this doesn’t make sense for
some data, like random identifiers. And some data appears random but, upon closer
inspection, is actually closely ordered. For example, here are three UUIDs generated
by MySQL:

f15e7e66-b972-11ab-bc5a-62c7db17db19
f1e382fa-b972-11ab-bc5a-62c7db17db19
f25f1dfc-b972-11ab-bc5a-62c7db17db19

Can you spot the differences? Those three UUIDs appear random but would most
likely sort into the same range, depending on the range size. At scale, this would
map most data to the same shard, thereby defeating the purpose of sharding. (UUID
algorithms vary: some intentionally generate closely ordered values, while others
intentionally generate randomly ordered values.)

Range sharding works best when:

• The range of shard key values is bounded•
• You can determine the range (minimum and maximum values)•
• You know the distribution of values, and it’s mostly even•
• The range and distribution are unlikely to change•

For example, stock data could be sharded by stock symbols ranging from AAAA to
ZZZZ. Although the distribution is probably less in the Z range, overall it will be
even enough to ensure that one shard is not significantly larger or accessed more
frequently than the other shards.

Point access (see “Row Access” on page 139) works well with range sharding as long
as row access distributes evenly over the ranges, avoiding hot shards—a common
challenge discussed in “Rebalancing” on page 169. Range access works well with
range sharding as long as the row ranges are within the shard ranges; if not, “Cross-
shard queries” on page 167 become a problem. Random access is probably infeasible
for the same reason: cross-shard queries.

Lookup
Lookup (or directory) sharding is custom mapping of shard key values to shards.
Figure 5-9 depicts a lookup table that maps country code top-level domains to shards.

Sharding: A Brief Introduction | 165

1 County names are unique only within a state, which is why the state name is required.

Figure 5-9. Lookup (directory) sharding

Lookup sharding is the most flexible, but it requires maintaining a lookup table. A
lookup table functions as a key-value map: shard key values are the keys, and database
shards are the values. You can implement a lookup table as a database table, a data
structure in a durable cache, a configuration file deployed with the application, and
so forth.

The keys in the lookup table can be singular values (as shown in Figure 5-9) or
ranges. If the keys are ranges, then it’s essentially range sharding, but the lookup table
gives you more control of the ranges. But that control has a cost: changing ranges
means resharding—one of the common challenges. If the keys are singular values,
then lookup sharding is sensible when the number of unique shard key values is
manageable. For example, a website that stores public health statistics in the United
States could shard by state and county name because there are fewer than 3,500
counties total, and they almost never change.1 Lookup sharding has an advantage that
makes it a good choice for this example: it’s trivial to map all the counties with very
low population to one shard, whereas this custom mapping isn’t possible with hash or
range sharding.

All three row access patterns (see “Row Access” on page 139) work with lookup
sharding, but how well they work depends on the size and complexity of the lookup
table you need to create and maintain to map shard key values to database shards.
The notable mention is random access: lookup sharding allows you to map (or
remap) shard key values to alleviate cross-shard queries caused by random access,
which is nearly impossible with hash and range sharding.

166 | Chapter 5: Sharding

Challenges
If sharding were perfect, you would shard only once, and every shard would have
equal data size and access. That might be the case when you first shard, but it won’t
remain the case. The following challenges will affect your application and sharded
database, so plan ahead: know how you will avoid or mitigate them.

Transactions
Transactions do not work across shards. This is more of a blocker than a challenge
because there is essentially no workaround short of implementing a two-phase com‐
mit in the application, which is perilous and far beyond the scope of this book.

I strongly recommend that you avoid this blocker. Review your application transac‐
tions (see “Reporting” on page 286) and the data they access. Then choose a shard
key and strategy that work given how the transactions access data.

Joins
A SQL statement cannot join tables across shards. The solution is a cross-shard join:
the application join results from multiple queries executed on multiple shards. It’s not
a trivial solution—it might even be complex depending on the join—but it’s feasible.
Apart from complexity, the main concern is consistency: since transactions do not
work across shards, the results from each shard are not a consistent view of all data.

A cross-shard join is a special-purpose cross-shard query (joining the results is the
special purpose); therefore, it’s susceptible to the same challenges.

Cross-shard queries
A cross-shard query requires the application to access more than one shard. The term
refers to application access, not literal queries, because a single query cannot execute
on more than one MySQL instance. (A more accurate term would be cross-shard
application access.)

Cross-shard queries incur latency: delay inherent to accessing multiple MySQL
instances. Sharding is most effective when cross-shard queries are the exception,
not the norm.

If sharding were perfect, every application request would access only one shard. That’s
the goal, but don’t drive yourself crazy trying to achieve it because some applications,
even when efficiently sharded, must access multiple shards to accomplish certain
requests. A peer-to-peer payment application is a good example. Each customer is a
well delineated application entity: all data related to a customer should be located on
the same shard, which entails that the data is sharded by customer. But customers
interact by sending and receiving money. Inevitably, the application will access at
least two shards: one for the customer sending money, and another for the customer

Sharding: A Brief Introduction | 167

receiving the money. Cross-shard queries should be minimized, but again: don’t drive
yourself crazy trying to eliminate them, especially if the application logic necessitates
them for certain requests.

A related challenge is scatter queries (or scatter-gather queries): queries that require
the application to access many (or all) shards. (Again, the term refers to application
access, not literal queries.) A moderate number of cross-shard queries is inevitable
and acceptable, but scatter queries are antithetical to the purpose and benefits of
sharding. Therefore, you should both prevent and eliminate scatter queries. If you
cannot—if the application requires scatter queries—then sharding is probably not
the correct solution, or the access pattern needs to be changed (see “Data Access
Patterns” on page 131).

Resharding
Resharding (or a shard split) divides one shard into two or more new shards. Reshard‐
ing is necessary to accommodate data growth, and it can also be used to redistribute
data across shards. If and when resharding is necessary depends on capacity plan‐
ning: the estimated rate of data growth and how many shards are created initially. For
example, I’ve seen a team split a database into four shards then reshard less than two
years later because data size increased much faster than estimated. By contrast, I’ve
seen a team split a database into 64 shards to accommodate more than five years of
estimated data growth. If you can afford extra shards at the beginning (when you first
shard), then create enough shards for at least four years of data growth—don’t wildly
overestimate, but estimate generously.

This is the dark secret of sharding: sharding begets more sharding. If you’re won‐
dering, “Can I shard once and be done?” the answer is “probably not.” Since your
database grew to the point of needing to shard, it’s likely to keep growing and keep
needing more shards—unless you become fervent about the idea that less data is
better (see “Less Data Is Better” on page 96).

Resharding is a challenge because it requires a data migration process from the old
shard to the new shards. Describing how to migrate data is beyond the scope of this
book, but I will point out three high-level requirements:

• An initial bulk data copy from old to new shards•
• Sync changes on old shard to new shards (during and after data copy)•
• Cutover process to switch to new shards•

Deep MySQL expertise is required to migrate data safely and correctly. Since data
migrations are specific to the application and infrastructure, you won’t find any books
or other resources that detail the process. If necessary, hire a MySQL consultant to

168 | Chapter 5: Sharding

help design a process. Also check out Ghostferry by the engineers at Shopify who are
experts in MySQL sharding.

Rebalancing
Rebalancing relocates data in order to distribute access more evenly. Rebalancing
is necessary to handle hot shards: shards with significantly more access than other
shards. Although the shard key and sharding strategy determine how data is dis‐
tributed, the application and its users determine how data is accessed. If one shard
(a hot shard) contains all the most frequently accessed data, then performance is
not evenly distributed, which defeats the purpose of scaling out. The goal is equal
access—and equal performance—on all shards.

Rebalancing depends on the sharding strategy:

Hash
It’s virtually impossible to relocate data with hash sharding because the hashing
algorithm automatically maps data to shards. One solution (or workaround) is to
use a lookup table that contains relocated shard keys. The application checks the
lookup table first: if the shard key is present, it uses the shard indicated by the
lookup table; otherwise, it uses the hashing algorithm.

Range
Relocating data with range sharding is possible (but nontrivial) by redefining the
ranges to divide the hot shard into smaller, separate shards. This is the same
process as resharding.

Lookup
Relocating data with lookup sharding is relatively easy because you control the
mapping of data to shards. Therefore, you update the lookup table to remap the
shard key value corresponding to the hot data.

Physically relocating the hot data requires the same (or similar) data migration
process used for resharding.

Online schema changes
Altering a table on one database is easy, but how do you alter it on every shard? You
run the OSC on each shard, but that’s not the challenge. The challenge is automating
the OSC process to run on multiple shards, and keeping track of which shards
have been altered. For MySQL, there are no open source solutions at the time of
this writing; you must develop a solution. (However, a couple of the alternatives to
MySQL in the next section have a solution.) This is the least complex challenge of
sharding, but it’s a challenge nevertheless. It cannot be overlooked because schema
changes are routine.

Sharding: A Brief Introduction | 169

Alternatives
Sharding is complex, and it’s not directly valuable to users or customers. It’s valuable
to the application to keep scaling, but it’s exacting work for engineers. Unsurprisingly,
alternative solutions are increasingly popular and robust. However, don’t be too quick
to trust your data to new technology. MySQL is eminently reliable and deeply under‐
stood—a very mature technology—which makes it a safe and reasonable choice.

NewSQL
NewSQL refers to a relational, ACID-compliant data store with built-in support for
scaling out. In other words, it’s a SQL database that you don’t have to shard. If you’re
thinking, “Wow! Then why use MySQL at all?” the following five points explain
why MySQL—sharded or not—is still the most popular open source database in the
world:

Maturity
SQL hails from the 1970s and MySQL from the 1990s. Database maturity means
two things: you can trust the data store not to lose or corrupt your data, and
there is deep knowledge about every aspect of the data store. Pay close attention
to the maturity of NewSQL data stores: when was the first truly stable GA
(generally available) release? What has the cadence and quality of releases been
since then? What deep and authoritative knowledge is publicly available?

SQL compatibility
NewSQL data stores use SQL (it’s in the name, after all) but compatibility varies
significantly. Do not expect any NewSQL data store to be a drop-in replacement
for MySQL.

Complex operations
Built-in support for scaling out is achieved with a distributed system. That
usually entails multiple different yet coordinated components. (If MySQL is as a
solo saxophonist, then NewSQL is as a five-piece band.) If the NewSQL data store
is fully managed, then perhaps its complexity doesn’t matter. But if you have to
manage it, then read its documentation to understand how it’s operated.

Distributed system performance
Recall the Universal Scalability Law (Equation 4-1):

X N = γN
1 + α N − 1 + βN N − 1

N represents software load (concurrent requests, running processes, and forth),
or hardware processors, or nodes in a distributed system. If the application has
queries that require a response time less than 10 milliseconds, a NewSQL data

170 | Chapter 5: Sharding

store might not work because of the latency inherent in distributed systems.
But that level of response time is not the bigger, more common problem that
NewSQL solves: built-in scale out to large data size (relative to a single instance)
with reasonable response time (75 ms, for example).

Performance characteristics
What accounts for the response time (performance) of a query? For MySQL, the
high-level constituents are indexes, data, access patterns, and hardware—every‐
thing in the previous four chapters. Add to those some lower-level details—like
“Leftmost Prefix Requirement” on page 49, “Working set size” on page 95, and
“MySQL Does Nothing” on page 124—and you understand MySQL performance
and how to improve it. A NewSQL data store will have new and different perfor‐
mance characteristics. For example, indexes always provide the most and the best
leverage, but they can work differently for a NewSQL data store because of how
the data is stored and accessed in the distributed system. Likewise, some access
patterns that are good on MySQL are bad on NewSQL, and vice versa.

Those five points are a disclaimer: NewSQL is a promising technology that you
should investigate as an alternative to sharding MySQL, but NewSQL is not an
effortless drop-in replacement for MySQL.

At the time of this writing, there are only two viable open source NewSQL solutions
that are MySQL-compatible: TiDB and CockroachDB. Both of these solutions are
exceptionally new for a data store: CockroachDB v1.0 GA released May 10, 2017; and
TiDB v1.0 GA released October 16, 2017. Therefore, be cautious and diligent using
TiDB and CockroachDB until at least 2027—even MySQL was 10 years old by the
time it was mainstream in the early 2000s. If you use TiDB or CockroachDB, please
write about what you learn and, if possible, contribute to these open source projects.

Middleware
A middleware solution works between the application and the MySQL shards. It
attempts to hide or abstract the details of sharding, or at least make sharding easier.
When direct, manual sharding is too difficult, and NewSQL is infeasible, a middle‐
ware solution could help bridge the gap. The two leading open source solutions are
Vitess and ProxySQL, and they are entirely different. ProxySQL can shard and Vitess
is sharding.

ProxySQL, as its name suggests, is a proxy that supports sharding by several mech‐
anisms. To get an idea how it works, read “Sharding in ProxySQL” and “MySQL
Sharding with ProxySQL”. Using a proxy in front of MySQL is similar to the classic
Vim versus Emacs rift minus all the vitriol: engineers do a lot of great work with both
editors; it’s just a matter of personal preference. Likewise, companies are successful
with and without a proxy; it’s just a matter of personal preference.

Alternatives | 171

Vitess is a purpose-built MySQL sharding solution. Since sharding is complex, Vitess
is not without its own complexity, but its greatest advantage is that it addresses all
challenges, especially resharding and rebalancing. Moreover, Vitess was created by
MySQL experts at YouTube who deeply understand MySQL at massive scale.

Before you shard, be sure to evaluate ProxySQL and Vitess. Any middleware solution
entails additional infrastructure to learn and maintain, but the benefits can outweigh
the costs because manually sharding MySQL also costs significant engineering time,
effort, and serenity.

Microservices
Sharding focuses on one application (or service) and its data, especially data size
and access. But sometimes the real problem is the application: it has too much
data or access because it serves too many purposes or business functions. Avoiding
monolithic applications is standard engineering design and practice, but that doesn’t
mean it’s always achieved. Before you shard, review the application design and its
data to ensure that parts cannot be factored out into a separate microservice. This is a
lot easier than sharding because the new microservice and its database are completely
independent—no shard key or strategy required. It might also be the case that the
new microservice has completely different access patterns (see “Data Access Patterns”
on page 131) that allow it to use less hardware while storing more data—or perhaps
the new microservice doesn’t need a relational data store.

Don’t Use MySQL
Similar to “Don’t Use MySQL” on page 147, a completely honest assessment of the
alternatives to sharding MySQL must conclude with: don’t use MySQL if another
data store or technology works better. If your path is designing a new application
for sharding, then definitely evaluate other solutions. Sharding MySQL is a solved
problem, but it’s never a quick or easy solution. If your path is migrating an existing
application to sharding, then you should still consider the trade-offs of sharding
MySQL against migrating to another solution. That sounds burdensome at scale—
and it is—but companies do it all the time, and so can you.

172 | Chapter 5: Sharding

Summary
This chapter introduced the basic mechanics of sharding MySQL to achieve MySQL
at scale. The essential takeaway points are:

• MySQL scales out by sharding.•
• Sharding divides one database into many databases.•
• A single database does not scale primarily because the combination of queries,•

data, and access patterns—the application workload—significantly outpace the
speed and capacity of single-server hardware.

• It’s significantly easier to manage many small databases (shards) than one huge•
database—pebbles, not boulders.

• Data is sharded (divided) by a shard key, which you must choose carefully.•
• The shard key is used with a sharding strategy to map data (by shard key) to•

shards.
• The most common sharding strategies are hash (a hashing algorithm), range, and•

lookup (directory).
• Sharding has several challenges that must be addressed.•
• There are alternatives to sharding that you should evaluate.•

The next chapter looks into MySQL server metrics.

Practice: Four-Year Fit
The goal of this practice is to determine the four-year fit of the data size. From
“Sharding: A Brief Introduction” on page 160, the four-year fit is an estimate of data
size or access in four years applied to the capacity of your hardware today. Sharding
might not be required if the estimated data size or access fits (figuratively) within
your hardware capacity today. (Refer back to “Application Workload” on page 152 for
the discussion of hardware fit.)

You will need historical data sizes to complete this practice. If you’re not already
measuring and recording data sizes, then jump ahead to “Data Size” on page 203 to
learn how.

The simplest possible calculation is sufficient. If, for example, a database has histori‐
cally increased by 10 GB every month, then the database will be 12 months × 4 years
× 10 GB/month = 480 GB larger in four years—if no data is deleted or archived (see
“Delete or Archive Data” on page 115). If the database is 100 GB today, then 580 GB
in four years fits: you don’t need to shard any time soon (four-year fit for access load

Summary | 173

notwithstanding) because MySQL on hardware today can easily handle 580 GB of
data.

If your four-year fit for data size indicates that you might need to shard, take it
seriously and dive deeper to determine for sure: is the database on a steady path to
becoming too large for a single MySQL instance? If yes, then shard early because
sharding is essentially a complex data migration process; therefore, the less data, the
easier the process. If not, then congratulations: ensuring that the system will continue
to scale for years to come is an expert practice in all fields of engineering.

174 | Chapter 5: Sharding

CHAPTER 6

Server Metrics

MySQL metrics are closely related to MySQL performance—that’s obvious. After all,
the purpose of metrics in any system is to measure and report how the system is
operating. What’s not obvious is how they are related. It’s not unreasonable if you
currently see MySQL metrics as depicted in Figure 6-1: MySQL is a black box with
metrics inside that, in some way, indicate something about MySQL.

Figure 6-1. MySQL as a black box: metrics are not revealing

That view is not unreasonable (or uncommon) because MySQL metrics are often
discussed but never taught. Even in my career with MySQL, I have never read or
heard an exposition of MySQL metrics—and I have worked with people who created
them. The lack of pedagogy for MySQL metrics is due to a false presumption that
metrics do not require understanding or interpretation because their meaning is
self-evident. That presumption has a semblance of truth when considering a single
metric in isolation, such as Threads_running; it’s the number of threads running—
what more is there to know? But isolation is the fallacy: MySQL performance is
revealed through a spectrum of MySQL metrics.

175

Think of MySQL as a prism. The application figuratively shines a workload into
MySQL. That workload physically interacts with MySQL and the hardware on which
it runs. Metrics are the spectrum revealed by the figurative refraction of the workload
through MySQL, as depicted in Figure 6-2.

Figure 6-2. MySQL as a prism: metrics reveal workload performance

In the physical sciences, this technique is called spectrometry: understanding matter
through its interaction with light. For MySQL, this is more than a clever analogy, it’s
the actual relationship between MySQL metrics and MySQL server performance, and
there are two proofs:

• When you shine a light through a real prism, the resulting color spectrum reveals•
properties of the light, not the prism. Likewise, when you run a workload on
MySQL, the resulting metrics reveal properties of the workload, not MySQL.

• Given previous chapters—especially “MySQL Does Nothing” on page 124—per‐•
formance is directly attributable to workload: queries, data, and access patterns.
Without a workload, all metric values are zero (generally speaking).

Viewed this way, MySQL metrics can be taught in a new light, and that is the focus of
this chapter.

This analogy has another pedagogical utility: it separates MySQL metrics into spectra
(the plural of spectrum). This is very useful because MySQL metrics are vast and
unorganized (several hundred metrics strewn throughout MySQL), but effective
teaching requires focus and organization. As a result, the “Spectra” section, which
illuminates over 70 metrics divided into 11 spectra, makes up the bulk of this chapter.

A final note before we shine a light on MySQL: only a fraction of metrics are essential
for understanding and analyzing MySQL server performance. The relevance and
importance of the remaining metrics varies widely:

• Some are noise•
• Some are historical•
• Some are disabled by default•

176 | Chapter 6: Server Metrics

• Some are very technically specific•
• Some are only useful in specific cases•
• Some are informational, not proper metrics•
• Some are inscrutable by feeble mortal creatures•

This chapter analyzes the spectra of MySQL metrics that are essential for understand‐
ing how the workload interacts with and affects MySQL server performance. There
are six major sections. The first draws a distinction between query performance and
server performance. Previous chapters focus on the former, but this chapter focuses
on the latter. The second is boring—you’ll see why. The third lists key performance
indicators (KPIs) that quickly gauge MySQL performance. The fourth explores the
field of metrics: a model to more deeply understand how metrics describe and relate
to MySQL server performance. The fifth presents the spectra of MySQL metrics: over
70 MySQL metrics organized into 11 spectra—an epic and exciting journey that tours
the inner workings of MySQL, after which you will see MySQL in a new light. The
sixth addresses important topics related to monitoring and alerting.

Query Performance Versus Server Performance
MySQL performance has two sides: query performance and server performance.
Previous chapters address query performance: improving response time by optimizing
the workload. This chapter addresses server performance: analyzing the performance
of MySQL as a function of executing the workload.

In this chapter, MySQL performance means server performance.

In simplest terms, the workload is input and server performance is output, as shown
in Figure 6-3.

If you put an optimized workload into MySQL, you get high performance out
of MySQL. Server performance is almost always an issue with the workload, not
MySQL. Why? Because MySQL is incredibly good at executing a variety of workloads.
MySQL is a mature, highly optimized data store—decades of tuning by world-class
database experts. That’s why the first five chapters of this book extol query perfor‐
mance, and only one chapter (this one) analyzes server performance.

Query Performance Versus Server Performance | 177

Figure 6-3. Query and server performance

There are three reasons to analyze server performance:

Concurrency and contention
Concurrency leads to contention that reduces query performance. A query
executed in isolation exhibits different performance when executed with other
queries. Recall the Universal Scalability Law in Equation 4-1: contention (α) is in
the divisor of the equation, which means it reduces throughput as load increases.
Unless you’re living in a different universe than the rest of us, concurrency and
contention are unavoidable.

Analyzing server performance is most useful and most commonly undertaken to
see how MySQL handles the workload when all queries (concurrency) are com‐
peting for shared and limited system resources (contention). Certain workloads
have very little—if any—contention, while other workloads kill performance—
both query and server performance—despite the best efforts of MySQL. The
access pattern trait “Concurrency” on page 138 is, unsurprisingly, a major factor
in contention, but all the access pattern traits are important, too. Analyzing
server performance reveals how well the queries in the workload play together.
As engineers responsible for those queries, we need to ensure that they play well.

Tuning
Server performance is directly but not entirely attributable to workload. There are
three additional factors in server performance: MySQL, operating system, and
hardware. In query performance, it’s presumed that MySQL, operating system,
and hardware are properly configured and adequate for the workload. Problems
(like faulty hardware) and bugs notwithstanding, these three affect performance

178 | Chapter 6: Server Metrics

far less than the workload because we’re living in an age of abundance: MySQL
is very mature and highly optimized, operating systems are advanced and sophis‐
ticated, and hardware is fast and affordable.

Matters discussed in “MySQL Tuning” on page 39 still hold true: tuning MySQL
is akin to squeezing blood from a turnip. You most likely never need to tune
MySQL. But if you do, it requires analyzing server performance with a known
and stable workload; otherwise, you cannot be certain that any performance
gains are the result of tuning—it’s basic science: controls, variables, reproducibil‐
ity, and falsifiability.

Performance regressions
I praise MySQL throughout this book, but I would be remiss if I did not, at least
once, clearly state: sometimes, MySQL is wrong. But MySQL did not become
the most popular open source relational database in the world by being wrong.
It is usually correct, and suspecting a performance regression (or bug) is the
last resort of experts after ensuring that query performance, MySQL tuning, and
faulty hardware are not the problem.

The blog posts “Checkpointing in MySQL and MariaDB” and “More on Check‐
points in InnoDB MySQL 8” by renowned MySQL expert Vadim Tkachenko
contain perfect examples of analyzing server performance to reveal a perfor‐
mance regression. It’s normal for Vadim to be doing this type of work; the rest
of us plod through much simpler problems, like indexing and whether or not to
have a third cup of coffee before lunch.

Flawed Optics
Tuning and performance regressions are an exception to the analogy of MySQL as
a prism (Figure 6-2) that only reveals properties of the workload, not MySQL. A
known and stable workload is analogous to shining a pure blue light through a prism:
presuming the input is correct, an incorrect output reveals something about the
prism.

Concurrency and contention are the implicit focus of this chapter because they are
the responsibility of the engineers who maintain the application that executes the
queries. Tuning and performance regressions are the responsibility of MySQL DBAs
and experts. Learning to analyze server performance for the former (concurrency and
contention) is excellent training for the latter because the difference is primarily a
matter of focus. I hope the former sparks an interests in the latter because the MySQL
industry needs more DBAs and experts.

Query Performance Versus Server Performance | 179

Normal and Stable: The Best Database
Is a Boring Database
For the most part, normal and stable are intuitively understood by engineers once
they become familiar with the application and how its workload runs on MySQL.
Humans are good at pattern recognition, so it’s easy to see when the charts for any
metric are unusual. Therefore, I won’t belabor terminology that is generally well
understood, but I need to make two clarifying points to ensure that we’re on the
same page, and to address the rare times when engineers ask “What is normal?” with
respect to MySQL performance:

Normal
Every application, workload, MySQL configuration, and environment are differ‐
ent. Therefore, normal is whatever performance MySQL exhibits for your appli‐
cation on a typical day when everything is working properly. That normal—your
normal—is the baseline for determining if some aspect of performance is higher
or lower, faster or slower, better or worse than normal. It’s as simple as that.

When I state a presumptive norm like “It’s normal for Threads_running to be
less than 50,” it’s only an abbreviation of language, short for “A stable value for
Threads_running is less than 50 given my experience, and given that current
hardware typically has less than 48 CPU cores, and given that benchmarks show
that MySQL performance does not currently scale well past 64 running threads.”
But if 60 threads running is normal and stable for your application, then great:
you have achieved extraordinary performance.

Stable
Don’t lose sight of stable performance in your quest for greater performance.
“Performance Destabilizes at the Limit” on page 125 illustrates and explains why
squeezing maximum performance from MySQL is not the goal: at the limit,
performance destabilizes, and then you have bigger problems than performance.
Stability does not limit performance; it ensures that performance—at any level—
is sustainable, because that’s what we really want: MySQL fast all the time, not
sometimes.

At times, MySQL performance is glamorous—the highs, the lows, the screaming
fans and packed stadiums—but the real art is optimizing the database into pristine
boredom: all queries respond quickly, all metrics are stable and normal, and all users
are happy.

180 | Chapter 6: Server Metrics

Key Performance Indicators
Four metrics quickly gauge MySQL performance:

Response time
Response time is no surprise: as noted in “North Star” on page 3, it’s the only
metric anyone truly cares about. Even if response time is great, you must factor in
other KPIs. For example, if every query fails with an error, response time might
be amazing (near zero), but that’s not normal. The goal is normal and stable
response time, and lower is better.

Errors
Errors is the rate of errors. Which errors? At least query errors, but ideally
all errors: query, connection, client, and server. Don’t expect a zero error rate
because, for example, there’s nothing you, the application, or MySQL can do if a
client aborts a connection. The goal is a normal and stable error rate, and lower
(near zero) is better.

QPS
Queries per second is also no surprise: executing queries is the main purpose and
work of MySQL. QPS indicates performance, but it does not equal performance.
Abnormally high QPS, for example, can signal problems. The goal is normal and
stable QPS, and the value is arbitrary.

Threads running
Threads running gauges how hard MySQL is working to achieve QPS. One
thread executes one query, so you must consider both metrics because they’re
closely related. The goal is normal and stable threads running; lower is better.

I expound these metrics in “Spectra” on page 187. Here, the point is that these four
metrics are the KPIs for MySQL: when the values for all four are normal, MySQL
performance is practically guaranteed also to be normal. Always monitor response
time, errors, QPS, and threads running. Whether or not to alert on them is discussed
later in “Alert on User Experience and Objective Limits” on page 226.

Simplifying the performance of a complex system to a handful of metrics is not
unique to MySQL or computers. For example, you have vital signs (I hope): height,
weight, age, blood pressure, and heart rate. Five biological metrics succinctly and
accurately gauge your health. Likewise, four MySQL metrics succinctly and accurately
gauge server performance. That’s nifty, but what’s really insightful is the field of
metrics in which all metrics are situated.

Key Performance Indicators | 181

Four Golden Signals, et al.
KPIs are not a new concept. In 2016, Site Reliability Engineering (O’Reilly) by Betsy
Beyer et al. made the term and concept of golden signals a mainstay of engineering:
latency, traffic, errors, and saturation. Renowned system performance expert Bren‐
dan Gregg created a similar methodology, The USE Method, with signals on usage,
saturations, and errors. Tom Wilkie at Weaveworks created another methodology,
“The RED Method: Key Metrics for Microservices Architecture”, with signals on rate,
errors, and duration. The terms vary, but the concept is the same.

Field of Metrics
Every MySQL metric belongs to one of six classes shown as boxes in Figure 6-4.
Collectively, I call it the field of metrics.

Figure 6-4. Field of metrics

MySQL performance cannot be fully understood by analyzing metrics in isolation
because performance is not an isolated property. Performance is the result of many
factors for which there are many related metrics. The field of metrics is a model to
understand how metrics are related. The relationships connect the proverbial dots
(the metrics) to complete the intricate picture that is MySQL performance.

Response Time
Response time metrics indicate how long MySQL takes to respond. They are top level
in the field because they encompass (or hide) details from lower levels.

Query response time is, of course, the most important one and the only one com‐
monly monitored. MySQL executes statements in stages, and stages can be timed.
These are response time metrics, too, but they measure around query execution, not

182 | Chapter 6: Server Metrics

within it. Actual query execution is just one stage of many. If you recall Example 1-3
in Chapter 1, executing the actual UPDATE of an UPDATE statement was only 1 of 15
stages. Consequently, stage response times are mostly used by MySQL experts to
investigate deep server performance issues.

Response time metrics are important but also completely opaque: what was MySQL
doing that accounts for the time? To answer that, we must dig deeper into the field.

Rate
Rate metrics indicate how fast MySQL completes a discrete task. Queries per second
(QPS) is the ubiquitous and universally known database rate metric. Most MySQL
metrics are rates because—no surprise—MySQL does many discrete tasks.

When a rate increases, it can increase related utilizations. Some rates are innocuous
and don’t increase utilization, but the important and commonly monitored rates do
increase utilization.

The rate-utilization relationship presumes no other changes. That means you can
increase a rate without increasing utilization only if you change something about the
rate or the utilization that it affects. It’s usually easier to change the rate rather than
the utilization because the rate is the cause in the relationship. For example, when
QPS increases across the board, CPU utilization could increase because more queries
require more CPU time. (Increasing QPS could increase other utilizations; CPU is
just one example.) To avoid or reduce the increase in CPU utilization, you should
optimize the queries so they require less CPU time to execute. Or, you could increase
the number of CPU cores by scaling up the hardware, but “Better, Faster Hardware!”
on page 37 and “Better, Faster Hardware?” on page 148 address the shortcomings of
this approach.

The rate-utilization relationship is not a novel insight—you probably already knew
it—but it’s important to highlight because it’s the beginning of a series of relationships
that unify the field. Don’t feel sorry for utilization: it pushes back.

Utilization
Utilization metrics indicate how much MySQL uses a finite resource. Utilization
metrics are everywhere in computers: CPU usage, memory usage, disk usage, and
so on. Since computers are finite machines, almost everything can be expressed as a
utilization because nothing has infinite capacity—not even the cloud.

Bounded rates can be expressed as a utilization. A rate is bounded if there is a
maximum rate. Disk I/O, for example, is usually expressed as a rate (IOPS), but every
storage device has a maximum rate. Therefore, disk I/O utilization is the current
rate over the maximum rate. By contrast, unbounded rates cannot be expressed as a

Field of Metrics | 183

utilization because there’s no maximum rate: QPS, bytes sent and received, and so
forth.

When a utilization increases, it can decrease related rates. I bet you’ve seen or expe‐
rienced something like this before: a rogue query causes 100% disk I/O utilization,
which causes QPS to drop precipitously, which causes an outage. Or, MySQL uses
100% of memory and is killed by the operating system kernel, which causes the
ultimate rate decrease: to zero. This relationship is an expression of the USL (recall
Equation 4-1) because utilization increases contention (α) and coherency (β), which
are in the divisor of the equation.

What happens at or near 100% utilization? MySQL waits. In Figure 6-4, this is indica‐
ted by the arrow between Utilization and Wait—the utilization-wait relationship. The
arrow is labeled Stall because query execution waits, then resumes—perhaps many
times. I emphasize or near because, as discussed in “Performance Destabilizes at the
Limit” on page 125, stalls can occur before 100% utilization.

Stalls are anti-stable but unavoidable for two reasons: MySQL load is usually greater
than hardware capacity; and latency is inherent in all systems, especially hardware.
The first reason can be ameliorated by reducing load (optimizing the workload)
or increasing hardware capacity. The second reason is difficult to address but not
impossible. If, for example, you still use spinning disks, upgrading to NVMe storage
will dramatically reduce storage latency.

Wait
Wait metrics indicate idle time during query execution. Waits occur when query
execution stalls due to contention and coherency. (Waits also occur due to MySQL
bugs or performance regressions, but these are exceedingly rare enough not to raise
concern.)

Wait metrics are calculated as rates or response times (depending on the metric), but
they merit a separate class because they reveal when MySQL is not working (idle),
which is the opposite of performance. Not working is why the wait class in Figure 6-4
is darker: MySQL has gone dark.

Waits are unavoidable. Eliminating waits is not the goal; the goal is reducing and
stabilizing them. When waits are stabilized and reduced to an acceptable level,
they effectively disappear, blending into response time as an inherent part of query
execution.

184 | Chapter 6: Server Metrics

Event Waits
Waits are so important that they constitute a class in the hierarchy of MySQL events:

transactions
└── statements
 └── stages
 └── waits

The Performance Schema instruments many wait events, but these metrics are not
commonly monitored because they are figuratively deep (in understanding what they
represent) and literally deep (in the event hierarchy). A small book could be written
about wait events. Until someone writes that book, refer to “Performance Schema
Wait Event Tables” in the MySQL manual for more information.

When MySQL waits too long, it times out—the wait-error relationship. The most
important, high-level MySQL waits have configurable timeouts:

• MAX_EXECUTION_TIME (SQL statement optimizer hint)•
• max_execution_time•
• lock_wait_timeout•
• innodb_lock_wait_timeout•
• connect_timeout•
• wait_timeout•

Use these but don’t rely on them because, for example, take a guess at the default
value for lock_wait_timeout. The default value for lock_wait_timeout is 31,536,000
seconds—365 days. Establishing default values is not easy, so we must give MySQL
some leeway, but wow—365 days. Consequently, applications should always employ
code-level timeouts, too. Long-running transactions and queries are a common prob‐
lem because MySQL is fast but, perhaps, too patient.

Error
Error metrics indicate errors. (I allow myself one tautological statement in this book;
there it is.) Wait timeouts are one type of error, and there are many more (see
“MySQL Error Message Reference” for more). I don’t need to enumerate MySQL
errors because, with respect to server performance and MySQL metrics, the point is
simple and clear: an abnormal error rate is bad. Like waits, errors are also calculated
as rates, but they merit a separate class because they indicate when MySQL or the
client (the application) has failed, which is why the error class in Figure 6-4 is darker.

Field of Metrics | 185

To reiterate a point about errors from “Key Performance Indicators” on page 181:
don’t expect a zero error rate because, for example, there’s nothing you, the applica‐
tion, or MySQL can do if a client aborts a connection.

Access Pattern
Access pattern metrics indicate how the application uses MySQL. These metrics relate
to “Data Access Patterns” on page 131. For example, MySQL has metrics for each type
of SQL statement (Com_select, Com_insert, and so on) that relate to “Read/Write” on
page 133.

As indicated in Figure 6-4, access pattern metrics underlie higher level metrics. The
Com_select access pattern metric counts the number of SELECT statements executed.
This can be represented as a rate (SELECT QPS) or a utilization (% SELECT); either
way, it reveals something deeper about server performance that helps explain higher
level metrics. For example, if response time is abysmal and the access pattern metric
Select_full_join is high, that’s a smoking gun (see “Select full join” on page 21).

Internal
There’s a seventh class of metrics shown in Figure 6-5: internal metrics.

Figure 6-5. Field of metrics with internal metrics

I didn’t mention this class at the beginning of “Field of Metrics” on page 182 because,
as engineers and users of MySQL, we’re not supposed to know or care about it. But
it’s the most interesting—if not arcane—part of the field, and I want you to be fully
informed in case you need or want to fathom the depths of MySQL. Down here,
things are esoteric.

186 | Chapter 6: Server Metrics

Of course, esoteric is subjective. What I consider to be an internal metric might
be the most favorite and useful rate metric for another engineer. But metrics like
buffer_page_read_index_ibuf_non_leaf make a strong case for the internal class of
metrics. That metric indicates the number of non-leaf index pages read in the change
buffer. Not exactly your daily bread.

Spectra
Prepare yourself for another journey: into the penumbra of MySQL metrics. This
section examines over 70 MySQL metrics divided into 11 spectra, some of which have
sub-spectra. I organize MySQL metrics into spectra for two reasons:

• Spectra give the journey waypoints. Without them, we face a vast and unorgan‐•
ized universe swirling with nearly one thousand metrics from different sources
that vary by MySQL version, distribution, and configuration.

• Spectra reveal important areas of MySQL to understand and monitor with•
respect to performance.

Even with spectra illuminating a path through the darkness, we need a metric nam‐
ing convention to talk clearly and precisely about the MySQL metrics and system
variables that constitute each spectrum. The reason is simple: MySQL does not have a
metric naming convention, and there is no industry standard, either. Table 6-1 is the
MySQL metric naming convention that I use in this book.

Table 6-1. MySQL metric naming convention

Example Refers to

Threads_running Global status variables

var.max_connections Global system variables

innodb.log_lsn_checkpoint_age InnoDB metrics

replication lag Derived metrics

Most metrics are global status variables that you have likely seen or used by execut‐
ing SHOW GLOBAL STATUS: Aborted_connects, Queries, Threads_running, and so
forth. In MySQL and this book, global status variable names begin with a single
uppercase letter followed by lowercase letters, even if the first word is an acronym:
Ssl_client_connects, not SSL_client_connects. (This is one aspect of MySQL
metrics that is consistent.) By contrast, global system variables are lowercase; and
to make them more distinct, I prefix them with var., which is important given the
next convention. InnoDB metrics are also lowercase, like lock_timeouts. Since that
can look like a global system variable, I prefix InnoDB metrics with innodb., like
innodb.lock_timeouts. Derived metrics are ubiquitous in monitoring but not native

Spectra | 187

to MySQL. Replication lag, for example, is a metric that nearly every monitor
will emit, but the precise metric name depends on the monitor, which is why I use
a descriptive name without underscore characters rather than a specific technical
name.

The InnoDB metrics in this section require enabling cer‐
tain counters or modules. For example, starting MySQL
with innodb_monitor_enable=module_log,module_buffer,mod

ule_trx. See var.innodb_monitor_enable and “InnoDB INFOR‐
MATION_SCHEMA Metrics Table” in the MySQL manual.

Second to last bit of mental equipment: global refers to the entire MySQL server:
all clients, all users, all queries, and so on—combined. By contrast, there are session
and summary metrics. Session metrics are global metrics scoped to a single client
connection. Summary metrics are usually a subset of global metrics scoped to a
variety of aspects: account, host, thread, transaction, and so on. This chapter looks
only at global metrics since they underlie all metrics. (Global metrics are also the
original: in ancient times, MySQL had only global metrics; then it added session
metrics; then it added summary metrics.)

Last bit of mental equipment before we begin the journey: most MySQL metrics are
simple counters, and only a few are gauges. I explicitly note the gauges; otherwise,
counter is implied. Let’s begin!

Query Response Time
Global query response time is one of the four “Key Performance Indicators” on
page 181. Surprisingly, MySQL did not have this metric until version 8.0. As of
MySQL 8.0.1, you can obtain the 95th percentile (P95) global query response time in
milliseconds from the Performance Schema by executing the query in Example 6-1.

Example 6-1. Global 95th percentile query response time

SELECT
 ROUND(bucket_quantile * 100, 1) AS p,
 ROUND(BUCKET_TIMER_HIGH / 1000000000, 3) AS ms
FROM
 performance_schema.events_statements_histogram_global
WHERE
 bucket_quantile >= 0.95
ORDER BY bucket_quantile LIMIT 1;

188 | Chapter 6: Server Metrics

1 The MySQL worklog 5384 explains how response time quantiles are implemented in the Performance
Schema.

That query returns a percentile very close to—but not exactly—the P95: 95.2%
instead of 95.0%, for example.1 The difference is negligible and does not affect
monitoring.

You can replace 0.95 in the query to return a different percentile: 0.99 for P99, or
0.999 for P999. I prefer and advise P999 for the reasons stated in “Average, Percentile,
and Maximum” on page 25.

The rest of this section is for MySQL 5.7 and older—skip it if you’re running MySQL
8.0 or newer.

MySQL 5.7 and older
MySQL 5.7 and older do not expose a global query response time metric. Only
query metrics include response time (see “Query time” on page 12), but that
is per-query response time. To calculate global response time, you would need
to aggregate it from every query. That’s possible, but there are two better alterna‐
tives: upgrade to MySQL 8.0; or, switch to Percona Server or MariaDB, which
have a plug-in to capture global response time.

Percona Server 5.7
Way back in 2010, Percona Server introduced a plug-in to capture global
response time called Response Time Distribution. It’s easy to install the plug-in,
but it takes work to configure and use because it’s a histogram of response time
ranges, which means you need to set var.query_response_time_range_base—
a global system variable that the plug-in creates—to configure the histogram
bucket ranges, then compute a percentile from the bucket counts. MySQL 8.0
global response time is also a histogram, but the bucket ranges and percentiles
are preset and precomputed, which is why the query in Example 6-1 works out of
the box. It’s not that difficult to set up; it only sounds complicated. The benefit of
having global response time is well worth the effort.

MariaDB 10.0
MariaDB uses the same plug-in from Percona but it has a slightly different name:
Query Response Time Plugin. Although introduced in MariaDB 10.0, it was not
marked stable until MariaDB 10.1.

Before MySQL 8.0, obtaining global query response time is not trivial, but it’s worth
the effort if you’re running Percona Server or MariaDB. If you’re running MySQL
in the cloud, check the cloud provider metrics because some provide a response
time metric (which the cloud provider might call latency). If nothing else, frequently
review the query profile to keep an eye on response times.

Spectra | 189

Errors
Errors are one of the four “Key Performance Indicators” on page 181. As of MySQL
8.0.0, it’s easy to obtain a count of all errors from the Performance Schema by
executing the query in Example 6-2.

Example 6-2. Global error count

SELECT
 SUM(SUM_ERROR_RAISED) AS global_errors
FROM
 performance_schema.events_errors_summary_global_by_error
WHERE
 ERROR_NUMBER NOT IN (1287);

Error number 1287, excluded in the WHERE clause in Example 6-2,
is for deprecation warnings: when a query uses a feature that is
deprecated, MySQL issues a warning. Including this error number
is likely to make the global error count too noisy, which is why I
exclude it.

Since MySQL has so many errors and warnings, there’s no telling what your global
error rate will be. Don’t expect or try to achieve a zero error rate. That’s essentially
impossible because clients can cause errors, and there’s nothing you, the application,
or MySQL can do to prevent that. The goal is to establish the normal error rate for
the application. If the query in Example 6-2 is too noisy—which means it produces a
high rate of errors but you are certain the application is functioning normally—then
fine tune the query by excluding additional error numbers. MySQL error codes are
documented in the “MySQL Error Message Reference”.

Before MySQL 8.0, you cannot obtain a global error count from MySQL, but you
can obtain a count of all query errors from the Performance Schema by executing the
query in Example 6-3.

Example 6-3. Query error count

SELECT
 SUM(sum_errors) AS query_errors
FROM
 performance_schema.events_statements_summary_global_by_event_name
WHERE
 event_name LIKE 'statement/sql/%';

190 | Chapter 6: Server Metrics

Since this works in all distributions as of MySQL 5.6, there is no reason not to
monitor all query errors. Granted, the application should report query errors, too;
but if it also retries on error, it might hide a certain amount of errors. By contrast, this
will expose all query errors, potentially revealing a problem that application retries
are masking.

The last error metrics are client connection errors:

• Aborted_clients•
• Aborted_connects•
• Connection_errors_%•

The first two metrics are commonly monitored to ensure that there are no issues
while connecting or already connected to MySQL. That wording is precise: if the appli‐
cation cannot make a network connection to MySQL, then MySQL does not see the
client and does not report a client connection error because, from the MySQL point
of view, there is no client connection yet. Low-level network connection issues should
be reported by the application. However, if the application cannot connect, you’re
likely to see a drop in the other three KPIs (QPS, threads running, and response time)
because the application isn’t executing queries.

The % character in Connection_errors_% is a MySQL wildcard;
several metrics exist with the prefix Connection_errors_. To list
them, execute SHOW GLOBAL STATUS LIKE Connection_errors_%;.

Before moving on to the next spectrum, let’s address a problem that’s also not
a problem—at least not for MySQL. If the application begins to spew errors but
MySQL does not and the other three KPIs are normal, then the problem is with the
application or the network. MySQL has many quirks, but lying is not one of them. If
MySQL KPIs are thumbs up (all okay and normal), then you can trust that MySQL is
working normally.

Queries
Metrics related to queries reveal how fast MySQL is working and what type of
work it’s doing—at a very high level. These metrics reveal two access pattern traits:
throughput and read/write (see “Throughput” and “Read/Write” on page 133).

Spectra | 191

QPS
QPS is one of the four “Key Performance Indicators” on page 181. The underlying
metric is aptly named:

• Queries•

That metric is a counter, but QPS is a rate, so technically QPS equals the difference of
two Queries measurements divided by the number of seconds between the measure‐
ments: QPS = (Queries @ T1 – Queries @ T0) / (T1 – T0), where T0 is the time of the
first measurement and T1 is the time of the second measurement. Metric graphing
systems (like Grafana) convert counters to rates by default. As a result, you should
not need to convert Queries or any other counters to rates. Just be aware that most
MySQL metrics are counters, but they are converted to and expressed as rates.

Metric graphing systems convert counters to rates by default.

QPS receives a lot of attention because it indicates overall MySQL throughput—how
fast MySQL is executing queries—but don’t fixate on it. As mentioned in “Less QPS Is
Better” on page 96, QPS reveals nothing qualitative about the queries or performance
in general. If QPS is incredibly high but response time is also incredibly high, then
QPS indicates a problem, not great performance. Other metrics reveal more about
MySQL performance than QPS.

When everything is running normally, QPS fluctuates with application usage. When
there is a problem, QPS fluctuations correlate with other metrics. To analyze perfor‐
mance or diagnose a problem, I glance at QPS to see where (in a chart) its value is
abnormal. Then I correlate that period (time along the X axis of the chart) with other,
more specific metrics in the spectra. As a KPI, QPS indicates a problem, but other
metrics pinpoint the problem.

All abnormal changes in QPS are suspect and worth investigating. Most, if not all,
engineers know that a drop in QPS is bad, but an abnormal increase in QPS can
be equally bad or worse. Also bad but more rare is flatline QPS—a nearly constant
QPS value—because minor fluctuations are normal. When QPS changes abnormally,
the first question is usually: what’s the cause? I address that later in this chapter (see
“Cause and Effect” on page 228).

MySQL exposes another closely related metric: Questions. (The term question is only
used for this metric; it’s not used for anything else inside MySQL.) Questions counts
only queries sent by clients, not queries executed by stored programs. For example,

192 | Chapter 6: Server Metrics

queries executed by a trigger do not count in Questions because a client did not
send them; but they do count in Queries. Since Questions is a subset of Queries,
the difference is only informational, and monitoring Questions is optional. For QPS,
always use Queries.

TPS
If the application relies on explicit, multistatement transactions, then transactions per
second (TPS) is as important as QPS. For some applications, a database transaction
represents a unit of work in the application, so TPS is a better rate than QPS because
the application unit of work is all or nothing, which is why it’s executed in an explicit
transaction.

An implicit transaction is a single SQL statement with autocommit
enabled, which is the default. An explicit transaction starts with
BEGIN or START TRANSACTION and ends with either COMMIT or ROLL
BACK, regardless of autocommit.

In MySQL, explicit transaction throughput is revealed by three metrics:

• Com_begin•
• Com_commit•
• Com_rollback•

Normally, the rate of Com_begin and Com_commit are the same because every transac‐
tion must begin and successful transactions must commit. When there’s a problem
that causes transactions to stall (one of the “Common Problems” on page 282), the
rate of Com_begin exceeds the other two metrics.

Use Com_commit to measure TPS because transaction throughput implies successful
transactions.

A transaction rollback is supposed to indicate an error—since transactions are all or
nothing—but the ROLLBACK statement is also commonly used for cleanup: it ensures
that the previous transaction—if any—is closed before starting the next transaction.
Consequently, the rollback rate might not be zero. As with most metrics, normal and
stable is the goal (see “Normal and Stable: The Best Database Is a Boring Database”
on page 180).

Another gauge metric that indicates the current number of active transactions is
innodb.trx_active_transactions.

Spectra | 193

BEGIN starts a transaction, but a transaction is not active until, generally speaking, a
query accesses a table. For example, BEGIN; SELECT NOW(); starts a transaction that
is not active because no query accesses a table.

SHOW ENGINE INNODB STATUS
InnoDB metrics are exposed in the information_schema.innodb_metrics table. (See
“InnoDB INFORMATION_SCHEMA Metrics Table” for details.) Before this table
was mainstream, InnoDB metrics were exposed using the SHOW ENGINE INNODB

STATUS command, but the output is a long blob of text. The text is divided into
sections, which makes it a little easier for humans to read, but it’s programmatically
unorganized: it requires parsing and pattern matching to extract specific metric
values. Some MySQL monitors still use SHOW ENGINE INNODB STATUS, but avoid this
if you can because using the Information Schema (and Performance Schema) is the
best practice.

I no longer consider SHOW ENGINE INNODB STATUS authoritative. For example,
with respect to active transactions, BEGIN; SELECT col FROM tbl; does not show
as active in SHOW ENGINE INNODB STATUS, but it correctly shows as active in
innodb.trx_active_transactions.

Read/write
There are nine read/write metrics named according to a type of SQL statement:

• Com_select•
• Com_delete•
• Com_delete_multi•
• Com_insert•
• Com_insert_select•
• Com_replace•
• Com_replace_select•
• Com_update•
• Com_update_multi•

For example, Com_select is a counter for the number of SELECT statements. The
_multi suffix in Com_delete_multi and Com_update_multi refers to queries that
reference multiple tables. A multitable DELETE increments only Com_delete_multi,
whereas a single-table DELETE only updates Com_delete. The same is true for UPDATE
statements with respect to Com_update_multi and Com_update.

194 | Chapter 6: Server Metrics

2 Com_insert_select and Com_replace_select are technically both reads and writes, but for simplicity I count
them as writes.

Read/write metrics reveal the important types and throughputs of queries that consti‐
tute Queries. These metrics do not fully account for Queries; they are only the most
important metrics with respect to performance.

Monitor these metrics as individual rates and percentages of Queries:

• Com_select indicates the read percentage of the workload:•

(Com_select / Queries) × 100.

• The sum of the other eight metrics indicates the write percentage of the•
workload.2

The read and write percentages will not equal 100% because Queries accounts for
other types of SQL statements: SHOW, FLUSH, GRANT, and many more. If the remaining
percentage is suspiciously high (more than 20%), it probably won’t affect perfor‐
mance, but it’s worth investigating: examine other Com_ metrics to account for other
types of SQL statements.

Admin
Admin metrics refer to commands that, typically, only database administrators
invoke:

• Com_flush•
• Com_kill•
• Com_purge•
• Com_admin_commands•

The first three metrics refer to FLUSH, KILL, and PURGE, respectively. These commands
could affect performance, but they should be very rare. If not, ask your DBA or cloud
provider what they’re doing.

The last metric, Com_admin_commands, is an oddity. It refers to other admin com‐
mands for which there are not specific Com_ status variables. For example, the MySQL
protocol has a ping command that is commonly used by MySQL client drivers to
test the connection. This is harmless in moderation, but problems can result from a
lack of moderation. Don’t expect Com_admin_commands to indicate any problems, but
monitoring it is still a best practice.

Spectra | 195

SHOW

MySQL has over 40 SHOW statements, most of which have a corresponding Com_show_
metric. SHOW commands never change MySQL or modify data, so in that sense they’re
harmless. But they are queries, which means they use a thread, time, and resources in
MySQL. SHOW commands can stall, too. SHOW GLOBALS STATUS, for example, can take
a full second or more on a busy server. Consequently, it’s a best practice to monitor at
least the following 10 metrics:

• Com_show_databases•
• Com_show_engine_status•
• Com_show_errors•
• Com_show_processlist•
• Com_show_slave_status•
• Com_show_status•
• Com_show_table_status•
• Com_show_tables•
• Com_show_variables•
• Com_show_warnings•

As of MySQL 8.0.22, monitor Com_show_replica_status instead
of Com_show_slave_status.

Don’t expect SHOW metrics to indicate any problems, but don’t be surprised if one does
because it wouldn’t be the first time.

Threads and Connections
Threads_running is one of the four “Key Performance Indicators” on page 181.
It indicates how hard MySQL is working because it’s directly connected to active
query execution (when a client connection is not executing a query, its thread is
idle), and it’s effectively limited by the number of CPU cores. Let’s come back to
Threads_running after looking at related metrics.

Threads and connections are one spectrum because they are directly related: MySQL
runs one thread per client connection. The four most important metrics for threads
and connections are:

196 | Chapter 6: Server Metrics

• Connections•
• Max_used_connections•
• Threads_connected•
• Threads_running•

Connections is the number of connection attempts to MySQL, both successful and
failed. It reveals the stability of the application connection pool to MySQL. Usually,
application connections to MySQL are long-lived, where long is at least a few seconds,
if not minutes or hours. Long-lived connections avoid the overhead of establishing
a connection. When the application and MySQL are on the same local network,
the overhead is negligible: 1 millisecond or less. But network latency between the
application and MySQL adds up quickly when multiplied by hundreds of connections
and multiplied again by the connection rate. (Connections is a counter but expressed
as a rate: connections/second.) MySQL can easily handle hundreds of connections
per second, but if this metric reveals an abnormally high rate of connections, find and
fix the root cause.

Max_used_connections as a percentage of var.max_connections reveals connection
utilization. The default value for var.max_connections is 151, which is probably too
low for most applications but not because the application needs more connections for
performance. The application needs more connections only because each application
instance has its own connection pool. (I presume the application is scaled out.) If the
connection pool size is 100 and there are 3 application instances, then the application
(all instances) can create 300 connections to MySQL. That is the main reason why
151 max connections is not sufficient.

A common misconception is that the application needs thousands of connections
to MySQL for performance or to support thousands of users. This is patently not
true. The limiting factor is threads, not connections—more on Threads_running in
a moment. A single MySQL instance can easily handle thousands of connections.
I’ve seen 4,000 connections in production and more in benchmarks. But for most
applications, several hundred connections (total) is more than sufficient. If your
application demonstrably requires several thousand connections, then you need to
shard (see Chapter 5).

The real problem to monitor and avoid is 100% connection utilization. If MySQL
runs out of available connections, an application outage is essentially guaranteed.
If connection utilization rises suddenly, approaching 100%, the cause is always an
external problem, or bug, or both. (MySQL cannot connect to itself, so the cause
must be external.) In response to an external problem—like a network issue, for
example—the application creates more connections than normal. Or, a bug causes the
application not to close connections—commonly known as a connection leak. Or, an

Spectra | 197

external problem triggers a bug in the application—I’ve seen it happen. Either way,
the underlying cause is always external: something outside MySQL is connecting to
MySQL and using all the connections.

As clients connect and disconnect, MySQL increments and decrements the
Threads_connected gauge metric. The name of this metric is a little misleading since
clients are connected, not threads, but it reflects that MySQL runs one thread per
client connection.

Threads_running is a gauge metric and an implicit utilization relative to the num‐
ber of CPU cores. Although Threads_running can spike into the hundreds and
thousands, performance will degrade sharply at much lower values: around twice the
number of CPU cores. The reason is simple: one CPU core runs one thread. When
the number of threads running is greater than the number of CPU cores, it means
that some threads are stalled—waiting for CPU time. This is analogous to rush hour
traffic: thousands of cars in gridlock on the highway, engines running but barely
moving. (Or, for electric cars: batteries running but barely moving.) Consequently,
it’s normal for Threads_running to be quite low: less than 30. Bursts lasting seconds
or less are possible with good hardware and an optimized workload, but sustained
(normal and stable) Threads_running should be as low as possible. As in “Less QPS
Is Better” on page 96, less Threads_running is better too.

High throughput (QPS) with very low threads running is a strong indication of
efficient performance because there is only one way to achieve both: very fast query
response time. Table 6-2 lists threads running and QPS from five real (and different)
applications.

Table 6-2. Threads running and QPS

Threads running QPS
4 8,000

8 6,000

8 30,000

12 23,000

15 33,000

The second and third rows highlight how profoundly the application workload affects
performance: with one workload, 6,000 QPS needs 8 threads running; but another
workload achieves 5x QPS (30,000) with the same number of threads. For the last
row, 33,000 QPS is not exceptionally high, but that database is sharded: total QPS
across all shards exceeds one million. Empirically, high throughput is possible with
few threads running.

198 | Chapter 6: Server Metrics

3 “I’m Mr. Meeseeks, look at me!”

Temporary Objects
Temporary objects are temporary files and tables that MySQL uses for various pur‐
poses: sorting rows, large joins, and so on. Three metrics count the number of
temporary tables on disk, temporary tables in memory, and temporary files (on disk)
created:

• Created_tmp_disk_tables•
• Created_tmp_tables•
• Created_tmp_files•

These metrics are rarely zero because temporary objects are common and harmless as
long as the rates are stable. The most impactful metric is Created_tmp_disk_tables,
which is the reciprocal of Created_tmp_tables. When MySQL needs a temporary
table to execute a query (for GROUP BY, for example), it starts with an in-memory
temporary table and increments Created_tmp_tables. This shouldn’t impact per‐
formance because it’s in memory. But if that temporary table grows larger than
var.tmp_table_size—the system variable that determines the in-memory tempo‐
rary table size—then MySQL writes the temporary table to disk and increments
Created_tmp_disk_tables. In moderation, this probably won’t impact performance,
but it certainly doesn’t help, either, because storage is significantly slower than mem‐
ory. The same is true for Created_tmp_files: acceptable in moderation, but not
helping performance.

As of MySQL 8.0, Created_tmp_disk_tables does not count tem‐
porary tables created on disk. This is due to the new storage
engine used for internal temporary tables: TempTable. The corre‐
sponding metric is a Performance Schema memory instrument:
memory/temptable/physical_disk. (A related instrument is mem
ory/temptable/physical_ram, which tracks TempTable memory
allocation for in-memory temporary tables.) If you’re using MySQL
8.0, talk with your DBA to ensure that this metric is collected and
reported correctly.

Since temporary objects are side effects of queries, these metrics are most reveal‐
ing when a change in one correlates to a change in KPIs. For example, a sudden
increase in Created_tmp_disk_tables coupled with a sudden increase in response
time screams “Look at me!”3

Spectra | 199

Prepared Statements
Prepared statements are a double-edged sword: used properly, they increase effi‐
ciency; but used improperly (or unknowingly), they increase waste. The proper and
most efficient way to use prepared statements is to prepare once and execute many
times, which is counted by two metrics:

• Com_stmt_prepare•
• Com_stmt_execute•

Com_stmt_execute should be significantly greater than Com_stmt_prepare. If it isn’t,
then prepared statements are increasing waste due to extra queries to prepare and
close the statement. The worst case is when these metrics are one-to-one, or close to
it, because a single query incurs two wasted roundtrips to MySQL: one to prepare and
another to close the statement. When MySQL and the application are on the same
local network, two extra roundtrips might not be noticeable, but they are pure waste
multiplied by QPS. For example, an extra 1 millisecond at 1,000 QPS is a wasted
second—a second during which another 1,000 queries could have been executed.

Aside from the performance implications, you should monitor these prepared state‐
ment metrics because the application might be using prepared statements uninten‐
tionally. For example, the MySQL driver for the Go programming language defaults
to using prepared statements for security: to avoid SQL injection vulnerabilities. At
first glance (or any number of glances), you would not think that the Go code in
Example 6-4 uses a prepared statement, but it does.

Example 6-4. Hidden prepared statement

id := 75
db.QueryRow("SELECT col FROM tbl WHERE id = ?", id)

Check the documentation for the MySQL driver that the application uses. If it does
not explicitly mention if and when it uses prepared statements, then verify manually:
on a development instance of MySQL (your laptop, for example), enable the general
query log and write a test program to execute SQL statements using the same meth‐
ods and function calls that the application uses. The general log indicates when
prepared statements are used:

2022-03-01T00:06:51.164761Z 32 Prepare SELECT col FROM tbl WHERE id=?
2022-03-01T00:06:51.164870Z 32 Execute SELECT col FROM tbl WHERE id=75
2022-03-01T00:06:51.165127Z 32 Close stmt

Finally, the number of open prepared statements is limited to var.max_prepared_
stmt_count, which is 16,382 by default. (Even 1,000 prepared statements is a lot for

200 | Chapter 6: Server Metrics

4 See my blog post “MySQL Select and Sort Status Variables” for an in-depth explanation of all Select_% and
Sort_% metrics.

one application, unless the application is programmatically generating statements.)
This gauge metric reports the current number of open prepared statements:

• Prepared_stmt_count•

Don’t let Prepared_stmt_count reach var.max_prepared_stmt_count, else the appli‐
cation will stop working. If this happens, it’s an application bug due to leaking (not
closing) prepared statements.

Bad SELECT
Four metrics count the occurrence of SELECT statements that are usually bad for
performance:4

• Select_scan•
• Select_full_join•
• Select_full_range_join•
• Select_range_check•

Select_scan and Select_full_join are described in Chapter 1: “Select scan” on
page 20 and “Select full join” on page 21, respectively. The only difference here is that
these two metrics apply globally (all queries).

Select_full_range_join is the lesser evil of Select_full_join: instead of a full
table scan to join a table, MySQL uses an index to do a range scan. It’s possible
that the range is limited and response time for the SELECT is acceptable, but it’s bad
enough to warrant its own metric.

Select_range_check is similar to but worse than Select_full_range_join. It’s easi‐
est to explain with a simple query: SELECT * FROM t1, t2 WHERE t1.id > t2.id.
When MySQL joins tables t1 and t2 (in that order), it does range checks on t2:
for every value from t1, MySQL checks if it can use an index on t2 to do a range
scan or index merge. Rechecking every value from t1 is necessary because, given the
query, MySQL cannot know t1 values ahead of time. But rather than do the worst
possible execution plan—Select_full_join—MySQL keeps trying to use an index
on t2. In the EXPLAIN output, the Extra field for t2 lists “Range checked for each
record,” and Select_range_check is incremented once for the table. The metric is not
incremented for each range change; it’s incremented once to signal that a table was
joined by doing range checks.

Spectra | 201

Bad SELECT metrics should be zero or virtually zero (if you round down). A
few Select_scan or Select_full_range_join are inevitable, but the other two—
Select_full_join and Select_range_check—should be found and fixed immedi‐
ately if not zero.

Network Throughput
The MySQL protocol is very efficient and rarely uses any noticeable amount of
network bandwidth. Usually, it’s the network affecting MySQL rather than MySQL
affecting the network. Nevertheless, it’s good to monitor network throughput as
recorded by MySQL:

• Bytes_sent•
• Bytes_received•

Since these metrics count network bytes sent and received, respectively, convert the
values to network units: Mbps or Gbps, whichever matches the link speed of the
server running MySQL. Gigabit links are most common, even in the cloud.

Metric graphing systems convert counters to rates by default, but
you probably need to multiply these metrics by eight (8 bits per
byte) and set the graph unit to bits to display as Mbps or Gbps.

I have seen MySQL saturate a network only once. The cause was related to a system
variable that’s not usually a problem: var.binlog_row_image. This system variable is
related to replication that Chapter 7 addresses in more detail, but the short version
is: this system variable controls whether or not BLOB and TEXT columns are logged in
the binary logs and replicated. The default value is full, which logs and replicates
BLOB and TEXT columns. Normally, that’s not a problem, but one application created a
perfect storm by having all of the following attributes at once:

• Using MySQL as a queue•
• Huge BLOB values•
• Write-heavy•
• High throughput•

These access patterns combined to replicate a small flood of data, causing major
replication lag. The solution was changing var.binlog_row_image to noblob to stop
replicating the BLOB values, which didn’t need to be replicated. This true story leads to
the next spectrum: replication.

202 | Chapter 6: Server Metrics

Replication
Lag is the bane of replication: the delay between a write on the source MySQL
instance and when that write is applied on a replica MySQL instance. When replica‐
tion (and the network) is working normally, replication lag is subsecond, limited only
by network latency.

Before MySQL 8.0.22, the replica lag metric and command were
Seconds_Behind_Master and SHOW SLAVE STATUS, respectively.
As of MySQL 8.0.22, the metric and command are Seconds_
Behind_Source and SHOW REPLICA STATUS. I use the current met‐
ric and command in this book.

MySQL has an infamous gauge metric for replication lag: Seconds_Behind_Source.
This metric is infamous because it’s not wrong but it’s also not what you expect. It
can jump between zero and a high value, which is as amusing as it is confusing.
Consequently, the best practice is to ignore this metric and, instead, use a tool like
pt-heartbeat to measure true replication lag. Then you have to configure your
MySQL monitor software (or service) to measure and report replication lag from pt-
heartbeat. Since pt-heartbeat has been around for so long, some MySQL monitors
support it natively; and there’s a good chance that the engineers who manage your
MySQL instances are already using it.

MySQL exposes one metric related to replication that is not infamous: Bin

log_cache_disk_use. Chapter 7 clarifies the following details; for now, a high level
explanation is sufficient. For each client connection, a in-memory binary log cache
buffers writes before they’re written to the binary log files—from which the writes
replicate to replicas. If the binary log cache is too small to hold all the writes
for a transaction, the changes are written to disk and Binlog_cache_disk_use is
incremented. In moderation, this is acceptable, but it shouldn’t be frequent. If it
becomes frequent, you can alleviate it by increasing the binary log cache size: var.bin
log_cache_size.

From the example in the previous section, we know that var.binlog_row_image
affects the binary log cache, too: full row images can require a lot of space if the table
has BLOB or TEXT columns.

Data Size
Chapter 3 explains why less data is more performance. Monitoring data size is impor‐
tant because it’s common for databases to grow larger than expected. If data growth
is due to application growth—the application is becoming increasingly popular—then
it’s a good problem to have, but it’s a problem nevertheless.

Spectra | 203

It’s also easy to overlook because MySQL performance scales effortlessly as data
grows, but not forever. A database can grow from 10 GB to 300 GB—a 30x increase—
and not encounter performance issues if queries and access patterns are optimized
well. But another 30x increase to 9 TB? Not possible. Even a 3x increase to 900 GB is
asking too much—it could happen if the access patterns are exceptionally favorable,
but don’t bet on it.

MySQL exposes table sizes (and other table metadata) in an Information Schema
table: information_schema.tables. The query in Example 6-5 returns the size of
each database in gigabytes.

Example 6-5. Database sizes (GB)

SELECT
 table_schema AS db,
 ROUND(SUM(data_length + index_length) / 1073741824 , 2) AS 'size_GB'
FROM
 information_schema.tables
GROUP BY table_schema;

The query in Example 6-6 returns the size of each table in gigabytes.

Example 6-6. Table sizes (GB)

SELECT
 table_schema AS db,
 table_name as tbl,
 ROUND((data_length + index_length) / 1073741824 , 2) AS 'size_GB'
FROM
 information_schema.tables
WHERE
 table_type = 'BASE TABLE'
 AND table_schema != 'performance_schema';

There is no standard for database and table size metrics. Query and aggregate values
from information_schema.tables to suit your needs. At a bare minimum, collect
database sizes (Example 6-5) every hour. It’s better to be more precise and collect
table sizes every 15 minutes.

Be sure that, wherever you store or send MySQL metrics, you can retain data size
metrics for at least a year. Near-term data growth trending is used to estimate when
the disk will run out of space; or, in the cloud, when more storage will need to
be provisioned. Long-term data growth trending is used to estimate when sharding
(Chapter 5) becomes necessary, as covered in “Practice: Four-Year Fit” on page 173.

204 | Chapter 6: Server Metrics

InnoDB
InnoDB is complex.

However, since it is the default MySQL storage engine, we must steel ourselves to
embrace it. A deep dive is not necessary—or even possible within the limits of this
book. Although this section is long, it barely breaks the surface of InnoDB internals.
Nevertheless, the following InnoDB metrics reveal some of the inner workings of the
storage engine responsible for reading and writing data.

History list length (metric)
History list length (HLL) is a curious metric because every engineer that uses
MySQL learns what it means, but very few know what it is. When HLL increases
significantly over a period of minutes or hours, it means that InnoDB is keeping a
significant number of old row versions instead of purging them because one or more
long-running transaction has not committed or was abandoned without being rolled
back due to an undetected lost client connection. All of that, which I explain later in
“History List Length” on page 280, is revealed by one gauge metric:

• innodb.trx_rseg_history_len•

A normal value for innodb.trx_rseg_history_len is less than 1,000. You should
monitor and alert if HLL is greater than 100,000. Contrary to “Wild Goose Chase
(Thresholds)” and “Alert on User Experience and Objective Limits” later in this chap‐
ter, this is a reliable threshold and actionable alert. The action: find and terminate the
long-running or abandoned transaction.

History list length does not directly affect performance, but it is a harbinger of
trouble—do not ignore it. The trouble relates to the fact that, since InnoDB is
a transactional storage engine, every query on an InnoDB table is a transaction.
Transactions incur overhead, and the HLL metric reveals when a long-running or
abandoned transaction is causing InnoDB to handle an unreasonable amount of
overhead. Some overhead is necessary—even beneficial—but too much amounts to
waste, and waste is antithetical to performance.

There’s so much more to say about transactions and HLL that it won its own chapter:
Chapter 8. For now, let’s stay focused on metrics because we’ve only begun with
InnoDB.

Deadlock
A deadlock occurs when two (or more) transactions hold row locks that the other
transaction needs. For example, transaction A holds a lock on row 1 and needs a
lock on row 2, and transaction B holds a lock on row 2 and needs a lock on row 1.

Spectra | 205

MySQL automatically detects and rolls back one transaction to resolve the deadlock,
and increments one metric:

• innodb.lock_deadlocks•

Deadlocks should not occur. A prevalence of deadlocks is related to the concurrency
access pattern trait (see “Concurrency” on page 138). Highly concurrent data access
must be designed (in the application) to avoid deadlocks by ensuring that different
transactions accessing the same rows (or nearby rows) examine the rows in roughly
the same order. In the earlier example of transaction A and transaction B, they access
the same two rows in opposite order, which can lead to a deadlock when the transac‐
tions execute at the same time. To learn more about deadlocks, read “Deadlocks in
InnoDB” in the MySQL manual.

Row lock
Row lock metrics reveal lock contention: how quickly (or not) queries acquire row
locks to write data. The most fundamental row lock metrics are:

• innodb.lock_row_lock_time•
• innodb.lock_row_lock_current_waits•
• innodb.lock_row_lock_waits•
• innodb.lock_timeouts•

The first metric, innodb.lock_row_lock_time, is a rare type: the total number of
milliseconds spent acquiring row locks. It’s in the class of response time metrics (see
“Response Time” on page 182), but unlike “Query Response Time” on page 188, it is
collected as a running total rather than a histogram. Consequently, it’s not possible
to report innodb.lock_row_lock_time as a percentile, which would be ideal. And
reporting it as a rate (see “Rate” on page 183) is nonsensical: milliseconds per second.
Instead, this metric must be reported as a difference: if 500 milliseconds at time T1
and 700 milliseconds at time T2, then report T2 value – T1 value = 200 ms. (Use
maximum for the chart rollup function. Don’t average the data points because it’s
better to see the worst case.) As a response time metric, lower is better. The value of
innodb.lock_row_lock_time cannot be zero (unless the workload is read-only and
never needs to acquire a single row lock) because it takes a nonzero amount of time
to acquire locks. The goal, as always, is that the metric is normal and stable. When it’s
not, the other row lock metrics will not be normal either.

innodb.lock_row_lock_current_waits is a gauge metric for the current number of
queries waiting to acquire a row lock. innodb.lock_row_lock_waits is a count of the
number of queries that waited to acquire a row. The two variables are essentially the
same: the former is a current gauge, and the latter is a historical counter and rate.

206 | Chapter 6: Server Metrics

When the rate of row lock waits increases, it’s a sure sign of trouble because MySQL
does not wait by accident: something must cause it to wait. In this case, the cause will
be concurrent queries accessing the same (or nearby) rows.

innodb.lock_timeouts is incremented when a row lock wait times out. The default
row lock wait timeout is 50 seconds, configured by var.innodb_lock_wait_timeout,
and applies per row lock. This is far too long for any normal application to wait; I
advise a much lower value: 10 seconds or less.

InnoDB locking is sophisticated and nuanced. As a result, lock contention is not a
common problem unless the workload exhibits three particular access patterns:

• Write-heavy (“Read/Write” on page 133)•
• High throughput (“Throughput” on page 133)•
• High concurrency (“Concurrency” on page 138)•

That would be a very particular application and workload. But lock contention can
become a problem for any application and workload (even with low throughput and
concurrency), so always monitor rock lock metrics.

Data throughput
Data throughput in bytes per seconds is measured by two metrics:

• Innodb_data_read•
• Innodb_data_written•

Data throughput is rarely an issue: SSD is fast; PCIe and NVMe made it even faster.
Regardless, monitoring data throughput is a best practice because storage through‐
put is limited, especially in the cloud. Do not expect to achieve published storage
throughput rates because published rates are measured under ideal conditions: data
straight to (or from) disk. InnoDB is super fast and efficient, but it’s still a complex
layer of software between the data and the disk that inherently precludes achieving
published storage throughput rates.

Be careful about throughput in the cloud: storage is unlikely to
be locally attached, which limits throughput to network speeds. 1
Gbps equals 125 MB/s, which is throughput similar to spinning
disks.

Spectra | 207

IOPS
InnoDB has a deep and sometimes complicated relationship with storage I/O
capacity, measured in IOPS. But first, the easy part: InnoDB read and write IOPS
are counted by two metrics, respectively:

• innodb.os_data_reads•
• innodb.os_data_writes•

These metrics are counters, so like other counters, they are converted to and
expressed as rates by metric graphing systems. Be sure to set the graph unit to IOPS
for each.

The performance raison d’être of InnoDB is to optimize and reduce storage I/O.
Although high IOPS are impressive from an engineering point of view, they are the
bane of performance because storage is slow. But storage is required for durability—
persisting data changes to disk—so InnoDB goes to great lengths to be fast and
durable. Consequently, as in “Less QPS Is Better” on page 96, fewer IOPS are better.

But don’t underutilize IOPS, either. If your company runs its own hardware, the
maximum number of storage IOPS is determined by the storage device—check the
device specifications, or ask the engineers who manage the hardware. In the cloud,
storage IOPS are allocated or provisioned, so it’s usually easier to tell the maximum
because you purchase the IOPS—check the storage settings, or ask the cloud pro‐
vider. If InnoDB never uses more than 2,000 IOPS, for example, then don’t purchase
(or provision) 40,000 IOPS: InnoDB simply won’t use the excess IOPS. By contrast,
if InnoDB constantly uses the maximum number of storage IOPS, then either the
application workload needs to be optimized to reduce storage I/O (see Chapters 1–5),
or InnoDB legitimately needs more IOPS.

InnoDB I/O capacity for background tasks is largely configured by var.innodb_
io_capacity and var.innodb_io_capacity_max, two system variables that default
to 200 and 2,000 IOPS, respectively. (There are other variables, but I must gloss
over them to stay focused on metrics. To learn more, read “Configuring InnoDB I/O
Capacity” in the MySQL manual.) Background tasks include page flushing, change
buffer merging, and more. In this book, I cover only page flushing, which is arguably
the single most important background task. Limiting background task storage I/O
ensures that InnoDB does not overwhelm the server. It also allows InnoDB to opti‐
mize and stabilize storage I/O rather than bombard the storage device with erratic
access. By contrast, foreground tasks do not have any configurable I/O capacities or
limits: they use as many IOPS as necessary and available. The primary foreground
task is executing queries, but this does not mean queries use high or excessive IOPS
because, remember, the performance raison d’être of InnoDB is to optimize and
reduce storage I/O. For reads, the buffer pool purposefully optimizes and reduces

208 | Chapter 6: Server Metrics

IOPS. For writes, page flushing algorithms and the transaction log purposefully
optimize and reduce storage I/O. The following sections reveal how.

InnoDB can achieve high IOPS, but can the application? Probably not because there
are many layers between the application and the IOPS that preclude the former from
achieving a high number of the latter. In my experience, applications use hundreds
to thousands of IOPS, and exceptionally optimized applications that are “going viral”
push around 10,000 IOPS on a single MySQL instance. Recently, I was benchmarking
MySQL in the cloud and hit a ceiling at 40,000 IOPS. The cloud provider publishes
80,000 IOPS as the maximum and allows me to provision that, but their storage
system is capped at 40,000 IOPS. Point being: InnoDB can achieve high IOPS, but
everything around it is a different question.

Millions of IOPS
High end storage is capable of over one million IOPS. This class of storage is used in
bare metal (physical) servers designed to host many virtual servers. The same is true
for high-end CPUs and memory: it’s too much hardware for one application.

This section is only a primer on InnoDB I/O because it underlies the final three
InnoDB spectra that consume IOPS: “Buffer pool efficiency” on page 209, “Page
flushing” on page 212, and “Transaction log” on page 219.

To learn more InnoDB I/O, start by reading “Configuring InnoDB I/O Capacity” in
the MySQL manual. To really dive into the nitty-gritty details of InnoDB I/O, read
an illuminating three-part blog post by renowned MySQL experts Yves Trudeau and
Francisco Bordenave: “Give Love to Your SSDs: Reduce innodb_io_capacity_max!”,
“InnoDB Flushing in Action for Percona Server for MySQL”, and “Tuning MySQL/
InnoDB Flushing for a Write-Intensive Workload”. But finish this chapter first
because it’s a great foundation for those blog posts.

InnoDB works with data in memory, not on disk. It reads data from disk when
necessary, and it writes data to disk to make changes durable, but these are lower
level operations into which the next three sections delve. At a higher level, InnoDB
works with data in memory because storage is too slow—even with a million IOPS.
Consequently, there is not a direct correlation between queries, rows, and IOPS.
Writes always consume IOPS (for durability). Reads can execute without consuming
any IOPS, but it depends on buffer pool efficiency.

Buffer pool efficiency
The InnoDB buffer pool is an in-memory cache of table data and other internal data
structures. From “InnoDB Tables Are Indexes” on page 41, you know that the buffer
pool contains index pages—more on pages in the next section. InnoDB certainly

Spectra | 209

5 You can disable durability, but that’s a terrible idea.

understands rows, but internally it’s far more concerned with pages. At this depth of
MySQL performance, the focus changes from rows to pages.

At a high level, InnoDB accesses (reads and writes) all data by pages in the buffer
pool. (Low-level writes are more complicated and addressed in the last InnoDB
section: “Transaction log” on page 219.) If data is not in the buffer pool when
accessed, InnoDB reads it from storage and saves it in the buffer pool.

Buffer pool efficiency is the percentage of data accessed from memory, calculated from
two metrics:

• Innodb_buffer_pool_read_request•
• Innodb_buffer_pool_reads•

Innodb_buffer_pool_read_request counts all requests to access data in the buffer
pool. If the requested data is not in memory, InnoDB increments Innodb_buf
fer_pool_reads and loads the data from disk. Buffer pool efficiency equals
(Innodb_buffer_pool_read_request / Innodb_buffer_pool_reads) × 100.

The word read in these metrics does not mean SELECT. InnoDB
reads data from the buffer pool for all queries: INSERT, UPDATE,
DELETE, and SELECT. For example, on UPDATE, InnoDB reads the
row from the buffer pool. If not in the buffer pool, it loads the row
from disk into the buffer pool.

Buffer pool efficiency will be very low when MySQL starts. This is normal; it’s called
a cold buffer pool. Loading data warms the buffer pool—like throwing logs on a fire. It
usually takes several minutes to fully warm the buffer pool, which is indicated when
buffer pool efficiency reaches its normal and stable value.

Buffer pool efficiency should be extremely close to 100%—ideally 99.0% or greater—
but don’t fixate on the value. Technically, this metric is a cache hit ratio, but that’s not
how it’s used. A cache hit ratio reveals little beyond the metric: values are cached, or
they’re not. On the contrary, buffer pool efficiency reveals how well InnoDB is able
to keep frequently accessed data—the working set—in memory while balancing speed
and durability. To put it colorfully, buffer pool efficiency is how well InnoDB can
keep a match lit in a hurricane. The working set is the flame; durability is the rain (it
dampens throughput);5 the application is the wind.

210 | Chapter 6: Server Metrics

In a bygone era, performance equated to cache hit ratios. Today,
that is no longer true: performance is query response time. If buffer
pool efficiency is extremely low but response time is great, then
performance is great. That probably won’t happen, but the point is
not to lose focus—recall “North Star” on page 3.

If total data size is less than available memory, then all data can fit in the buffer
pool at once. (Buffer pool size is configured by var.innodb_buffer_pool_size. Or,
as of MySQL 8.0.3, enabling var.innodb_dedicated_server automatically configures
buffer pool size and other related system variables.) In this case, buffer pool efficiency
is a nonissue and performance bottlenecks—if any—will occur in CPU or storage
(since all data is in memory). But this case is the exception, not the norm. The norm
is total data size being far greater than available memory. In this (normal) case, buffer
pool efficiency has three primary influences:

Data access
Data access brings data into the buffer pool. The data age access pattern trait (see
“Data Age” on page 134) is the primary influence because only new data needs to
be loaded into the buffer pool.

Page flushing
Page flushing allows data to be evicted from the buffer pool. Page flushing is
necessary for new data to be loaded into the buffer pool. The next section goes
into more detail.

Available memory
The more data that InnoDB keeps in memory, the less it needs to load or flush
data. In the exceptional case previously mentioned, when all data fits in memory,
buffer pool efficiency is a nonissue.

Buffer pool efficiency reveals the combined effect of those three influences. As a
combined effect, it cannot pinpoint one cause. If its value is lower than normal, the
cause could be one, two, or all three influences. You must analyze all three to deter‐
mine which is the greatest or the most feasible to change. For example, as detailed
in Chapter 4, changing access patterns is a best practice for improving performance,
but if you’re page-deep in MySQL performance, you’ve probably already done that.
In that case, more memory or faster storage (more IOPS) might be more feasible—
and more justified since you’ve already optimized the workload. Although buffer
pool efficiency cannot give you answers, it tells you where to look: access patterns
(especially “Data Age” on page 134), page flushing, and memory size.

InnoDB buffer pool efficiency is the tip of the iceberg. Underneath, page flushing is
the internal machinery that keeps it afloat.

Spectra | 211

Page flushing
This spectrum is large and complicated, so it’s further subdivided into Pages and
Flushing, which are inextricable.

Pages. As mentioned in the previous section, the buffer pool contains index pages.
There are four types of pages:

Free pages
These contain no data; InnoDB can load new data into them.

Data pages
These contain data that has not been modified; also called clean pages.

Dirty pages
These contain modified data that has not been flushed to disk.

Misc pages
These contain miscellaneous internal data not covered in this book.

Since InnoDB keeps the buffer pool full of data, monitoring the number of data
pages is not necessary. Free and dirty pages are the most revealing with respect to
performance, especially when viewed with flushing metrics in the next section. Three
gauges and one counter (the last metric) reveal how many free and dirty pages are
sloshing around in the buffer pool:

• innodb.buffer_pool_pages_total•
— innodb.buffer_pool_pages_dirty—
— innodb.buffer_pool_pages_free—

— innodb.buffer_pool_wait_free—

innodb.buffer_pool_pages_total is the total number of pages in the buffer
pool (total page count), which depends on the buffer pool size (var.innodb_
buffer_pool_size). (Technically, this is a gauge metric because, as of MySQL 5.7.5,
the InnoDB buffer pool size is dynamic. But frequently changing the buffer pool size
is not common because it’s sized according to system memory, which cannot change
quickly—even cloud instances require a few minutes to resize.) Total page count
calculates the percentage of free and dirty pages: innodb.buffer_pool_pages_free
and innodb.buffer_pool_pages_dirty divided by total pages, respectively. Both
percentages are gauge metrics, and the values change frequently due to page flushing.

To ensure that free pages are available when needed, InnoDB maintains a nonzero
balance of free pages that I call the free page target. The free page target is equal to the
product of two system variables: the system variable var.innodb_lru_scan_depth
multiplied by var.innodb_buffer_pool_instances. The name of the former system

212 | Chapter 6: Server Metrics

variable is somewhat misleading, but it configures the number of free pages that
InnoDB maintains in each buffer pool instance; the default is 1024 free pages. Until
now, I have written about the buffer pool as one logical part of InnoDB. Under the
hood, the buffer pool is divided into multiple buffer pool instances, each with its
own internal data structures to reduce contention under heavy load. The default for
var.innodb_buffer_pool_instances is 8 (or 1 if the buffer pool size is less than 1
GB). Therefore, with defaults for both system variables, InnoDB maintains 1024 × 8 =
8192 free pages. Free pages should hover around the free page target.

Reducing var.innodb_lru_scan_depth is a best practice because,
with default values, it yields 134 MB of free page size: 8192 free
pages × 16 KB/page = 134 MB. That is excessive given that rows are
typically hundreds of bytes. It’s more efficient for free pages to be as
low as possible without hitting zero and incurring free page waits
(explained in the next paragraph). It’s good to be aware of this, but
it’s MySQL tuning, which is beyond the scope of this book. The
default does not hinder performance; MySQL experts just abhor
inefficiency.

If free pages are consistently near zero (below the free page target), that’s fine as
long as innodb.buffer_pool_wait_free remains zero. When InnoDB needs a free
page but none is available, it increments innodb.buffer_pool_wait_free and waits.
This is called a free page wait and it should be exceptionally rare—even when the
buffer pool is full of data—because InnoDB actively maintains the free page target.
But under very heavy load, it might not be able to flush and free pages fast enough.
Simply put: InnoDB is reading new data faster than it can flush old data. Presuming
that the workload is already optimized, there are three solutions to free page waits:

Increase free page target
If your storage can provide more IOPS (or you can provision more IOPS in the
cloud), then increasing var.innodb_lru_scan_depth causes InnoDB to flush and
free more pages, which requires more IOPS (see “IOPS” on page 208).

Better storage system
If your storage cannot provide more IOPS, upgrade to better storage, then
increase the free page target.

More memory
The more memory, the bigger the buffer pool, and the more pages can fit in
memory without needing to flush and evict old pages to load new pages. There’s
one more detail about free page waits that I clarify later when explaining LRU
flushing.

Spectra | 213

Remember from “Buffer pool efficiency” on page 209: read doesn’t
mean SELECT. InnoDB reads new data from the buffer pool for
all queries: INSERT, UPDATE, DELETE, and SELECT. When data is
accessed but not in the buffer pool (in memory), InnoDB reads it
from disk.

If free pages are consistently much higher than the free page target, or never decrease
to the target, then the buffer pool is too large. For example, 50 GB of data fills only
39% of 128 GB of RAM. MySQL is optimized to use only the memory that it needs,
so giving it an overabundance of memory will not increase performance—MySQL
simply won’t use the excess memory. Don’t waste memory.

Dirty pages as a percentage of total pages varies between 10% and 90% by default.
Although dirty pages contain modified data that has not been flushed to disk, the
data changes have been flushed to disk in the transaction log—more on this in
the next two sections. Even with 90% dirty pages, all data changes are guaranteed
durable—persisted to disk. It’s completely normal to have a high percentage of dirty
pages. In fact, it’s expected unless the workload is exceptionally read-heavy (recall
access pattern trait “Read/Write” on page 133) and simply does not modify data very
often. (In this case, I would consider whether another data store is better suited to the
workload.)

Since a high percentage of dirty pages is expected, this metric is used to corroborate
other metrics related to page flushing (next section), the transaction log (“Transac‐
tion log” on page 219), and disk I/O (“IOPS” on page 208). For example, writing
data causes dirty pages, so a spike in dirty pages corroborates a spike in IOPS and
transaction log metrics. But a spike in IOPS without a corresponding spike in dirty
pages cannot be caused by writes; it must be another issue—maybe an engineer
manually executed an ad hoc query that dredged up a mass of old data that hadn’t
seen the light of day in eons, and now InnoDB is reading it from disk in a maelstrom
of IOPS. Ultimately, dirty pages rise and fall with the gentle tides of page flushing.

214 | Chapter 6: Server Metrics

Page flushing. Page flushing cleans dirty pages by writing the data modifications to
disk. Page flushing serves three closely related purposes: durability, checkpointing,
and page eviction. For simplicity, this section focuses on page flushing with respect
to page eviction. “Transaction log” on page 219 clarifies how page flushing serves
durability and checkpointing.

From “Buffer pool efficiency” on page 209, you know that page flushing makes space
for new data to be loaded into the buffer pool. More specifically, page flushing makes
dirty pages clean, and clean pages can be evicted from the buffer pool. Thus, the circle
of page life is complete:

• A free page becomes a clean (data) page when data is loaded•
• A clean page becomes a dirty page when its data is modified•
• A dirty page becomes a clean page again when the data modifications are flushed•
• A clean page becomes a free page again when it’s evicted from the buffer pool•

The implementation of page flushing is complex and varies among distributions
(Oracle MySQL, Percona Server, and MariaDB Server), so you might want to reread
the following information to fully absorb the many intricate details. Figure 6-6
depicts the high-level components and flow of InnoDB page flushing from commit‐
ting transactions in the transaction log (at top) to flushing and evicting pages from
the buffer pool (at bottom).

Figuratively, InnoDB page flushing works top to bottom in Figure 6-6, but I’m going
to explain it from the bottom up. In the buffer pool, dirty pages are dark, clean (data)
pages are white, and free pages have a dotted outline.

Spectra | 215

Figure 6-6. InnoDB page flushing

Dirty pages are recorded in two internal lists (for each buffer pool instance):

Flush list
Dirty pages from writes committed in the transaction log.

LRU list
Clean and dirty pages in the buffer pool ordered by data age.

Strictly speaking, the LRU list tracks all pages with data, and that just happens to
include dirty pages; whereas the flush list explicitly tracks only dirty pages. Either
way, MySQL uses both lists to find dirty pages to flush. (In Figure 6-6, the LRU list is
connected to [tracking] only one dirty page, but this only a simplification to avoid a
clutter of lines.)

Once every second, dirty pages are flushed from both lists by background threads
aptly named page cleaner threads. By default, InnoDB uses four page cleaner threads,

216 | Chapter 6: Server Metrics

6 The MySQL adaptive flushing algorithm was created in 2008 by renowned MySQL expert Yasufumi Kinoshita
while working at Percona. See his blog post “Adaptive checkpointing”.

configured by var.innodb_page_cleaners. Each page cleaner flushes both lists; but
for simplicity, Figure 6-6 shows one page cleaner flushing one list.

Two flushing algorithms are primarily responsible for flush list flushing and LRU list
flushing, respectively:

Adaptive flushing
Adaptive flushing determines the rate at which page cleaners flush dirty pages
from the flush list.6 The algorithm is adaptive because it varies the page flush rate
based on the rate of transaction log writes. Faster writes, faster page flushing. The
algorithm responds to write load, but it’s also finely tuned to produce a stable rate
of page flushing under varying write loads.

Page flushing by page cleaners is a background task, therefore the page flush rate
is limited by the configured InnoDB I/O capacity explained in “IOPS” on page
208, specifically: var.innodb_io_capacity and var.innodb_io_capacity_max.
Adaptive flushing does a fantastic job of keeping the flush rate (in terms of IOPS)
between these two values.

The purpose of adaptive flushing is to allow checkpointing to reclaim space
in the transaction logs. (Actually, this is the purpose of flush list flushing in
general; algorithms are just different methods of accomplishing it.) I explain
checkpointing in “Transaction log” on page 219, but I mention it here to clarify
that, although flushing makes pages clean and candidates for eviction, that is not
the purpose of adaptive flushing.

The intricate details of the adaptive flushing algorithm are beyond the scope of
this book. The important point is: adaptive flushing flushes dirty pages from the
flush list in response to transaction log writes.

LRU flushing
LRU flushing flushes dirty pages from the tail of the LRU list, which contains
the oldest pages. Simply put: LRU flushing flushes and evicts old pages from the
buffer pool.

LRU flushing happens in the background and the foreground. Foreground LRU
flushing happens when a user thread (a thread executing a query) needs a
free page but there are none. This is not good for performance because it’s
a wait—it increases query response time. When it occurs, MySQL increments
innodb.buffer_pool_wait_free, which is the “one more detail about free page
waits” mentioned earlier.

Spectra | 217

7 For proof and a deep dive, read my blog post “MySQL LRU Flushing and I/O Capacity”.
8 Legacy flushing is also called dirty pages percentage flushing, but I prefer my term because it’s simpler and

frames it more accurately: legacy implies that it’s no longer current, which is true.

Page cleaners handle background LRU flushing (because page cleaners are back‐
ground threads). When a page cleaner flushes a dirty page from the LRU list, it
also frees the page by adding it to the free list. This is primarily how InnoDB
maintains the free page target (see “Pages” on page 212) and avoids free page
waits.

Although background LRU flushing is a background task, it is not limited by
the configured InnoDB I/O capacity explained (var.innodb_io_capacity and
var.innodb_io_capacity_max).7 It’s effectively limited (per buffer pool instance)
by var.innodb_lru_scan_depth. For various reasons beyond the scope of this
book, this is not a problem in terms of excessive background storage I/O.

The purpose of LRU flushing is to flush and free (evict) the oldest pages. Old, as
detailed in “Data Age” on page 134, means the least recently used pages, hence
LRU. The intricate details of LRU flushing, the LRU list, and how it all relates to
the buffer pool are beyond the scope of this book; but if you’re curious, start by
reading “Buffer Pool” in the MySQL manual. The important point is that LRU
flushing frees pages and its maximum rate is the free page target (per second),
not the configured InnoDB I/O capacity.

Idle Flushing and Legacy Flushing
There are two more flushing algorithms in addition to adaptive flushing and LRU
flushing: idle flushing and legacy flushing.

Idle flushing occurs when InnoDB is not processing any writes (the transaction log is
not being written to). In this rare situation, InnoDB flushes dirty pages from the flush
list at the configured I/O capacity (see “IOPS” on page 208). Idle flushing also flushes
the change buffer and handles flushing when MySQL shuts down.

Legacy flushing is my term for the simple algorithm that InnoDB employed before
adaptive flushing became the standard.8 InnoDB flushes dirty pages when the
percentage of dirty pages is between var.innodb_max_dirty_pages_pct_lwm and
var.innodb_max_dirty_pages_pct. Although this algorithm is still active in MySQL
8.0, it’s essentially never used, and you can ignore it.

With that crash course on InnoDB flushing, the following four metrics are now
intelligible:

218 | Chapter 6: Server Metrics

• innodb.buffer_flush_batch_total_pages•
• innodb.buffer_flush_adaptive_total_pages•
• innodb.buffer_LRU_batch_flush_total_pages•
• innodb.buffer_flush_background_total_pages•

All four metrics are counters that, when converted to rates, reveal page flush rates
for each algorithm. innodb.buffer_flush_batch_total_pages is the total page flush
rate for all algorithms. It’s a high-level rate that’s useful as a KPI for InnoDB: the total
page flush rate should be normal and stable. If not, one of the metrics indicates which
part of InnoDB is not flushing normally.

innodb.buffer_flush_adaptive_total_pages is the number of pages flushed by
adaptive flushing. innodb.buffer_LRU_batch_flush_total_pages is the number of
pages flushed by background LRU flushing. Given the earlier explanation of these
flushing algorithms, you know which parts of InnoDB they reflect: the transaction log
and free pages, respectively.

innodb.buffer_flush_background_total_pages is included for completeness: it is
the number of pages flushed by other algorithms described in “Idle Flushing and
Legacy Flushing” on page 218. If the rate of background page flushing is problematic,
you will need to consult a MySQL expert because that’s not supposed to happen.

Although different flushing algorithms have different rates, the storage system under‐
lies all of them because flushing requires IOPS. If you’re running MySQL on spinning
disks, for example, the storage system (both the storage bus and the storage device)
simply do not provide many IOPS. If you run MySQL on high-end storage, then
IOPS may never be an underlying issue. And if you’re running MySQL in the cloud,
you can provision as many IOPS as you need, but the cloud uses network-attached
storage, which is slow. Also remember that IOPS have latency—especially in the
cloud—ranging from microseconds to milliseconds. This is deep knowledge verging
on expert-level internals, but let’s keep going because it’s powerful knowledge worth
learning.

Transaction log
The final and perhaps most important spectrum: the transaction log, also known as
the redo log. For brevity, it’s called the log when the context is clear and unambiguous,
as it is here.

The transaction log guarantees durability. When a transaction commits, all data
changes are recorded in the transaction log and flushed to disk—which makes the
data changes durable—and corresponding dirty pages remain in memory. (If MySQL
crashes with dirty pages, the data changes are not lost because they were already

Spectra | 219

flushed to disk in the transaction log.) Transaction log flushing is not page flushing.
The two processes are separate but inextricable.

The InnoDB transaction log is a fixed-size ring buffer on disk, as shown in Fig‐
ure 6-7. By default, it comprises two physical log files. The size of each is configured
by var.innodb_log_file_size. Or, as of MySQL 8.0.3, enabling var.innodb_dedi
cated_server automatically configures the log file size and other related system
variables.

The transaction log contains data changes (technically, redo logs), not pages; but
the data changes are linked to dirty pages in the buffer pool. When a transaction
commits, its data changes are written to the head of the transaction log and flushed
(synced) to disk, which advances the head clockwise, and the corresponding dirty
pages are added to the flush list shown earlier in Figure 6-6. (In Figure 6-7, the head
and tail move clockwise, but this is only an illustration. Unless you have spinning
disks, the transaction log does not literally move.) Newly written data changes over‐
write old data changes for which the corresponding pages have been flushed.

Figure 6-7. InnoDB transaction log

A simplified illustration and explanation of the InnoDB transaction
log makes it appear serialized. But that is only an artifact of simpli‐
fying a complex process. The actual low-level implementation is
highly concurrent: many user threads are committing changes to
the transaction log in parallel.

Checkpoint age is the length of the transaction log (in bytes) between the head and the
tail. Checkpointing reclaims space in the transaction log by flushing dirty pages from
the buffer pool, which allows the tail to advance. Once dirty pages have been flushed,
the corresponding data changes in the transaction log can be overwritten with new
data changes. Adaptive flushing implements checkpointing in InnoDB, which is why
the checkpoint age is an input to the adaptive flushing algorithm shown in Figure 6-6.

220 | Chapter 6: Server Metrics

By default, all data changes (redo logs) in the transaction log are
durable (flushed to disk), but corresponding dirty pages in the
buffer pool are not durable until flushed by checkpointing.

Checkpointing advances the tail to ensure that the checkpoint age does not become
too old (which really means too large because it’s measured in bytes, but too old is the
more common phrase). But what happens if the checkpoint age becomes so old that
the head meets the tail? Since the transaction log is a fixed-size ring buffer, the head
can wrap around and meet the tail if the write rate consistently exceeds the flush rate.
InnoDB won’t let this happen. There are two safeguard points called async and sync,
as shown in Figure 6-7. Async is the point at which InnoDB begins asynchronous
flushing: writes are allowed, but the page flushing rate is increased to near maximum.
Although writes are allowed, flushing will use so much InnoDB I/O capacity that you
can (and should) expect a noticeable drop in overall server performance. Sync is the
point at which InnoDB begins synchronous flushing: all writes stop, and page flushing
takes over. Needless to say, that’s terrible for performance.

InnoDB exposes metrics for the checkpoint age and the async flush point,
respectively:

• innodb.log_lsn_checkpoint_age•
• innodb.log_max_modified_age_async•

innodb.log_lsn_checkpoint_age is a gauge metric measured in bytes, but the raw
value is meaningless to humans (it ranges from zero to the log file size). What is
meaningful to humans and critical to monitor is how close the checkpoint age is to
the async flush point, which I call transaction log utilization:

(innodb.log_lsn_checkpoint_age / innodb.log_max_modified_age_async) × 100

Transaction log utilization is conservative because the async flush point is at 6/8
(75%) of the log file size. Therefore, at 100% transaction log utilization, 25% of the log
is free to record new writes, but remember: server performance drops noticeably at
the async flush point. It’s important to monitor and know when this point is reached.
If you want to live dangerously, InnoDB exposes a metric for the sync flush point
(which is at 7/8 [87.5%] of the log file size) that you can substitute for the async flush
point metric (or monitor both): innodb.log_max_modified_age_sync.

There’s one small but important detail about how queries log data changes to the
transaction log: data changes are first written to an in-memory log buffer (not to be
confused with the log file that refers to the actual on-disk transaction log), then the
log buffer is written to the log file, and the log file is synced. I’m glossing over myriad

Spectra | 221

details, but the point is: there’s an in-memory log buffer. If the log buffer is too small
and a query has to wait for free space, InnoDB increments:

• innodb.log_waits•

innodb.log_waits should be zero. If it isn’t, the log buffer size is configured by
var.innodb_log_buffer_size. The default 16 MB is usually more than sufficient.

Since the transaction log comprises two physical files on disk (two files, but one
logical log), writing and syncing data changes to disk are the most fundamental
tasks. Two gauge metrics report how many of those tasks are pending—waiting to be
completed:

• innodb.os_log_pending_writes•
• innodb.os_log_pending_fsyncs•

Since writes and syncs are supposed to happen extremely quickly—nearly all write
performance depends on it—these metrics should always be zero. If not, they indicate
a low-level problem with either InnoDB or, more likely, the storage system—presum‐
ing other metrics are normal or were normal before pending writes and syncs. Don’t
expect problems at this depth, but monitor it.

Last but not least, a simple but important metric that counts the number of bytes
written to the transaction log:

• innodb.os_log_bytes_written•

It’s best practice to monitor total log bytes written per hour as a basis for deter‐
mining log file size. Log file size is the product of system variables var.innodb_
log_file_size and var.innodb_log_files_in_group. Or, as of MySQL 8.0.14, ena‐
bling var.innodb_dedicated_server automatically configures both system variables.
The default log file size is only 96 MB (two log files at 48 MB each). As an engineer
using MySQL, not a DBA, I presume whoever is managing your MySQL has properly
configured these system variables, but it’s wise to verify.

We made it: the end of InnoDB metrics. The spectrum of InnoDB metrics is much
wider and deeper than presented here; these are only the most essential InnoDB
metrics for analyzing MySQL performance. Moreover, significant changes were made
to InnoDB from MySQL 5.7 to 8.0. For example, the internal implementation of the
transaction log was rewritten and improved as of MySQL 8.0.11. There are other
parts of InnoDB not covered here: double-write buffer, change buffer, adaptive hash
index, and so on. I encourage you to learn more about InnoDB, for it is a fascinating
storage engine. You can begin that journey at “The InnoDB Storage Engine” in the
MySQL manual.

222 | Chapter 6: Server Metrics

Monitoring and Alerting
MySQL metrics reveal the spectrum of MySQL performance, and they’re also great
for waking engineers in the middle of the night—otherwise known as monitoring and
alerting.

Monitoring and alerting are external to MySQL, so they cannot affect its perfor‐
mance, but I am compelled to address the following four topics because they are
related to metrics and important to success with MySQL.

Resolution
Resolution means the frequency at which metrics are collected and reported: 1 sec‐
ond, 10 seconds, 30 seconds, 5 minutes, and so on. Higher resolution entails higher
frequency: 1 second is higher resolution than 30 seconds. Like a television, the higher
the resolution, the more detail you see. And since “seeing is believing,” let’s see three
charts of the same data over 30 seconds. The first chart, Figure 6-8, shows QPS values
at maximum resolution: 1 second.

Figure 6-8. QPS at 1-second resolution

In the first 20 seconds, QPS is normal and stable, bouncing between 100 and 200
QPS. From 20 to 25 seconds, there is a 5-second stall (the 5 data points below 100
QPS in the box). For the last five seconds, QPS spikes to an abnormally high value,
which is common after a stall. This chart isn’t dramatic, but it’s realistic and it begins
to illustrate a point that the next two charts bring into focus.

The second chart, Figure 6-9, is the exact same data but at 5-second resolution.

Monitoring and Alerting | 223

Figure 6-9. QPS at 5-second resolution

At 5-second resolution, some fine detail is lost, but critical details remain: normal and
stable QPS in the first 20 seconds; the stall around 25 seconds; and the spike after
the stall. This chart is acceptable for daily monitoring—especially considering that
collecting, storing, and charting metrics at 1-second resolution is so difficult that it’s
almost never done.

The third chart, Figure 6-10, is the exact same data but at 10-second resolution.

At 10-second resolution, nearly all detail is lost. According to the chart, QPS is stable
and normal, but it’s misleading: QPS destabilized and was not normal for 10 seconds
(five second stall and five second spike).

At the very least, collect KPIs (see “Key Performance Indicators” on page 181) at
5-second resolution or better. If possible, collect most of the metrics in “Spectra” on
page 187 at 5-second resolution too, with the following exceptions: Admin, SHOW, and
bad SELECT metrics can be collected slowly (10, 20, or 30 seconds), and data size can
be collected very slowly (5, 10, or 20 minutes).

Strive for the highest resolution possible because, unlike query metrics that are
logged, MySQL metrics are either collected or gone for all eternity.

224 | Chapter 6: Server Metrics

Figure 6-10. QPS at 10-second resolution

Wild Goose Chase (Thresholds)
A threshold is a static value past which a monitoring alert triggers, often times paging
the engineer who’s on-call. Thresholds seem like a good and reasonable idea, but they
don’t work. That’s a very strong claim, but it’s closer to the truth than the opposite—
claiming that thresholds work.

The problem is that a threshold also needs a duration: how long the metric value must
remain past the threshold until the alert triggers. Consider the chart in Figure 6-8
from the previous section (QPS at 1-second resolution). Without a duration, a thres‐
hold at QPS less than 100 would trigger seven times in 30 seconds: the five second
stall, and the third and thirteenth data points. That’s “too noisy” in the parlance of
monitoring and alerting, so what about a threshold at QPS less than 50? Surely, a 50%
drop in QPS—from 100 QPS to 50 QPS—signals a problem worth alerting a human.
Sorry, the alert never triggers: the lowest data point is 50 QPS, which is not less than
50 QPS.

This example seems contrived but it’s not, and it gets worse. Suppose you add a
5-second duration to the alert, and reset the threshold to QPS less than 100. Now the
alert only triggers after the five-second stall. But what if the stall wasn’t a stall? What
if there was a network blip that caused packet loss during those five seconds, so the
problem was neither MySQL nor the application? The poor on-call human who was
alerted is on a wild goose chase.

Monitoring and Alerting | 225

I know it seems like I’m tailoring the example to suit my point, but all joking aside:
thresholds are notoriously difficult to perfect, where perfect means that it alerts only
on truly legitimate problems—no false-positives.

Alert on User Experience and Objective Limits
There are two proven solutions that work in lieu of thresholds:

• Alert on what users experience•
• Alert on objective limits•

From “North Star” on page 3 and “Key Performance Indicators” on page 181, there
are only two MySQL metrics that users experience: response time and errors. These
are reliable signals not only because users experience them, but because they cannot
be false-positive. A change in QPS might be a legitimate change in user traffic. But
a change in response time can only be explained by a change in response time. The
same is true for errors.

With microservices, the user might be another application. In
that case, normal response times could be very low (tens of milli‐
seconds), but the monitoring and alerting principles are the same.

Thresholds and duration are simpler for response time and errors, too, because we
can imagine the abnormal conditions past the thresholds. For example, presume the
normal P99 response time for an application is 200 milliseconds, and the normal
error rate is 0.5 per second. If P99 response time increased to 1 second (or more)
for a full a minute, would that be a bad user experience? If yes, then make those the
threshold and duration. If errors increased to 10 per second for a full 20 seconds,
would that be a bad user experience? If yes, then make those the threshold and
duration.

For a more concrete example, let’s clarify the implementation of the previous example
where 200 milliseconds is the normal P99 response time. Measure and report P99
response time every five seconds (see “Query Response Time” on page 188). Create a
rolling one minute alert on the metric that triggers when the last 12 values are greater
than one second. (Since the metric is reported every five seconds, there are 60 / 5
seconds = 12 values/minute.) From a technical point of view, a sustained 5x increase
in query response time is drastic and merits investigation—it’s probably an early
warning that a larger problem is brewing and, if ignored, will cause an application
outage. But the intention of the alert is more practical than technical: if users are
used to subsecond responses from the application, then one-second responses are
noticeably sluggish.

226 | Chapter 6: Server Metrics

Objective limits are minimum or maximum values that MySQL cannot pass. These
are common objective limits external to MySQL:

• Zero free disk space•
• Zero free memory•
• 100% CPU utilization•
• 100% storage IOPS utilization•
• 100% network utilization•

MySQL has many max system variables, but these are the most common ones that
affect applications:

• max_connections•
• max_prepared_stmt_count•
• max_allowed_packet•

There’s one more object limit that has surprised more than one engineer: maximum
AUTO_INCREMENT value. MySQL does not have a native metric or method for checking
if an AUTO_INCREMENT column is approaching its maximum value. Instead, common
MySQL monitoring solutions create a metric by executing a SQL statement similar
to Example 6-7, which was written by renowned MySQL expert Shlomi Noach in
“Checking for AUTO_INCREMENT capacity with single query”.

Example 6-7. SQL statement that checks maximum AUTO_INCREMENT

SELECT
 TABLE_SCHEMA,
 TABLE_NAME,
 COLUMN_NAME,
 DATA_TYPE,
 COLUMN_TYPE,
 IF(
 LOCATE('unsigned', COLUMN_TYPE) > 0,
 1,
 0
) AS IS_UNSIGNED,
 (
 CASE DATA_TYPE
 WHEN 'tinyint' THEN 255
 WHEN 'smallint' THEN 65535
 WHEN 'mediumint' THEN 16777215
 WHEN 'int' THEN 4294967295
 WHEN 'bigint' THEN 18446744073709551615
 END >> IF(LOCATE('unsigned', COLUMN_TYPE) > 0, 0, 1)
) AS MAX_VALUE,

Monitoring and Alerting | 227

 AUTO_INCREMENT,
 AUTO_INCREMENT / (
 CASE DATA_TYPE
 WHEN 'tinyint' THEN 255
 WHEN 'smallint' THEN 65535
 WHEN 'mediumint' THEN 16777215
 WHEN 'int' THEN 4294967295
 WHEN 'bigint' THEN 18446744073709551615
 END >> IF(LOCATE('unsigned', COLUMN_TYPE) > 0, 0, 1)
) AS AUTO_INCREMENT_RATIO
FROM
 INFORMATION_SCHEMA.COLUMNS
 INNER JOIN INFORMATION_SCHEMA.TABLES USING (TABLE_SCHEMA, TABLE_NAME)
WHERE
 TABLE_SCHEMA NOT IN ('mysql', 'INFORMATION_SCHEMA', 'performance_schema')
 AND EXTRA='auto_increment'
;

What about the other two key performance indicators: QPS and threads running?
Monitoring QPS and threads running is a best practice, but alerting on them is
not. These metrics are pivotal when investigating a legitimate problem signaled by
response time or errors, but otherwise they fluctuate too much to be reliable signals.

If this approach seems radical, remember: these are alerts for engineers using
MySQL, not DBAs.

Cause and Effect
I won’t mince words: when MySQL is slow to respond, the application is the cause the
vast majority (maybe 80%) of the time—in my experience—because the application
drives MySQL. Without it, MySQL is idle. If the application isn’t the cause, there
are a few other common causes of slow MySQL performance. Another application—
any application, not just MySQL—is a likely culprit maybe 10% of the time, as
I discuss later in “Noisy Neighbors” on page 301. Hardware, which includes the
network, causes problems a mere 5% of the time because modern hardware is quite
reliable (especially enterprise-grade hardware, which lasts longer [and costs more]
than consumer-grade hardware). Last and least: I estimate only a 1% chance that
MySQL is the root cause of its own slowness.

Once identified, the cause is presumed to be the root cause, not a side effect of some
prior, unseen cause. For example, application causes presume something like a poorly
written query that, once deployed in production, immediately causes a problem in
MySQL. Or, hardware causes presume something like a degraded storage system
that’s working but significantly slower than usual, which causes MySQL to respond
slowly. When this presumption is false—the identified cause is not the root cause—an
especially pernicious situation occurs. Consider the following sequence of events:

228 | Chapter 6: Server Metrics

1. A network issue lasting 20 seconds causes significant packet loss or low-level1.
network retries.

2. The network issue causes query errors or timeouts (due to packet loss or retries,2.
respectively).

3. Both the application and MySQL log errors (query errors and client errors,3.
respectively).

4. The application retries queries.4.
5. While retrying old queries, the application continues executing new queries.5.
6. QPS increases due to executing new and old queries.6.
7. Utilization increases due to QPS increasing.7.
8. Waits increase due to utilization increasing.8.
9. Timeouts increase due to waits increasing.9.

10. The application retries queries again, which creates a feedback loop.10.

By the time you step into this situation, the problem is apparent but the root cause is
not. You know that everything was normal and stable before the problem: no applica‐
tion changes or deployments; MySQL key performance indicators were normal and
stable; and DBAs confirm that no work was done on their side. That’s what makes
this situation especially pernicious: as far as you can tell, it shouldn’t be happening,
but there’s no denying that it is.

Technically speaking, all causes are knowable because computers are finite and
discrete. But practically speaking, causes are only as knowable as monitoring and
logging allow. In this example, if you have exceptionally good networking monitoring
and application logging (and access to the MySQL error log), you can figure out the
root cause: the 20-second network blip. But that’s a lot easier said than done because
in the midst of this situation—your application is down, customers are calling, and
it’s 4:30 p.m. on a Friday—engineers are focused on fixing the problem, not elucidat‐
ing its root cause. When focused on fixing the problem, it’s easy to see MySQL
as the cause that needs to be fixed: make MySQL run faster and the application
will be OK. But there is no way to fix MySQL in this sense—recall, “MySQL Does
Nothing” on page 124. Since everything was normal before the problem, the goal
is to return to that normal, starting with the application because it drives MySQL.
The correct solution depends on the application, but common tactics are: restarting
the application, throttling incoming application requests, and disabling application
features.

I’m not favoring MySQL. The simple reality is that MySQL is a mature database with
more than 20 years in the field. Moreover, as an open source database, it has been
scrutinized by engineers from all over the world. At this juncture in the storied life of

Monitoring and Alerting | 229

MySQL, inherent slowness is not its weakness. Rather than ask why MySQL is slow,
a more powerful and effective question that leads to a root cause or immediate fix is
“What is causing MySQL to run slowly?”

Summary
This chapter analyzed the spectra of MySQL metrics that are the most important for
understanding the nature of the workload, which accounts for MySQL performance.
The illuminating takeaway points are:

• MySQL performance has two sides: query performance and server performance.•
• Query performance is input; server performance is output.•
• Normal and stable are whatever performance MySQL exhibits for your applica‐•

tion on a typical day when everything is working properly.
• Stability does not limit performance; it ensures that performance—at any level—•

is sustainable.
• MySQL KPIs are response time, errors, QPS, and threads running.•
• The field of metrics comprises six classes of metrics: response time, rate, utiliza‐•

tion, wait, error, and access pattern (seven, if you count internal metrics).
• Metric classes are related: rate increases utilization; utilization pushes back to•

decrease rate; high (maximum) utilization incurs wait; wait timeout incurs error.
• The spectra of MySQL metrics are vast; see “Spectra” on page 187.•
• Resolution means the frequency at which metrics are collected and reported.•
• High resolution metrics (5 seconds or less) reveal important performance details•

that are lost in low resolution metrics.
• Alert on what users experience (like response time) and objective limits.•
• Application issues (your application or another) are the most likely cause of slow•

MySQL performance.
• MySQL server performance is revealed through a spectrum of metrics that are•

the figurative refraction of the workload through MySQL.

The next chapter investigates replication lag.

230 | Chapter 6: Server Metrics

Practice: Review Key Performance Indicators
The goal of this practice is to know the normal and stable values of the four KPIs
for MySQL, as addressed in “Key Performance Indicators” on page 181. To make
this practice interesting first, write down what you think the KPI values are for your
application. You probably have a good idea about QPS; what about response time
(P99 or P999), errors, and threads running?

Start collecting the four “Key Performance Indicators” on page 181, if you’re not
already. Your method depends on the software (or service) that you use to collect
MySQL metrics. Any decent MySQL monitor should collect all four; if your current
solution does not, seriously consider a better MySQL monitor because if it doesn’t
collect key performance indicators, it’s unlikely to collect many of the metrics detailed
in “Spectra” on page 187.

Review at least one full day of KPI metrics. Are the real values close to what you
thought? If response time is higher than you thought, then you know where to begin:
“Query profile” on page 9. If the rate of errors is higher than you thought, then
query table performance_schema.events_errors_summary_global_by_error to see
which error numbers are occurring. Use “MySQL Error Message Reference” to look
up the error code. If threads running is higher than you thought, diagnosis is tricky
because a single thread executes different queries (presuming the application uses a
connection pool). Start with the slowest queries in the query profile. If your query
metric tool reports query load, focus on queries with the highest load; otherwise,
focus on queries with the highest total query time. If necessary, investigate using the
Performance Schema threads table.

Review the KPIs for different periods throughout the day. Are the values stable all
day, or do they decrease in the middle of the night? Are there periods when the
values are abnormal? Overall, what are the normal and stable KPI values for your
application?

Practice: Review Key Performance Indicators | 231

Practice: Review Alerts and Thresholds
The goal of this practice is to help you sleep at night. Whereas charts for MySQL
metrics are front and center, alerts—and configuration of those alerts—are usually
hidden away. Consequently, engineers—especially newly hired engineers—do not
know what alerts lurk in the darkness, waiting to page them while they sleep. Take
a morning or afternoon to shine a light on all your alerts and how they are config‐
ured—their thresholds, if any. And while you’re at it: document the alerts (or update
the current documentation). Review “Wild Goose Chase (Thresholds)” on page 225
and “Alert on User Experience and Objective Limits” on page 226, and adjust or
remove superfluous alerts.

The goal for alerting is simple: every page is legitimate and actionable. Legitimate
means that something is already broken, or certain to break very soon, and it requires
fixing right now. Actionable means that the engineer (who was paged) has the knowl‐
edge, skills, and access to fix it. This is possible with MySQL. Say no to the wild goose
chase and yes to a good night’s sleep.

232 | Chapter 6: Server Metrics

CHAPTER 7

Replication Lag

Replication lag is the delay between the time when a write occurs on a source MySQL
instance and the time when that write is applied on a replica MySQL instance.
Replication lag is inherent to all database servers because replication across a network
incurs network latency.

I’m glad that, as an engineer using MySQL, you don’t have to set up, configure,
and maintain a MySQL replication topology because MySQL replication has become
complex. Instead, this chapter investigates replication lag with respect to perfor‐
mance: what it is, why it happens, what risk it poses, and what you can do about it.

Simple Replication Won the Internet
Simple replication is one reason that MySQL became the most popular open source
relational database server in the world. In the early 2000s, the internet was reemerg‐
ing from the dot-com bubble of the ’90s and online companies were growing fast.
Since replication is required for high availability and also used to scale out reads,
simple replication in early versions of MySQL (v3.23 through v5.5) helped it win
the internet in those heedless days. Early versions of MySQL used single-threaded
statement-based replication (SBR): the source MySQL instance would log the SQL
statements that it executed—yes, the actual SQL statements—and replica instances
would simply re-execute those SQL statements. Replication doesn’t get simpler than
that. Yes, it worked, and yes, it had problems and gotchas. But sometimes the simplest
solution really is the best. Now, more than 20 years later, MySQL replication is
complex, but it still supports statement-based replication.

Technically, yes, replication decreases performance, but you don’t want to run MySQL
without it. It’s not hyperbole to say that replication prevents businesses from failing—
from data loss so catastrophic that, if replication did not prevent it, the company

233

would go out of business. MySQL runs everywhere from hospitals to banks, and
replication keeps invaluable data safe despite inevitable failures. Although replication
decreases performance and lag is a risk, these costs are cancelled by the overwhelm‐
ing benefits of replication.

This chapter investigates replication lag. There are six major sections. The first intro‐
duces basic MySQL replication terminology and traces the technical origins of repli‐
cation lag—why it happens despite fast databases and networks. The second discusses
the main causes of replication lag. The third explains the risk of replication lag: data
loss. The fourth provides a conservative configuration for enabling a multithreaded
replica, which dramatically reduces lag. The fifth looks at monitoring replication lag
with high precision. The sixth explains why replication lag is slow to recover.

Foundation
MySQL has two types of replication:

Source to replica
Source to replica replication is the fundamental type of replication that MySQL
has used for more than 20 years. Its venerable status means that MySQL replica‐
tion implies source to replica replication. MySQL replication is old, but make no
mistake: it’s fast, reliable, and still widely used today.

Group Replication
Group Replication is the new type of replication that MySQL has supported as of
MySQL 5.7.17 (released December 12, 2016). Group Replication creates a MySQL
cluster of primary and secondary instances that use a group consensus protocol
to synchronize (replicate) data changes and manage group membership. That’s
a long way of saying that Group Replication is MySQL clustering, and it is the
future of MySQL replication and high availability.

This chapter covers only traditional MySQL replication: source to replica. Group
Replication is the future, but I defer coverage to the future because, at the time of this
writing, neither I nor any DBAs that I know have significant experience operating
Group Replication at scale. Moreover, another innovation built on top of Group
Replication is becoming the standard: InnoDB Cluster.

Additionally, Percona XtraDB Cluster and MariaDB Galera Cluster are database
cluster solutions similar to MySQL Group Replication in purpose but different in
implementation. I defer coverage of these solutions, too, but keep them in mind
if you’re running a Percona or MariaDB distribution of MySQL and looking for a
database cluster solution.

234 | Chapter 7: Replication Lag

MySQL source to replica replication is ubiquitous. Although the inner workings of
replication are beyond the scope of this book, understanding the foundation illumi‐
nates the causes of replication lag, the risk that it poses, and how to reduce both.

Replication terminology changed as of MySQL 8.0.22 and 8.0.26–
released in 2020 and 2021, respectively. For a summary of the
changes, see “MySQL Terminology Updates”. I use the current
terminology, metrics, variables, and commands in this book.

Source to Replica
Figure 7-1 illustrates the foundation of MySQL source to replica replication.

Figure 7-1. Foundation of MySQL source to replica replication

A source MySQL instance (or source for short) is any MySQL server to which clients
(the application) write data. MySQL replication supports multiple writable sources,
but this is rare due to the difficulty of handling write conflicts. Consequently, a single
writable source is the norm.

Foundation | 235

A replica MySQL instance (or replica for short) is any MySQL server that replicates
data changes from a source. Data changes are modifications to rows, indexes, sche‐
mas, and so forth. Replicas should always be read-only to avoid split-brain (see
“Split-Brain Is the Greatest Risk” on page 297). Usually, a replica replicates from a
single source, but multisource replication is an option.

Arrows in Figure 7-1 represent the flow of data changes from the source to a replica:

1. During transaction commit, data changes are written to binary logs (or binlogs for1.
short) on the source: on-disk files that record data changes in binary log events
(see “Binary Log Events” on page 237).

2. An I/O thread on the replica dumps (reads) binary log events from the source2.
binary logs. (A binlog dump thread on the source is dedicated to this purpose.)

3. The I/O thread on the replica writes the binary log events to relay logs on the3.
replica: on-disk files that are a local copy of the source binary logs.

4. A SQL thread (or applier thread) reads binary log events from the relay log.4.
5. The SQL thread applies the binary log events to the replica data.5.
6. The replica writes the data changes (applied by the SQL thread) to its binary logs.6.

By default, MySQL replication is asynchronous: on the source, the transaction com‐
pletes after step 1 and the remaining steps happen asynchronously. MySQL supports
semisynchronous replication: on the source, the transaction completes after step 3.
That is not a typo: MySQL semisynchronous replication commits after step 3; it does
not wait for step 4 or 5. “Semisynchronous Replication” on page 244 goes into more
detail.

Replicas are not required to write binary logs (step 6), but it’s standard practice
for high availability because it allows a replica to become the source. This is how a
database failover works: when the source dies or is taken down for maintenance, a
replica is promoted to become the new source. Let’s call the instances old source and
new source. Eventually, a DBA will restore the old source (or clone a new instance
to replace it) and make it replicate from the new source. In the old source, the
previously idle I/O thread, relay logs, and SQL threads (shaded darkly in Figure 7-1)
start working. (The I/O thread in the old source will connect to the new source,
which activates its previously idle binlog dump thread.) From the new source binary
logs, the old source replicates writes that it missed while it was offline. While doing
so, the old source reports replication lag, but this is a special case addressed in
“Post-Failure Rebuild” on page 241. That’s failover in a nutshell; but of course, it’s
more complex in practice.

236 | Chapter 7: Replication Lag

Binary Log Events
Binary log events are a low-level detail that you probably won’t encounter (even
DBAs don’t often mess around in binary logs), but they are a direct result of transac‐
tions executed by the application. Therefore, it’s important to understand what the
application is trying to flush through the plumbing of replication.

The following presumes row-based replication (RBR), which is the
default binlog_format as of MySQL 5.7.7.

Replication focuses on transactions and binary log events, not individual writes,
because data changes are committed to binary logs during transaction commit, at
which point writes have already completed. At a high level, the focus is transactions
because they are meaningful to the application. At a low level, the focus is binary log
events because they are meaningful to replication. Transactions are logically repre‐
sented and delineated in binary logs as events, which is how multithread replicas can
apply them in parallel—more on this in “Reducing Lag: Multithreaded Replication”
on page 246. To illustrate, let’s use a simple transaction:

BEGIN;
UPDATE t1 SET c='val' WHERE id=1 LIMIT 1;
DELETE FROM t2 LIMIT 3;
COMMIT;

The table schemas and data do not matter. What’s important is that the UPDATE
changes one row in table t1, and the DELETE deletes three rows from table t2.
Figure 7-2 illustrates how that transaction is committed in a binary log.

Four contiguous events constitute the transaction:

• An event for BEGIN•
• An event for the UPDATE statement with one row image•
• An event for the DELETE statement with three row images•
• An event for COMMIT•

At this low level, SQL statements essentially disappear and replication is a stream
of events and row images (for events that modify rows). A row image is a binary
snapshot of a row before and after modification. This is an important detail because
a single SQL statement can generate countless row images, which yields a large
transaction that might cause lag as it flows through replication.

Foundation | 237

Figure 7-2. Binary log events for a transaction

Let’s stop here because we’re a little deeper into MySQL internals than we should
be for this book. Although brief, this introduction to binary log events makes the
following sections more intelligible because now you know what’s flowing through
the plumbing of replication and why the foci are transactions and binary log events.

Replication Lag
Referring back to Figure 7-1, replication lag occurs when applying changes on a
replica (step 5) is slower than committing changes on the source (step 1). The steps
in between are rarely a problem (when the network is working properly) because
MySQL binary logs, the MySQL network protocol, and typical networks are very fast
and efficient.

Apply changes is short for apply transactions or apply events,
depending on the context.

The I/O thread on a replica can write binary log events to its relay logs at a high rate
because this is a relatively easy process: read from network, write sequentially to disk.

238 | Chapter 7: Replication Lag

But a SQL thread has a much more difficult and time-consuming process: applying
the changes. Consequently, the I/O thread outpaces the SQL thread, and replication
lag looks like Figure 7-3.

Figure 7-3. MySQL replication lag

Strictly speaking, a single SQL thread does not cause replication lag, it’s only the
limiting factor. The cause, in this case, is high transaction throughput on the source,
which is a good problem if the application is busy, but a problem nonetheless. More
on causes in the next section. The solution is more SQL threads, which is covered
later in “Reducing Lag: Multithreaded Replication” on page 246.

Semisynchronous replication does not solve or preclude replication lag. When semi‐
synchronous replication is enabled, for each transaction, MySQL waits for a replica
to acknowledge that it has written the binary log events for the transaction to its
relay logs—step 3 in Figure 7-1. On a local network, replication lag as depicted
in Figure 7-3 can still occur. If semisynchronous reduces replication lag, it’s only
a side-effect of network latency throttling transaction throughput on the source.
“Semisynchronous Replication” on page 244 goes into more detail.

Lag is inherent to replication, but make no mistake: MySQL replication is very fast.
A single SQL thread can easily handle thousands of transactions per second. The first
reason is simple: replicas do not execute the full workload that the source executes.
Notably, replicas do not execute reads (presuming replicas aren’t used to serve reads).
The second reason requires a few lines to explain. As noted in “Binary Log Events” on

Foundation | 239

page 237, this chapter presumes row-based replication (RBR). Consequently, replicas
do not execute SQL statements: they apply binary log events. That saves replicas
a lot of time because they’re given the end result—data changes—and told where
to apply them. That can be significantly faster than finding the matching rows to
update, which is what the source had to do. As a result of these two reasons, replicas
can be nearly idle even while the source is very busy. Nevertheless, three causes can
overwhelm replication.

Causes
Replication lag has three main causes: transaction throughput, post-failure rebuilds,
and network issues. A section for each follows.

Transaction Throughput
Transaction throughput causes replication lag when the rate on the source is greater
than the rate at which SQL (applier) threads on the replica can apply changes. When
this happens because the application is legitimately busy, it’s usually not feasible to
reduce the rate on the source. Instead, the solution is to increase the rate on the rep‐
lica by running more SQL (applier) threads. Focus on improving replica performance
by tuning multithreaded replication, as outlined in “Reducing Lag: Multithreaded
Replication” on page 246.

Large transactions—ones that modify an inordinate number of rows—have a greater
impact on replicas than the source. On the source, a large transaction that takes
two seconds to execute, for example, most likely does not block other transactions
because it runs (and commits) in parallel. But on a single-threaded replica, that large
transactions blocks all other transactions for two seconds (or however long it takes to
execute on the replica—it might be less due to less contention). On a multithreaded
replica, other transactions continue to execute, but that large transaction still blocks
one thread for two seconds. The solution is smaller transactions. More on this in
“Large Transactions (Transaction Size)” on page 282.

Transaction throughput is not always driven by the application: backfilling, deleting,
and archiving data are common operations that can cause massive replication lag
if they don’t control the batch size, as forewarned in “Batch Size” on page 115. In
addition to proper batch size, these operations should monitor replication lag and
slow down when replicas begin to lag. It’s better for an operation to take one day than
to lag a replica by one second. “Risk: Data Loss” on page 241 explains why.

At some point, transaction throughput will exceed the capacity of a single MySQL
instance—source or replica. To increase transaction throughput, you must scale out
by sharding the database (see Chapter 5).

240 | Chapter 7: Replication Lag

Post-Failure Rebuild
When MySQL or hardware fails, the instance is fixed and put back into the replica‐
tion topology. Or a new instance is cloned from an existing instance and takes the
place of the failed instance. Either way, the replication topology is rebuilt to restore
high availability.

Replicas are used for several purposes, but this chapter discusses
only replicas used for high availability.

The fixed (or new) instance will take minutes, hours, or days to catch up: to replicate
all the binary log events that it missed while it was offline. Technically, this is replica‐
tion lag, but in practice you can ignore it until the fixed instance has caught up. Once
caught up, any lag is legitimate.

Since failure is inevitable and catching up takes time, the only solution is to be aware
that the replication lag is due to a post-failure rebuild and wait.

Network Issues
Network issues cause replication lag by delaying the transfer of binary log events from
source to replica—step 2 in Figure 7-1. Technically, the network—not replication—is
lagging, but quibbling about semantics doesn’t change the end result: the replica is
behind the source—a long way of saying lagged. In this case, you must enlist network
engineers to fix the root cause: the network.

The risk caused by a network issue is mitigated by communication and teamwork:
talk with the network engineers to ensure that they know what’s at stake for the
database when there’s a network issue—it’s quite possible they don’t know because
they’re not DBAs or engineers using MySQL.

Risk: Data Loss
Replication lag is data loss.

This is true by default for MySQL because the default is asynchronous replication.
Fortunately, semisynchronous replication is an option that will not lose any commit‐
ted transactions. Let’s first examine the risk with asynchronous replication, then it
will be clear how semisynchronous replication mitigates the risk.

Risk: Data Loss | 241

1 “MySQL Group Replication…Synchronous or Asynchronous Replication?” by renowned MySQL expert
Frédéric Descamps explains the synchronicity of Group Replication.

As noted in “Foundation” on page 234, I defer Group Replication
to the future. Moreover, the synchronicity of Group Replication
requires careful explanation.1

Asynchronous Replication
Figure 7-4 shows the point in time at which the source crashed.

Figure 7-4. Crash on MySQL source with asynchronous replication

Before crashing, the source committed five transactions to its binary logs. But when it
crashed, the replica I/O thread had only fetched the first three transactions. Whether
or not the last two transactions are lost depends on two factors: the cause of the crash,
and whether a DBA must failover.

If MySQL is the cause of the crash (most likely due to a bug), then it will automat‐
ically restart, perform crash recovery, and resume normal operations. (By default,
replicas automatically reconnect and resume replication, too.) And since MySQL is
truly durable when properly configured, the committed transactions 4 and 5 are not
lost. There’s just one problem: crash recovery can take several minutes or hours to
complete—it depends on several factors outside the scope of this book. If you can
wait, crash recovery is the ideal solution because no committed transactions are lost.

If hardware or operating system is the cause of the crash, or if the crashed MySQL
instance cannot be recovered quickly enough for any reason, then a DBA will fail‐
over—promote a replica to the source—and transactions 4 and 5 are lost. This is not
an ideal solution, but it’s standard practice because the alternative is worse: a long

242 | Chapter 7: Replication Lag

outage (downtime) while recovering the crashed MySQL instance, which requires
exacting data forensics that could take hours or days.

No data is lost when DBAs failover for maintenance (operations).
And since nothing has failed, some DBAs call this successover.

This example is not contrived to prove the point that replication lag is data loss; it’s
inevitable with asynchronous replication because all hardware and software (includ‐
ing MySQL) fails eventually.

The only mitigation is a strict adherence to minimizing replication lag. Do not, for
example, disregard 10 seconds of replication as “not too far behind.” Instead, treat it
as “we’re at risk of losing the last 10 seconds of customer data.” The odds are in your
favor that MySQL or the hardware won’t fail at the worst possible moment—when the
replica is lagging—but let me relate a cautionary tale about hardware failure.

One week when I was on-call, I received an alert around 9 a.m. That’s not too early; I
was already done with my first cup of coffee. One alert quickly turned into thousands.
Database servers everywhere—in multiple, geographically distributed data centers—
were failing. It was so bad that I immediately knew: the problem was not hardware or
MySQL, because the odds of that many simultaneous but unrelated failures was infin‐
itesimal. Long story short, one of the most experienced engineers in the company had
not had his coffee that morning. He had written and run a custom script that went
terribly awry. The script didn’t simply reboot servers at random, it turned them off.
(In data centers, server power is programmatically controlled through a backplane
called Intelligent Platform Management Interface.) Killing power is akin to hardware
failure.

The moral of that story is: failure can be caused by human error. Be prepared.

Asynchronous replication is not a best practice because virtually unmitigated data
loss is antithetical to the purpose of a persistent data store. Countless companies
around the world have been successful with asynchronous replication for more than
20 years. (But “common practice” doesn’t necessarily mean “best practice.”) If you
run asynchronous replication, MySQL DBAs and experts will not scoff as long as the
following three conditions are true:

• You monitor replication lag with a heartbeat (see “Monitoring” on page 250).•
• You are alerted any time (not just during business hours) when replication lag is•

too high.
• You treat replication lag as data loss and fix it immediately.•

Risk: Data Loss | 243

Many successful companies use asynchronous MySQL replication, but there’s a higher
standard to strive for: semisynchronous replication.

Semisynchronous Replication
When semisynchronous (or semisync) replication is enabled, the source waits for at
least one replica to acknowledge each transaction. Acknowledge means that the replica
has written the binary log events for the transaction to its relay logs. Therefore,
the transaction is safely on disk on the replica, but the replica hasn’t applied it yet.
(Consequently, replication lag still occurs with semisync replication, as mentioned in
“Replication Lag” on page 238.) Acknowledgment when received, not when applied,
is why it’s called semisynchronous, not fully synchronous.

Let’s replay the source crash from “Asynchronous Replication” on page 242, but now
with semisynchronous replication enabled. Figure 7-5 shows the point in time at
which the source crashed.

Figure 7-5. Crash on MySQL source with semisynchronous replication

With semisynchronous replication, every committed transaction is guaranteed to
have replicated to at least one replica. Committed transaction in this context means
that the COMMIT statement executed by the client has returned—the transaction is
complete from the client’s point of view. That’s the usual, high-level understanding
of a committed transaction, but down in the plumbing of replication, the technical
details differ. The following four steps are an extreme simplification of how a transac‐
tion commits when binary logging and semisynchronous replication are enabled:

1. Prepare transaction commit1.
2. Flush data changes to binary log2.
3. Wait for acknowledgment from at least one replica3.

244 | Chapter 7: Replication Lag

2 I presume sync_binlog = 1.

4. Commit transaction4.

An InnoDB transaction commit is a two-phase commit. In between the two phases
(steps 1 and 4), data changes are written and flushed to the binary logs, and MySQL
waits for at least one replica to acknowledge the transaction.2

In Figure 7-5, the dashed outline of the fourth transaction indicates that at least one
replica has not acknowledged it. The source crashed after step 2, so the transaction
is in the binary logs, but the commit did not complete. The client COMMIT statement
will return an error (not from MySQL because it has crashed; it will probably receive
a network error).

Whether or not the fourth transaction is lost depends on the same two factors as
before (“Asynchronous Replication” on page 242): the cause of the crash, and whether
a DBA must failover. The important difference is that only one uncommitted transac‐
tion per connection can be lost when semisynchronous replication is enabled. Since
the transaction did not complete and the client received an error, the potential loss
of the uncommitted transaction is less worrisome. The keyword is less worrisome:
there are edge cases that mean you cannot simply disregard the lost transaction. For
example, what if a replica acknowledges the transaction but the source crashes before
it receives the acknowledgment? The answer would descend further into replication
plumbing than we need to go. The point is: semisynchronous replication guarantees
that all committed transactions have replicated to at least one replica, and only one
uncommitted transaction per connection can be lost on failure.

The fundamental purpose of a persistent data store is to persist data, not lose it. So
why isn’t semisynchronous the default for MySQL? It’s complicated.

There are successful companies that operate MySQL at scale using semisynchronous
replication. One notable company is GitHub, the former employer of renowned
MySQL expert Shlomi Noach who wrote a blog post about their use of semisynchro‐
nous replication: “MySQL High Availability at GitHub”.

Semisynchronous replication reduces availability—that’s not a typo. Although it safe‐
guards transactions, that safeguard means that the current transaction for every
connection might stall, timeout, or fail on COMMIT. By contrast, COMMIT with asynchro‐
nous replication is essentially instant and guaranteed as long as the storage on the
source is working.

By default, semisynchronous replication reverts to asynchronous when there are not
enough replicas or the source times out waiting for an acknowledgment. This can be
effectively disabled by configuration, but the best practice is to allow it because the
alternative is worse: a complete outage (the application cannot write to the source).

Risk: Data Loss | 245

3 In the MySQL manual, the full term is applier worker thread, but I think worker is redundant since every
thread is a worker of some type.

Performance with semisynchronous replication requires that the source and replicas
are on a fast, local network because network latency implicitly throttles transaction
throughput on the source. Whether or not this is an issue depends on the local
network where you run MySQL. A local network should have submillisecond latency,
but that must be verified and monitored, else transaction throughput will suffer the
whims of network latency.

Whereas asynchronous replication works without any special configuration, semisyn‐
chronous requires specific configuration and tuning. Neither is burdensome for a
DBA, but they are careful work nevertheless.

I think semisynchronous replication is the best practice because
data loss is never acceptable—full stop. I advise you to learn more
about semisync replication, test and verify it on your network,
and use it if possible. Start by reading “Semisynchronous Replica‐
tion” in the MySQL manual. Or, if you want to be truly prepared
for the future, look into Group Replication and InnoDB Cluster:
the future of MySQL replication and high availability. Although
semisynchronous replication and Group Replication elicit debate
among MySQL experts, one point garners universal agreement:
preventing data loss is a virtue.

Reducing Lag: Multithreaded Replication
By default, MySQL replication is asynchronous and single-threaded: one SQL thread
on the replica. Even semisynchronous replication is single-threaded by default. The
single SQL thread does not cause replication lag—“Causes” on page 240 are the three
main causes—but it is the limiting factor. The solution is multithreaded replication
(or parallel replication): multiple SQL threads applying transactions in parallel. On a
multithreaded replica, the SQL threads are called applier threads.3 You can still call
them SQL threads if you want—the terms are synonymous—but the MySQL manual
uses applier in the context of multithreaded replication.

The solution is simple for us as engineers using MySQL, but it’s not simple for
MySQL. As you can imagine, transactions cannot be applied in random order:
there might be dependencies among transactions. For example, if one transaction
inserts a new row, and second transaction updates that row, obviously the second
transaction must run after the first. Transaction dependency tracking is the art and
science (and magic) of determining which transactions—from a serialized record
(the binary logs)—can be applied in parallel. It’s both fascinating and impressive, but

246 | Chapter 7: Replication Lag

it’s beyond the scope of this book, so I encourage you to watch the video “MySQL
Parallel Replication (LOGICAL_CLOCK): all the 5.7 (and some of the 8.0) details” by
renowned MySQL expert Jean-François Gagné.

Strictly speaking, one system variable enables multithreaded replication, but I suspect
that you are not going to be surprised when I tell you: it’s more complicated in
practice. Configuring MySQL replication is beyond the scope of this book, but multi‐
threaded replication is too important not to give you a conservative starting point. A
conservative starting point means that the following configuration might not yield
the full performance of multithreaded replication. Consequently, you (or DBAs) must
tune multithreaded replication—as in “MySQL Tuning” on page 39—to maximize
its potential while at the same time taking into account the various ramifications of
parallel replication.

The rest of this section is nontrivial MySQL configuration that
should only be done by an engineer with experience configuring
MySQL in high performance, high availability environments. The
system variables in Table 7-1 will not affect data integrity or dura‐
bility in any way, but they will affect performance on source and
replica instances. Be aware that:

• Replication affects high availability.•
• Global transaction identifiers and log-replica-updates must•

be enabled.
• Configuring MySQL requires elevated MySQL privileges.•
• System variables change between MySQL versions and•

distributions.
• MariaDB uses different system variables: see “Parallel Replica‐•

tion” in the MariaDB documentation.

Be very careful when configuring MySQL, and thoroughly read the
relevant sections of the manual for your version and distribution of
MySQL.

Table 7-1 lists three system variables as a conservative starting point for enabling and
configuring multithreaded replication. Variable names changed as of MySQL 8.0.26,
so the table lists old and new variable names, followed by a recommended value. I do
not recommend using multithreaded replication in MySQL older than 5.7.22 because
certain replication features from 8.0 were backported into this version.

Reducing Lag: Multithreaded Replication | 247

Table 7-1. System variables to enable multithreaded replication

MySQL 5.7.22 through 8.0.25 MySQL 8.0.26 and newer Value
slave_parallel_workers replica_parallel_workers 4

slave_parallel_type replica_parallel_type LOGICAL_CLOCK

slave_preserve_commit_order replica_preserve_commit_order 1

Set all three variables on all MySQL instances in the replication topology that are used
for high availability (that can be promoted to source).

Setting replica_parallel_workers greater than zero is the one system variable that
enables multithreaded replication. Four applier threads is a good start; you must tune
to find the optimized number of applier threads for your workload and hardware.
But, like a magic spell, it must be invoked with replica_parallel_type to conjure
the full performance of multithreaded replication. Even as of MySQL 8.0.26, the
default for replica_parallel_type is DATABASE, which only applies transactions in
parallel for different databases—effectively, only one applier thread per database.
This is historical: it was the first type of parallelization. But today, the best practice
is replica_parallel_type = LOGICAL_CLOCK because it has no drawbacks when
replica_preserve_commit_order is enabled, and it provides better parallelization
because it applies transactions in parallel regardless of database.

replica_preserve_commit_order is disabled by default, but I do not think that is
a best practice because it allows a multithreaded replica to commit out of order:
commit transactions in a different order than they were committed on the source.
For example, transactions 1, 2, 3 committed in that order on the source might
commit in order 3, 1, 2 on the replica. Multithreaded replication only commits
out of order when safe (when there are no ordered dependencies among transac‐
tions), and table data is (eventually) the same, but committing out of order has
consequences that you and especially the DBAs managing MySQL must understand
and handle. “Replication and Transaction Inconsistencies” in the MySQL manual
documents the consequences. When replica_preserve_commit_order is enabled,
transactions are still applied in parallel, but some transactions might wait for earlier
transactions to commit first—this is how commit order is preserved. Although rep
lica_preserve_commit_order reduces the effectiveness of parallelization, it’s the best
practice until you and the DBAs verify that its consequences are acceptable and
handled.

Multithreaded replication works the same for Group Replication.

248 | Chapter 7: Replication Lag

Since Table 7-1 is a conservative starting point for enabling multithreaded repli‐
cation, it does not enable the latest transaction dependency tracking: WRITESET.
MySQL transaction dependency tracking is determined by the system variable
binlog_transaction_dependency_tracking. The default is COMMIT_ORDER, but the
latest is WRITESET. Benchmarks show that WRITESET achieves greater parallelization
than COMMIT_ORDER. At the time of this writing, WRITESET is less than four years old:
it was introduced in MySQL 8.0 which became GA on April 19, 2018. As a matter
of technology, you should use WRITESET because it achieves better performance on
multithread replicas. But as a matter of policy, it’s up to you (or your DBA) to decide
when a feature has matured enough to be used in production. To use WRITESET on
MySQL 5.7, you must enable system variable transaction_write_set_extraction.
On MySQL 8.0 this system variable is enabled by default but deprecated as of MySQL
8.0.26.

Create a new replica to test and tune multithreaded replica. A new
replica poses little to no risk since it does not serve the application
or high availability.

There’s one more system variable that you should experiment with: binlog_
group_commit_sync_delay. By default, this variable is disabled (zero) because, as
its name suggests, it adds an artificial delay to group commit. Delays are usually
bad for performance, but group commit delay is a rare exception—sometimes.
On the source, transactions are committed to a binary log in groups, which is an
internal optimization aptly named group commit. Adding a delay to group commit
creates larger groups: more transactions committed per group. Multithreaded repli‐
cation does not depend on group commit, but it can benefit from larger group
commits because more transactions at once helps transaction dependency tracking
find more opportunities for parallelization. To experiment with binlog_group_com
mit_sync_delay, start with a value of 10000: the unit is microseconds, so that’s 10
milliseconds. This will increase transaction commit response time by 10 milliseconds
on the source, but it should also increase transaction throughput on the replica.
Tuning group commit size with respect to multithreaded replica applier transaction
throughput is not easy due to a lack of MySQL metrics. If you go this route, read “A
Metric for Tuning Parallel Replication in MySQL 5.7” by renowned MySQL expert
Jean-François Gagné.

Multithreaded replication is a best practice, but it requires nontrivial MySQL config‐
uration and possibly tuning to achieve maximum performance. Benchmarks and
real-world results vary, but multithreaded replication can more than double transac‐
tion throughput on replicas. For performance gains like that, it’s well worth the effort.

Reducing Lag: Multithreaded Replication | 249

4 Technically, it’s the event timestamp plus its execution time. Also, the clock skew between source and replica is
subtracted from Seconds_Behind_Source when it’s reported by SHOW REPLICA STATUS.

But most importantly: multithreaded replication significantly reduces replication lag,
which is critical when using asynchronous replication.

Monitoring
The best practice for monitoring replication lag is to use a purpose-built tool.
But first, let’s examine the infamous MySQL metric for replication lag: Seconds_
Behind_Source, as reported by SHOW REPLICA STATUS.

Before MySQL 8.0.22, the replica lag metric and command were
Seconds_Behind_Master and SHOW SLAVE STATUS, respectively.
As of MySQL 8.0.22, the metric and command are Seconds_
Behind_Source and SHOW REPLICA STATUS. I use the current met‐
ric and command in this book.

Seconds_Behind_Source equals the current time on the replica minus the timestamp
of the binary log event that the SQL thread is executing.4 If the current time on
the replica is T = 100 and the SQL thread is executing a binary log event with
timestamp T = 80, then Seconds_Behind_Source = 20. When everything is working
(replication lag notwithstanding), Seconds_Behind_Source is relatively accurate, but
it’s notorious for three problems:

• The first problem occurs when everything is not working. Since Seconds_•
Behind_Source relies solely on binary log event timestamps, it does not figura‐
tively see (or care about) any issues before the binary log events arrive. If the
source or network has a problem that causes binary log events not to arrive,
or to arrive slowly, then the SQL thread applies all binary log events and Sec
onds_Behind_Source reports zero lag because, from the SQL thread point of
view, that is technically correct: zero events, zero lag. But from our point of view,
we know that’s wrong: not only is there replication lag, there’s an issue before the
replica, too.

• The second problem is that Seconds_Behind_Source is notorious for flap‐•
ping between zero and a nonzero value. For example, one moment Sec
onds_Behind_Source reports 500 seconds of lag, the next moment it reports
zero lag, and a moment later it reports 500 seconds of lag again. This problem
is related to the first problem: when events trickle into the relay logs because
of an issue before the replica, the SQL thread oscillates noticeably between
working (applying the latest event) and waiting (for the next event). That causes

250 | Chapter 7: Replication Lag

Seconds_Behind_Source to flap between a value (SQL thread is working) and
zero (SQL thread is waiting).

• The third problem is that Seconds_Behind_Source does not precisely answer the•
question that engineers really want to know: when will the replica catch up? When
will replica lag be effectively zero because it’s applying the latest transactions from
the source? Presuming everything is working (replication lag notwithstanding),
the value of Seconds_Behind_Source only indicates how long ago the current
event being applied was executed on the source; it does not precisely indicate how
long until the replica catches up to the source. The reason is that replicas apply
transactions at a different rate than the source.
For example, suppose that 10 transactions execute concurrently on the source,
and each transaction takes 1 second. The total execution time is 1 second and the
rate is 10 TPS because the transactions executed concurrently on the source. On
a single-threaded replica, which applies each transaction serially, the worst-case
total execution time and rate could be 10 seconds and 1 TPS, respectively. I
emphasize could be because it’s also possible that the replica applies all 10 transac‐
tions significantly faster because the replica isn’t burdened with the full workload
and it doesn’t execute SQL statements (it applies binary log events). This could
happen if the 1 second execution time per transaction on the source was due to a
terrible WHERE clause that accessed a million rows but only matched and updated
a single row. The lucky replica updates that single row in almost no time. On
a multithreaded replica (see “Reducing Lag: Multithreaded Replication” on page
246), the total execution time and rate vary based on at least two factors: the
number of applier threads and whether the transactions can be applied in paral‐
lel. Either way, the point is: replicas apply transactions at a different rate than the
source, and since there’s no way to know the difference, Seconds_Behind_Source
cannot—and does not—precisely indicate when a replica will catch up.

Despite these problems, Seconds_Behind_Source provides value: it’s a ballpark esti‐
mate of how long until the replica catches up to the source: seconds, minutes, hours,
days? More on recovery time in the next section.

MySQL 8.0 introduced significantly better visibility into MySQL replication, includ‐
ing replication lag. There’s just one catch: it provides primitives, not ready-to-use
metrics like Seconds_Behind_Source. If you’re using MySQL 8.0, talk with your
DBA about Performance Schema replication tables that expose a new wealth of
information about MySQL replication. Otherwise, the best practice for monitoring
replication lag is to use a purpose-built tool. Instead of relying on binary log event
timestamps, tools use their own timestamps. A tool writes timestamps at regular
intervals to a table, then reports replication lag as the difference of the current time
on a replica minus the latest timestamp in the table. Fundamentally, the approach

Monitoring | 251

is similar to how MySQL calculates Seconds_Behind_Source, but there are three
important differences when using a tool:

• A tool writes timestamps at regular intervals, which means that it’s not suscepti‐•
ble to the first problem of Seconds_Behind_Source. If there’s any issue before
the binary log events arrive, replication lag from a tool will immediately begin to
increase because its timestamp (written to a table) stops incrementing.

• A tool precludes the second problem of Seconds_Behind_Source: replication lag•
from a tool does not flap; it can only be (effectively) zero if its timestamp is
(effectively) equal to the current time.

• A tool can measure replication lag and write timestamps at subsecond intervals•
(every 200 milliseconds, for example). A single second of replication lag is too
much for high performance applications—or any application when using asyn‐
chronous replication.

The de facto tool for monitoring MySQL replication is pt-
heartbeat. (Timestamps written by replication lag monitoring
tools are called heartbeats.) This venerable tool has seen more than
a decade of use and success because it’s simple and effective. Use it
to start monitoring replication lag, or use it to learn how to write
your own tool.

Recovery Time
When a replica has a significant amount of lag, the most pressing question is often
“When will it recover?” When will the replica catch up to the source so that it’s exe‐
cuting (applying) the latest transactions? There’s no precise answer. But replication
lag always recovers after the cause is fixed. I return to this notion at the end of the
section. Until then, there’s one more characteristic of replication lag to understand.

Another common and important characteristic of replication lag is the inflection
point between increasing lag and when the replica begins to recover (decreasing lag).
In Figure 7-6, the inflection point is marked by the dotted line at time 75.

When replication lag begins, the situation looks increasingly dire as lag increases. But
this is normal. Presuming the replica isn’t broken, the SQL threads are working hard,
but the cause has not been fixed yet, so the backlog of binary log events continues to
increase. As long as the cause persists, replication lag will increase. But again: this is
normal. Very soon after the cause is fixed, the proverbial tide will turn, creating an
inflection point in the graph of replication lag, as shown in Figure 7-6 at time 75. The
replica is still lagged, but it’s applying binary log events faster than the I/O thread is

252 | Chapter 7: Replication Lag

dumping them into the relay logs. Post–inflection point, replica lag usually decreases
with noticeable and satisfying haste.

Figure 7-6. Inflection point in graph of replication lag

Recovery time is not very meaningful before the inflection point because, in theory,
if the cause is never fixed, then the replica will never recover. When replication lag
is increasing steadily (pre–inflection point), don’t be distracted by the value; instead,
focus on fixing the cause. Lag will increase until the cause is fixed.

Recovery time is more meaningful after the inflection point and it’s usually faster
than Seconds_Behind_Source or the value reported by tools. As explained in “Moni‐
toring” on page 250, despite replication lag, a single SQL thread is very fast because
the replica doesn’t have to execute the full workload that besets the source. As a
result, replicas often apply transactions faster than the source, which is how replicas
eventually catch up.

In my experience, if replication lag is measured in days, it often recovers in hours
(post–inflection point)—perhaps many hours, but hours nevertheless. Likewise, sev‐
eral hours of lag often recovers in a few hours, and several minutes of lag often
recovers before you can finish a cup of coffee.

Returning to the notions that there’s no precise answer and lag always recovers,
the end result is that a precise recovery time is not as useful or meaningful as it
first seems. Even if you could know the exact time that a replica will recover, you
cannot do anything but wait. MySQL replication is remarkably dogged. As long as the
replica doesn’t break, MySQL will recover—it always does. Fix the cause as quickly
as possible, wait for the inflection point, then replication lag indicates a worst case
recovery time: MySQL usually recovers more quickly because SQL threads are fast.

Recovery Time | 253

Summary
This chapter investigated MySQL replication lag. Replication is the foundation of
MySQL high availability, and replication lag is data loss. The main takeaways are:

• MySQL has three types of replication: asynchronous, semisynchronous, and•
Group Replication.

• Asynchronous (async) replication is the default.•
• Asynchronous replication can lose numerous transactions on failure.•
• Semisynchronous (semisync) replication does not lose any committed transac‐•

tions on failure, only one uncommitted transaction per client connection.
• Group Replication is the future of MySQL replication and high availability (but•

not covered in this chapter or book): it turns MySQL instances into a cluster.
• The foundation of MySQL async and semisync replication is sending transac‐•

tions, encoded as binary log events, from a source to a replica.
• Semisync replication makes a transaction commit on the source wait for at least•

one replica to acknowledge receiving and saving (not applying) the transaction.
• A replica has an I/O thread that fetches binary log events from the source and•

stores them in local relay logs.
• A replica has, by default, one SQL thread that executes binary log events from the•

local relay logs.
• Multithreaded replication can be enabled to run multiple SQL threads (applier•

threads).
• Replication lag has three main causes: (high) transaction throughput on the•

source, a MySQL instance catching up after failure and rebuild, or network
issues.

• SQL (applier) threads are the limiting factor in replication lag: more SQL threads•
reduce lag by applying transaction in parallel.

• Semisync replication can incur replication lag.•
• Replication lag is data loss, especially with asynchronous replication.•
• Enabling multithreaded replication is the best way to reduce replication lag.•
• The MySQL metric for replication lag, Seconds_Behind_Source, can be mislead‐•

ing; avoid relying on it.
• Use a purpose-built tool to measure and report MySQL replication lag at subsec‐•

ond intervals.

254 | Chapter 7: Replication Lag

• Recovery time from replication lag is imprecise and difficult to calculate.•
• MySQL will recover, eventually—it always does once the cause is fixed.•

The next chapter examines MySQL transactions.

Practice: Monitor Subsecond Lag
The goal of this practice is to monitor subsecond replication lag and determine: is
your replica lagging beyond the 1-second resolution that Seconds_Behind_Source
can report? For example, is your replica lagging by 800 milliseconds (which is
far greater than network latency)? A tool is needed to monitor subsecond lag:
pt-heartbeat.

To complete this practice, you need:

• A compute instance to run pt-heartbeat that can connect to the source and a•
replica

• MySQL SUPER or GRANT OPTION privileges to create a user; or ask your DBA to•
create the user

• MySQL CREATE privileges to create a database; or ask your DBA to create the•
database

Every MySQL configuration and environment is different, so adapt the following
example as needed.

1. Create a database for pt-heartbeat to use:1.
CREATE DATABASE IF NOT EXISTS `percona`;

You can use a different database name; I just chose percona as an example. If you
change the database name, be sure to change it in the following commands.

2. Create a MySQL user for pt-heartbeat and grant it the privileges that it needs:2.
CREATE USER 'pt-heartbeat'@'%' IDENTIFIED BY 'percona';
GRANT CREATE, INSERT, UPDATE, DELETE, SELECT ON `percona`.`heartbeat`
 TO 'pt-heartbeat'@'%';
GRANT REPLICATION CLIENT ON *.* TO 'pt-heartbeat'@'%';

You can use a different MySQL username and password; I just chose pt-
heartbeat and percona (respectively) as an example. You should definitely
change the password if running this in production. (The password is set by the
IDENTIFIED BY clause.)

Practice: Monitor Subsecond Lag | 255

3. Run pt-heartbeat in update-mode to write heartbeats to a table in the percona3.
database:

pt-heartbeat \
 --create-table \
 --database percona \
 --interval 0.2 \
 --update \
 h=SOURCE_ADDR,u=pt-heartbeat,p=percona

A quick breakdown of those command-line arguments:

--create-table

Automatically create the heartbeat table in the specified database, if needed.
The first GRANT statement allows the pt-heartbeat user to CREATE the table.
If not using this option, read the pt-heartbeat documentation to learn how
to create the heartbeat table manually.

--database

Specify the database to use. pt-heartbeat requires this option.

--interval

Write heartbeats every 200 milliseconds. This option determines the maxi‐
mum resolution of pt-heartbeat, which is the smallest amount of lag that it
can detect. The default is 1.0 second, which is not subsecond. The maximum
resolution is 0.01 seconds (10 milliseconds). Therefore, 0.2 seconds is a little
conservative, so experiment with lower values (high resolution).

--update

Write heartbeats to heartbeat table in --database every --interval
seconds.

h=SOURCE_ADDR,u=pt-heartbeat,p=percona

The data source name (DSN) to connect to MySQL. The h specifies the
hostname. Change SOURCE_ADDR to the hostname of the source instance. The
u specifies the username. The p specifies the password.
Read the pt-heartbeat documentation for further details on command-line
options and the DSN.
If the command is successful when run, it prints nothing and runs silently.
Else, it prints an error and exits.

256 | Chapter 7: Replication Lag

4. Run pt-heartbeat again but in monitor mode to print replication lag:4.
pt-heartbeat \
 --database percona \
 --interval 0.5 \
 --monitor \
 h=REPLICA_ADDR,u=pt-heartbeat,p=percona

Change REPLICA_ADDR in the DSN to the hostname of a replica instance.

In monitor mode, --interval is how often to check and print replication lag. The
update mode instance of pt-heartbeat is writing heartbeats every 0.2 seconds (200
milliseconds), but the monitor mode instance of pt-heartbeat checks and prints
replication lag a little more slowly (every 0.5 seconds) for easy reading.

If the command in step four is successful when run, it prints lines like:

0.00s [0.00s, 0.00s, 0.00s]
0.20s [0.00s, 0.00s, 0.00s]
0.70s [0.01s, 0.00s, 0.00s]
0.00s [0.01s, 0.00s, 0.00s]

The first field is the current replication lag. The three fields between the brackets are
moving averages for the last 1, 5, and 15 minutes of replication lag.

In this example, the first line shows zero lag. Then I intentionally lagged my replica
for 1.1 seconds. Consequently, the second line shows 200 milliseconds of replica‐
tion lag, which is the maximum resolution because the update-mode instance of
pt-heartbeat is running with --interval 0.2. Half a second later (due to the
monitor-mode instance of pt-heartbeat running with --interval 0.5), the tool
reports 0.7 seconds (700 milliseconds) of replication lag on the third line. But then
my fake 1.1 seconds of lag ends, so the last (fourth) line correctly reports zero lag.

This example is contrived, but it demonstrates how pt-heartbeat can monitor and
report subsecond replication lag. Try it on your network—the tool is safe to use.

Practice: Monitor Subsecond Lag | 257

CHAPTER 8

Transactions

MySQL has nontransactional storage engines, like MyISAM, but InnoDB is the
default and the presumptive norm. Therefore, practically speaking, every MySQL
query executes in a transaction by default, even a single SELECT statement.

This chapter does not apply if you happen to be using another
storage engine, like Aria or MyRocks. But more than likely, you’re
using InnoDB, in which case: every MySQL query is a transaction.

From our point of view as engineers, transactions appear conceptual: BEGIN, execute
queries, and COMMIT. Then we trust MySQL (and InnoDB) to uphold the ACID prop‐
erties: atomicity, consistency, isolation, and durability. When the application work‐
load—queries, indexes, data, and access patterns—is well optimized, transactions are
a nonissue with respect to performance. (Most database topics are a nonissue when
the workload is well optimized.) But behind the scenes, transactions invoke a whole
new world of considerations because upholding ACID properties while maintaining
performance is not an easy feat. Fortunately, MySQL shines at executing transactions.

As with replication lag in the previous chapter, the inner workings of transactions are
beyond the scope of this book, but understanding a few basic concepts is pivotal to
avoiding common problems that hoist transactions from the lowest levels of MySQL
to the tops of engineers’ minds. A little understanding avoids a lot of problems.

This chapter examines MySQL transactions with respect to avoiding common prob‐
lems. There are five major sections. The first descends into row locking with respect
to transaction isolation levels. The second examines how InnoDB manages concur‐
rent data access while guaranteeing ACID properties: MVCC and the undo logs. The
third describes the history list length and how it indicates problematic transactions.

259

The fourth enumerates common problems with transactions to avoid. The fifth is a
foray into reporting transaction details in MySQL.

Row Locking
Reads do not lock rows (except for SELECT…FOR SHARE and SELECT…FOR UPDATE),
but writes always lock rows. That’s simple and expected, but the tricky question is:
which rows must be locked? Of course, the rows being written must be locked. But
in a REPEATABLE READ transaction, InnoDB can lock significantly more rows than it
writes. This section illustrates and explains why. But first, we must shift terminology
into the vernacular of InnoDB data locking.

Since tables are indexes (recall “InnoDB Tables Are Indexes” on page 41), rows
are index records. InnoDB row locking is discussed in terms of locking records, not
locking rows, because of index record gaps. A gap is a range of values between two
index records, as illustrated in Figure 8-1: a primary key with two records, two
pseudo-records (infimum and supremum), and three gaps.

Figure 8-1. Index record gaps

Records are depicted as solid squares with index values inside: 2 and 5 in this
example. Pseudo-records are depicted as solid arrows on each end of the index:
infimum and supremum. Every InnoDB B-tree index has these two pseudo-records:
infimum represents all index values less than the minimum record (2 in this exam‐
ple); supremum represents all index values greater than the maximum record (5 in
this example). Index records don’t begin at 2 or end at 5; technically, they begin
and end at the infimum and supremum, and examples in this section reveal the
importance of this detail. Gaps are depicted as dashed squares with no index value.
If the primary key is a single unsigned four-byte integer, then the three gaps are (in
interval notation):

• [0, 2)•
• (2, 5)•
• (5, 4294967295]•

260 | Chapter 8: Transactions

When discussing row locking, the term record is used instead of row because records
have gaps, but it could be misleading to say that rows have gaps. For example, if
the application has two rows with values 2 and 5, that does not entail a gap in
the rows comprising values 3 and 4 because maybe these aren’t valid values for the
application. But with respect to an index, between record values 2 and 5, values 3 and
4 constitute a valid record gap (presuming an integer column). To put it succinctly:
the application deals in rows; InnoDB row locking deals in records. Examples in
this section demonstrate that gap locks are surprisingly pervasive and arguably more
important than individual record locks.

The term data locks refers to all types of locks. There are many types of data locks, but
Table 8-1 lists the fundamental InnoDB data locks.

Table 8-1. Fundamental InnoDB data locks

Lock type Abbreviation Locks gap Locks
Record lock REC_NOT_GAP Locks a single record

Gap lock GAP ✓ Locks the gap before (less than) a record

Next-key lock ✓ Locks a single record and the gap before it

Insert intention lock INSERT_INTENTION Allows INSERT into gap

The best way to understand the fundamental InnoDB data locks is with real transac‐
tions, real locks, and illustrations.

As of MySQL 8.0.16, data locks are easy to examine using Per‐
formance Schema tables data_locks and data_lock_waits. The
following examples use these Performance Schema tables.
In MySQL 5.7 and older, you must first SET GLOBAL innodb_sta
tus_output_locks=ON, which requires SUPER MySQL privileges,
then execute SHOW ENGINE INNODB STATUS and shift through the
output to find the relevant transaction and locks. It’s not easy—
even experts strain to carefully parse the output. Since MySQL 5.7
is not the current release, I do not use its output in this section; but
since MySQL 5.7 is still widely used, refer to my blog post “MySQL
Data Locks: Mapping 8.0 to 5.7” for an illustrated guide to mapping
data lock output from MySQL 5.7 to MySQL 8.0.

Let’s reuse the tried and true table elem but simplified as shown in Example 8-1.

Row Locking | 261

Example 8-1. Table elem simplified

CREATE TABLE `elem` (
 `id` int unsigned NOT NULL,
 `a` char(2) NOT NULL,
 `b` char(2) NOT NULL,
 `c` char(2) NOT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_a` (`a`)
) ENGINE=InnoDB;

+----+-----+----+----+
| id | a | b | c |
+----+-----+----+----+
| 2 | Au | Be | Co |
| 5 | Ar | Br | C |
+----+-----+----+----+

The table elem is nearly the same as before, but now the nonunique index idx_a only
covers column a, and there are only two rows, which create two primary key values
as shown earlier in Figure 8-1. Since row locks are really index record locks and there
are no indexes on columns b and c, you can ignore these two columns; they’re shown
only for completeness and the nostalgia of simpler chapters, like Chapter 2 when row
locks were just rows locks.

Since autocommit is enabled by default, the following examples begin with BEGIN to
start an explicit transaction. Locks are released when a transaction ends; therefore,
the transaction is kept active—no COMMIT or ROLLBACK—to examine the data locks
that the SQL statement following BEGIN has acquired (or is waiting to acquire).
At the end of each example, data locks are printed by querying the table perfor
mance_schema.data_locks.

Record and Next-Key Locks
An UPDATE on table elem using the primary key to match rows acquires four data
locks in the default transaction isolation level, REPEATABLE READ:

BEGIN;
UPDATE elem SET c='' WHERE id BETWEEN 2 AND 5;

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks
WHERE object_name = 'elem';

262 | Chapter 8: Transactions

+------------+-----------+---------------+-------------+-----------------------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+-----------------------+
NULL	TABLE	IX	GRANTED	NULL
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
PRIMARY	RECORD	X	GRANTED	supremum pseudo-record
PRIMARY	RECORD	X	GRANTED	5
+------------+-----------+---------------+-------------+-----------------------+

Before illustrating and explaining these data locks, I will briefly describe what each
row means:

• The first row is a table lock, as indicated by the lock_type column. InnoDB is•
a row-level locking storage engine, but MySQL also requires table locks—refer
back to “Lock time” on page 13. There will be a table lock for every table
referenced by queries in the transaction. I include table locks for completeness,
but ignore them since we’re focusing on record locks.

• The second row is a record lock on primary key value 2, as indicated by all the•
columns. The cryptic column is lock_mode: X means an exclusive lock (S [not
shown] means a shared lock), and REC_NOT_GAP means a record lock.

• The third row is a next-key lock on the supremum pseudo-record. In column•
lock_mode, a solitary X or S means an exclusive or shared next-key lock, respec‐
tively. Imagine it as X,NEXT_KEY.

• The fourth row is a next-key lock on primary key value 5. Again, the solitary X in•
column lock_mode means an exclusive next-key lock. Imagine it as X,NEXT_KEY.

Figure 8-2 illustrates the impact of these data locks.

Figure 8-2. Record and next-key locks on primary key, REPEATABLE READ transaction

Locked records are shaded; unlocked records are white. The record lock on primary
key value 2 is shaded darkly. This record is locked because its corresponding row
matches the table condition: id BETWEEN 2 AND 5.

The next-key lock on primary key value 5 is shaded medium-dark, and the gap before
it is shaded lightly. This record is locked because its corresponding row matches the
table condition, too. The gap before this record is locked because it’s a next-key lock.

Row Locking | 263

The gap comprises the nonexistent primary key values 3 and 4 (to which there are no
corresponding rows).

Similarly, the next-key lock on the supremum pseudo-record is shaded medium-dark,
and the gap before it is shaded lightly. The gap comprises all primary key values
greater than 5. The intriguing question is: why lock the supremum pseudo-record,
which includes all primary key values greater than 5, when the table condition
excludes primary key values greater than 5? The answer is equally intriguing, but
I must defer it until “Gap Locks” on page 266.

Let’s confirm that the gaps are locked by trying to insert a row (using another
transaction with autocommit enabled):

mysql> INSERT INTO elem VALUES (3, 'Au', 'B', 'C');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

+------------+-----------+------------------------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+------------------------+-------------+-----------+
| PRIMARY | RECORD | X,GAP,INSERT_INTENTION | WAITING | 5 |
....

mysql> INSERT INTO elem VALUES (6, 'Au', 'B', 'C');
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

+------------+-----------+--------------------+-------------+--------------- ----+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+--------------------+-------------+--------------------+
| PRIMARY | RECORD | X,INSERT_INTENTION | WAITING | supremum pseudo... |
...

The first INSERT times out trying to acquire an insert intention lock on the gap
between values 2 and 5, which is where the new value (3) would be inserted.
Although column lock_data lists value 5, this record is not locked because this not
a record or next-key lock: it’s an insert intentions lock, which is a special type of
gap lock (for INSERT); therefore, it locks the gap before the value 5. More on insert
intention locks in “Insert Intention Locks” on page 273.

The second INSERT times out trying to acquire a next-key lock on the supremum
pseudo-record because the new value, 6, is greater than the current maximum value,
5, so it would be inserted between the maximum record and the supremum pseudo-
record.

These INSERT statements prove that Figure 8-2 is not wrong: nearly the entire index
is locked except for values less than 2. Why does InnoDB use next-key locks that lock
the gaps instead of record locks? Because the transaction isolation level is REPEATABLE
READ, but that’s only part of the answer. The complete answer is not straightforward,
so bear with me for a moment. By locking the gaps before the affected records,

264 | Chapter 8: Transactions

1 To go down the rabbit hole, follow “A Critique of ANSI SQL Isolation Levels”: a classic read on the subject of
ANSI SQL-92 isolation levels.

next-key locks isolate the entire range of records that the query accesses, which
is the I in ACID: isolation. That prevents a phenomenon called phantom rows (or
phantom reads) when, at a later time, a transaction reads rows that it did not read
at an earlier time. The new rows are phantoms because, like a ghost, they appear
mysteriously. (Phantom is the actual term in the ANSI SQL-92 standard.) Phantom
rows violate the principle of isolation, which is why certain transaction isolation
levels forbid them. Now the truly mysterious part of this explanation: the ANSI
SQL-92 standard allows phantom rows in REPEATABLE READ but InnoDB prevents
them with next-key locking. But let’s not go down the proverbial rabbit hole by asking
why InnoDB prevents phantom rows in REPEATABLE READ. Knowing why doesn’t
change the fact, and it’s not uncommon for database servers to implement transaction
isolation levels differently than the standard.1 For completeness, however, know that
the ANSI SQL-92 standard forbids phantom rows only in the highest transaction
isolate level: SERIALIZABLE. InnoDB supports SERIALIZABLE, but I don’t cover it
in this chapter because it’s not commonly used. REPEATABLE READ is the default in
MySQL and InnoDB uses next-key locks to prevent phantom rows in REPEATABLE
READ.

Transaction isolation level READ COMMITTED disables gap locking, which includes
next-key locks. To prove it, change the transaction isolation level to READ COMMITTED:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
BEGIN;
UPDATE elem SET c='' WHERE id BETWEEN 2 AND 5;

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks
WHERE object_name = 'elem';
+------------+-----------+---------------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+-----------+
NULL	TABLE	IX	GRANTED	NULL
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	5
+------------+-----------+---------------+-------------+-----------+

SET TRANSACTION applies once to the next transaction. After the
next transaction, subsequent transactions use the default transac‐
tion isolation level. See SET TRANSACTION for details.

Row Locking | 265

The same UPDATE statement in a READ COMMITTED transaction acquires records locks
only on the matching rows, as illustrated in Figure 8-3.

Figure 8-3. Record locks on primary key, READ COMMITTED transaction

Why not use READ COMMITTED? That question relates to an access pattern trait
(“Transaction Isolation” on page 136) that makes it entirely application-specific, even
query-specific. In a transaction, READ COMMITTED has two important side effects:

• The same read statement can return different rows if re-executed.•
• The same write statement can affect different rows if re-executed.•

These side effects explain why InnoDB does not need to use a consistent snapshot
for reads or lock the gaps for writes: READ COMMITTED allows the transaction to read
or write different records (for committed changes) at different times. (“MVCC and
the Undo Logs” on page 276 defines consistent snapshot.) Carefully consider these
side effects with respect to your application. If you are certain they will not cause
a transaction to read, write, or return incorrect data, then READ COMMITTED reduces
locks and undo logs, which helps improve performance.

Gap Locks
Gap locks are purely prohibitive: they prevent other transactions from inserting rows
into the gap. That’s all they do.

Multiple transactions can lock the same gap because all gaps locks are compatible
with other gap locks. But since gap locks prevent other transactions from inserting
rows into the gap, only one transaction can insert rows into a gap when it’s the
only transaction locking the gap. Two or more locks on the same gap prevent all
transactions from inserting rows into the gap.

The purpose of a gap lock is narrow: prevent other transactions from inserting rows
into the gap. But the creation of a gap lock is wide: any query that accesses the gap.
Reading nothing can create a gap lock that blocks inserting rows:

BEGIN;
SELECT * FROM elem WHERE id = 3 FOR SHARE;

266 | Chapter 8: Transactions

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks
WHERE object_name = 'elem';
+------------+-----------+-----------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+-----------+-------------+-----------+
| NULL | TABLE | IS | GRANTED | NULL |
| PRIMARY | RECORD | S,GAP | GRANTED | 5 |
+------------+-----------+-----------+-------------+-----------+

Prima facie, that SELECT seems innocuous: a SELECT in REPEATABLE READ uses a
consistent snapshot, and FOR SHARE only creates shared locks, so it won’t block other
reads. More importantly, the SELECT doesn’t match any rows: table elem has primary
key values 2 and 5, not 3. No rows, no locks—right? Wrong. By accessing the gap with
READ REPEATABLE and SELECT…FOR SHARE, you summon a lone gap lock: Figure 8-4.

Figure 8-4. Lone gap lock

I call it a lone gap lock because it doesn’t accompany a next-key lock or insert
intention lock; it stands alone. All gap locks—shared or exclusive—prevent other
transactions from inserting rows into the gap. That innocuous SELECT statement is
actually an insidious INSERT blocker. The larger the gap, the larger the block, which
the next section illustrates with a secondary index.

The easy creation of gap locks by any access to the gap is part of the answer to
the intriguing question in “Record and Next-Key Locks” on page 262: why lock the
supremum pseudo-record, which includes all primary key values greater than 5, when
the table condition excludes primary key values greater than 5? First, let me dial the
intrigue to maximum. Here’s the original query and its data locks:

BEGIN;
UPDATE elem SET c='' WHERE id BETWEEN 2 AND 5;

+------------+-----------+---------------+-------------+------------------------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+------------------------+
NULL	TABLE	IX	GRANTED	NULL
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
PRIMARY	RECORD	X	GRANTED	supremum pseudo-record
PRIMARY	RECORD	X	GRANTED	5
+------------+-----------+---------------+-------------+------------------------+

Row Locking | 267

Now, here’s the same query but with an IN clause instead of a BETWEEN clause:

BEGIN;
UPDATE elem SET c='' WHERE id IN (2, 5);

+------------+-----------+---------------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+-----------+
NULL	TABLE	IX	GRANTED	NULL
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	5
+------------+-----------+---------------+-------------+-----------+

Both transactions are REPEATABLE READ, and both queries have the exact same
EXPLAIN plan: range access on primary key. But the new query acquires record locks
only on the matching rows. What is this magic? Figure 8-5 shows what’s happening
for each query.

Figure 8-5. Range access for BETWEEN versus IN, REPEATABLE READ transaction

Row access for BETWEEN happens as you might expect: from 2 to 5 and everything
between. In simplistic terms, the sequence of row access for BETWEEN is:

1. Read row at index value 21.
2. Row matches: record lock2.
3. Next index value: 53.
4. Traverse the gap from 2 to 54.
5. Read row at index value 55.
6. Row matches: next-key lock6.
7. Next index value: supremum7.

268 | Chapter 8: Transactions

8. Traverse the gap from 5 to supremum8.
9. End of the index: next-key lock9.

But the sequence of row access for IN is much simpler:

1. Read row at index value 21.
2. Row matches: record lock2.
3. Read row at index value 53.
4. Row matches: record lock4.

Despite having the exact same EXPLAIN plan and matching the same rows, the quer‐
ies access rows differently. The original query (BETWEEN) accesses the gaps; therefore,
it uses next-key locks to lock the gaps. The new query (IN) does not access the gaps;
therefore, it uses record locks. But make no mistake: the IN clause does not preclude
gap locking. If the new query table condition is IN (2, 3, 5), that accesses the gap
between value 2 and 5 and causes a gap lock (not a next-key lock):

BEGIN;
UPDATE elem SET c='' WHERE id IN (2, 3, 5);

+------------+-----------+---------------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+-----------+
NULL	TABLE	IX	GRANTED	NULL
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	5
PRIMARY	RECORD	X,GAP	GRANTED	5
+------------+-----------+---------------+-------------+-----------+

You have a lone gap lock: X,GAP. But notice: there is no next-key lock on the
supremum pseudo-record because IN (2, 3, 5) does not access that gap. Mind
the gap.

Gap locking is easy to disable by using READ COMMITTED. A READ COMMITTED transac‐
tion doesn’t need gap locks (or next-key locks) because records in the gap are allowed
to change, and each query accesses the latest latest changes (committed rows) when it
executes. Even the lone gap lock summoned by SELECT * FROM elem WHERE id = 3
FOR SHARE is quashed by READ COMMITTED.

Secondary Indexes
Secondary indexes introduce potentially wide-ranging consequences with respect to
row locking, especially nonunique indexes. Recall that simplified table elem (Exam‐
ple 8-1) has a nonunique secondary index on column a. With that in mind, let’s see

Row Locking | 269

how the following UPDATE in a REPEATABLE READ transaction locks records on the
secondary index and the primary key:

BEGIN;
UPDATE elem SET c='' WHERE a BETWEEN 'Ar' AND 'Au';

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks
WHERE object_name = 'elem'
ORDER BY index_name;
+------------+-----------+---------------+-------------+------------------------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+------------------------+
NULL	TABLE	IX	GRANTED	NULL
a	RECORD	X	GRANTED	supremum pseudo-record
a	RECORD	X	GRANTED	'Au', 2
a	RECORD	X	GRANTED	'Ar', 5
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	5
+------------+-----------+---------------+-------------+------------------------+

Figure 8-6 illustrates those six records locks: four on the secondary index and two on
the primary key.

Figure 8-6. Next-key locks on secondary index, REPEATABLE READ transaction

The UPDATE only matches two rows, but it locks the entire secondary index, which
prevents inserting any values. The locks on the secondary index are similar to those
in Figure 8-2. But now there is a next-key lock on the first record in the secondary
index record: tuple ('Ar', 5), where 5 is the corresponding primary key value.
This next-key lock isolates the range from new duplicate “Ar” values. For example, it
prevents inserting the tuple ('Ar', 1), which sorts before ('Ar', 5).

270 | Chapter 8: Transactions

Normally, InnoDB does not lock an entire secondary index. That happens in these
examples only because there are only two index records (in both the primary key
and the nonunique secondary index). But recall “Extreme Selectivity” on page 86: the
lower the selectivity, the larger the gaps. As an extreme example, if a nonunique index
has 5 unique values evenly distributed over 100,000 rows, that is 20,000 records per
row (100,000 rows / 5 cardinality), or 20,000 records per gap.

The lower the index selectivity, the larger the record gaps.

READ COMMITTED avoids gap locking, even for nonunique secondary indexes because
only matching rows are locked with record locks. But let’s not make it too easy on
ourselves; let’s keep examining InnoDB data locks on nonunique secondary indexes
for different kinds of data changes.

At the end of the previous section, changing the BETWEEN clause to an IN clause
averted gap locking, but that does not work with a nonunique index. In fact, InnoDB
adds a gap lock in this case:

BEGIN;
UPDATE elem SET c='' WHERE a IN ('Ar', 'Au');

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks
WHERE object_name = 'elem'
ORDER BY index_name;
+------------+-----------+---------------+-------------+------------------------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+------------------------+
| a | RECORD | X,GAP | GRANTED | 'Au', 2 |
...

I removed the original data locks from the output (they’re identical) to highlight the
new gap lock on tuple ('Au', 2). Strictly speaking, this gap lock is redundant with
the next-key lock on the same tuple, but it does not result in incorrect locking or
data access. Therefore, just let it be and never forget: InnoDB is full of wonders and
mysteries. And what would life be without a few of those?

It’s important to examine data locks because InnoDB is full of surprises. Although
this section is detailed and meticulous, it’s barely below the surface—InnoDB locking
is deep, and in the depths hide secrets. For example, what data locks might InnoDB
require if “Au” is changed to “Go”? Let’s examine the data locks of that change:

Row Locking | 271

BEGIN;
UPDATE elem SET a = 'Go' WHERE a = 'Au';

+------------+-----------+---------------+-------------+------------------------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+------------------------+
NULL	TABLE	IX	GRANTED	NULL
a	RECORD	X	GRANTED	supremum pseudo-record
a	RECORD	X	GRANTED	'Au', 2
a	RECORD	X,GAP	GRANTED	'Go', 2
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
+------------+-----------+---------------+-------------+------------------------+

Figure 8-7 visualizes those four data locks.

Figure 8-7. Update nonunique secondary index value, REPEATABLE READ transaction

The “Au” value is gone—changed to “Go”—but InnoDB still holds a next-key lock on
the tuple: ('Au', 2). The new “Go” does not have record lock or next-key lock, only
a gap lock before the tuple: ('Go', 2). So what’s locking the new “Go” record? Is this
some kind of REPEATABLE READ side effect? Let’s change the transaction isolation level
and re-examine the data locks:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
BEGIN;
UPDATE elem SET a = 'Go' WHERE a = 'Au';

+------------+-----------+---------------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+---------------+-------------+-----------+
NULL	TABLE	IX	GRANTED	NULL
a	RECORD	X,REC_NOT_GAP	GRANTED	'Au', 2
PRIMARY	RECORD	X,REC_NOT_GAP	GRANTED	2
+------------+-----------+---------------+-------------+-----------+

272 | Chapter 8: Transactions

Switching to READ COMMITTED disables gap locking as expected, but where is the
lock—any lock—on the new “Go” value? “Writes always lock rows,” or at least that’s
what I said at the beginning of “Row Locking” on page 260. And yet, InnoDB reports
no locks for this write…

What if I told you that InnoDB is so optimized that it can lock without locking? Let’s
use the next type of data lock, insert intention, to stare perilously deep into InnoDB
locking and resolve this mystery.

Insert Intention Locks
An insert intention lock is a special type of gap lock that means the transaction will
insert a row into the gap when the gap is not locked by other transactions. Only
gap locks block insert intention locks. (Remember: gap locks include next-key locks
because the latter are a combination of record lock and gap lock.) Insert intention
locks are compatible with (do not block) other insert intention locks. This is impor‐
tant for INSERT performance because it allows multiple transactions to insert different
rows into the same gap at the same time. How does InnoDB handle duplicate keys? I
return to this question after demonstrating other facets of insert intention locks that
make the answer more clear.

Gap locks prevent INSERT. Insert intention locks allow INSERT.

Insert intention locks are special for three reasons:

• Insert intention locks do not lock the gap because, as the term intention implies,•
they represent a future action: inserting a row when there are no gap locks held
by other transactions.

• Insert intention locks are created and reported only when they conflict with gap•
locks held by other transactions; otherwise, insert intention locks are not created
or reported by the transaction inserting the row.

• If an insert intention lock is created, it is used once and released immediately•
once granted; but InnoDB continues to report it until the transaction is complete.

In a sense, insert intention locks aren’t locks because they don’t block access. They’re
more like wait conditions that InnoDB uses to signal when a transaction can proceed
with an INSERT. Granting the insert intention lock is the signal. But if a transaction
doesn’t have to wait because there are no conflict gap locks, then it doesn’t wait, and
you won’t see an insert intention lock because none was created.

Row Locking | 273

Let’s see insert intention locks in action. Start by locking the gap between primary key
values 2 and 5; then, in a second transaction, try to insert a row with primary key
value 3:

-- First transaction
BEGIN;
UPDATE elem SET c='' WHERE id BETWEEN 2 AND 5;

-- Second transaction
BEGIN;
INSERT INTO elem VALUES (3, 'As', 'B', 'C');

+------------+-----------+------------------------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+------------------------+-------------+-----------+
| PRIMARY | RECORD | X,GAP,INSERT_INTENTION | WAITING | 5 |
...

X,GAP,INSERT_INTENTION in column lock_mode is an insert intention lock. It’s also
listed as X,INSERT_INTENTION (not shown) when locking and inserting into the gap
between the maximum record value and the supremum pseudo-record.

The first transaction locks the gap before primary key value 5. That gap lock
blocks the second transaction from inserting into the gap, so it creates an insert
intention lock and waits. Once the first transaction commits (or rolls back), the gap
is unlocked, the insert intention lock is granted, and the second transaction inserts
the row:

-- First transaction
COMMIT;

-- Second transaction
-- INSERT executes

+------------+-----------+------------------------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+------------------------+-------------+-----------+
| NULL | TABLE | IX | GRANTED | NULL |
| PRIMARY | RECORD | X,GAP,INSERT_INTENTION | GRANTED | 5 |
+------------+-----------+------------------------+-------------+-----------+

As noted earlier, InnoDB continues to report an insert intention lock even though,
once granted, it is used once and released immediately. Consequently, it looks like the
gap is locked, but it’s an illusion—a ploy by InnoDB to lure us in deeper. You can
prove that it’s an illusion by inserting another row into the gap at primary key value
4; it does not block. Why does InnoDB continue to report an insert intention lock
that’s not really there? Few mortals know, and it matters not. Look past the illusion to
see it for what it was: in the past, the transaction blocked before inserting a row into
the gap.

274 | Chapter 8: Transactions

2 Thank you to Jakub Łopuszański for revealing and teaching me this secret.

For completeness and a segue into deeper aspects of InnoDB locking, especially with
respect to insert intention locks, here is what you see when an INSERT does not block
on gap locks:

BEGIN;
INSERT INTO elem VALUES (9, 'As', 'B', 'C'); -- Does not block

+------------+-----------+-----------+-------------+-----------+
| index_name | lock_type | lock_mode | lock_status | lock_data |
+------------+-----------+-----------+-------------+-----------+
| NULL | TABLE | IX | GRANTED | NULL |
+------------+-----------+-----------+-------------+-----------+

No record locks at all. That’s how insert intention locks work on the surface, but we
came here to stare perilously deep into InnoDB locking, so let’s go deeper by asking
the question that led us here: why is there no record (or next-key) lock on the newly
inserted row? This is the same mystery from the previous section: no lock on the new
“Go” value.

This is the secret: InnoDB has explicit and implicit locks and it only reports explicit
locks.2 Explicit locks exist as lock structures in memory; therefore, InnoDB can
report them. But implicit locks do not exist: there is no lock structure; therefore,
InnoDB has nothing to report.

In the previous example, INSERT INTO elem VALUES (9, 'As', 'B', 'C'), the
index record for the new row exists, but the row is not committed (because the
transaction has not committed). If another transaction attempts to lock the row, it
detects three conditions:

• The row is not committed.•
• The row belongs to another transaction.•
• The row is not explicitly locked.•

Then magic happens: the requesting transaction—the transaction attempting to lock
the record—converts the implicit lock to an explicit lock on behalf of the owning
transaction—the transaction that created the record. Yes, that means one transaction
creates a lock for another transaction—but that’s not the confusing part. Since the
requesting transaction creates the lock that it’s trying to acquire, at first glance
InnoDB seems to report that the transaction is waiting for a lock that it holds—the
transaction is blocked on itself. There’s a way to see through this illusion, but we’ve
gone too deep.

Row Locking | 275

I hope that, as an engineer using MySQL, you never need to descend to this depth of
InnoDB locking to achieve remarkable performance with MySQL. But I led us down
here for two reasons. First, despite the illusions, the fundamentals of InnoDB row
locking with respect to transaction isolation levels are tractable and applicable. You
are now fantastically well prepared to handle every common InnoDB row locking
issue—and more. Second, InnoDB made me do it because I stared too deeply for too
long; and when it all blurred into one, I knew that I had fallen from the precipice
and could never return. Don’t ask why it locks the supremum pseudo-record beyond
the table condition range. Don’t ask why it has redundant gap locks. Don’t ask why it
converts implicit locks. Don’t ask; else the questions never cease. Go on; save yourself.

MVCC and the Undo Logs
InnoDB uses multiversion concurrency control (MVCC) and undo logs to accom‐
plish the A, C, and I properties of ACID. (To accomplish the D, InnoDB uses a
transaction log—see “Transaction log” on page 219.) Multiversion concurrency control
means that changes to a row create a new version of the row. MVCC is not unique
to InnoDB; it’s a common method that many data stores use. When a row is first
created, it’s version 1. When it’s first updated, it’s version 2. The basis of MVCC is that
simple, but it quickly becomes more complex and interesting.

Using the term undo logs is an intentional simplification because
the full structure of undo logging is complex. The term undo
logs is sufficiently precise to learn what it does and how it affects
performance.

Undo logs record how to roll back changes to a previous row version. Figure 8-8
shows a single row with five versions and five undo logs that allow MySQL to roll
back changes to previous row versions.

That row harkens back to “InnoDB Tables Are Indexes” on page 41 in Chapter 2: it’s
the row with primary key value 2 in table elem, depicted as the primary key leaf node.
For brevity, I include only the primary key value (2), the row version (v1 through v5),
and column a value (“Au” for v5); the other two columns, b and c, are not shown.

Version 5 (bottom right in Figure 8-8) is the current row that all new transactions
will read, but let’s begin at the beginning. The row is created as iron (“Fe”): version
1 in the upper left corner. There’s an undo log for version 1 because INSERT creates
the first version of a row. Then column a is modified (UPDATE) to change iron to
titanium (“Ti”): version 2. Upon creating version 2, MySQL also creates an undo log
that records how to roll back version 2 changes, which restores version 1. (In the next
paragraph, I explain why version 1 has a solid outline [and a camera icon] but version
2 has a dashed outline.) Then column a is modified to change titanium to silver

276 | Chapter 8: Transactions

(“Ag”): version 3. MySQL creates an undo log that records how to roll back version
3 changes, and this undo log is linked to the previous so that MySQL can, if needed,
roll back and restore version 2. Two more row updates occur: silver to Californium
(“Cf ”) for version 4, and Californium to gold (“Au”) for version 5.

Figure 8-8. One row with five versions and five undo logs

There are two sets of undo logs: insert undo logs for INSERT and
update undo logs for UPDATE and DELETE. For simplicity, I refer only
to undo logs, which comprises both sets.

Version 1 has a solid outline and camera icon because an active transaction (not
shown) holds a consistent snapshot at this point in the history of the database. Let me
unpack that sentence. InnoDB supports four transaction isolation levels, but only two
are commonly used: REPEATABLE READ (the default) and READ COMMITTED.

In a REPEATABLE READ transaction, the first read establishes a consistent snapshot (or
snapshot for short): a virtual view of the database (all tables) at the moment when the
SELECT is executed. The snapshot is held until the end of the transaction and used
by all subsequent reads to access rows only at this point in the history of the data‐
base. Changes made by other transactions after this point are not figuratively visible
within the original transaction. Presuming that other transactions are modifying the
database, the snapshot of the original transaction becomes an increasingly old view of
the database while the transaction remains active (does not COMMIT or ROLLBACK). It’s

MVCC and the Undo Logs | 277

like the original transaction is stuck in the 1980s and the only musicians it listens to
are Pat Benatar, Stevie Nicks, and Taylor Dayne: old but still great.

Since version 5 is the current row, new transactions establish a snapshot from its
point in database history, which is why it has a solid outline and camera icon. The
important question is: why do versions 2, 3, and 4 still exist when there are no
transactions holding snapshots at their respective points in database history? They
exist to maintain the snapshot for version 1 because MySQL uses undo logs to
reconstruct old row versions.

MySQL uses undo logs to reconstruct old row versions for
snapshots.

It’s easy to reconstruct Figure 8-8. First, immediately after inserting the row in
Figure 8-8, start a transaction and establish a snapshot on version 1 of the row by
executing a SELECT statement:

BEGIN;

SELECT a FROM elem WHERE id = 2;

-- Returns row version 1: 'Fe'

Since there’s no COMMIT, that transaction is still active and holding its snapshot on
the entire database, which is simply row version 1 in this example. Let’s call this the
original transaction.

Then update the row four times to create version 5:

-- autocommit enabled
UPDATE elem SET a = 'Ti' WHERE id = 2;
UPDATE elem SET a = 'Ag' WHERE id = 2;
UPDATE elem SET a = 'Cf' WHERE id = 2;
UPDATE elem SET a = 'Au' WHERE id = 2;

autocommit is enabled by default in MySQL, which is why the first (active) transac‐
tion needs an explicit BEGIN but the four UPDATE statements do not. Now MySQL is in
a state represented by Figure 8-8.

If the original transaction executes SELECT a FROM elem WHERE id = 2 again, it
reads version 5 (that’s not a typo) but (figuratively) sees that that version is newer
than the point in database history established by its snapshot. Consequently, MySQL
uses the undo logs to roll back the row and reconstruct version 1, which is consis‐
tent with the snapshot established by the first SELECT statement. When the original
transaction commits, and presuming no other active transactions are holding old

278 | Chapter 8: Transactions

snapshots, then MySQL can purge all the related undo logs because new transactions
always begin with the current row version. When transactions are working well,
the whole process is immaterial to performance. But you already know: problematic
transactions can negatively affect the performance of the entire process. “Common
Problems” on page 282 looks at how and why; but until then, there are more details to
know about MVCC and the undo logs.

In a READ COMMITTED transaction, each read establishes a new snapshot. As a result,
each read accesses the latest committed row version, hence READ COMMITTED. Since
snapshots are used, undo logs are still created, but this is almost never an issue with
READ COMMITTED because each snapshot is held only for the duration of the read. If a
read takes a very long time and there’s significant write throughput on the database,
you might notice the accrual of redo logs (as an increase in history list length).
Otherwise, READ COMMITTED is virtually free of undo logging.

Snapshots only affect reads (SELECT)—they’re never used for writes. Writes always
secretly read current rows, even if the transaction cannot “see” them with SELECT.
This double vision averts chaos. For example, imagine that another transaction
inserts a new row with primary key value 11. If the original transaction tries to
insert a row with the same primary key value, MySQL will return a duplicate key
value because the primary key value exists even though the transaction cannot see
it with SELECT. Moreover, snapshots are very consistent: in a transaction, there is no
way to advance the snapshot to a newer point in database history. If the application
executing the transaction needs a newer snapshot, it must commit the transaction
and begin a new one to establish a new snapshot.

Writes generate undo logs that are kept until the end of the transaction—regardless
of transaction isolation level. Until now, I have focused on undo logs with respect to
reconstructing old row versions for snapshots, but they are also used on ROLLBACK to
revert changes made by writes.

One last thing to know about MVCC: undo logs are saved in the InnoDB buffer
pool. You might recall from “Page flushing” on page 212 that “Misc pages contain
miscellaneous internal data not covered in this book.” Misc pages include undo logs
(and many more internal data structures). Since undo logs reside in buffer pool
pages, they use memory and are periodically flushed to disk.

There are a few system variables and metrics related to the undo logs; as an engineer
using MySQL, you only need to know and monitor one: HLL, first introduced in
“History list length (metric)” on page 205 and explained further in the next section.
Otherwise, MVCC and the undo logs work flawlessly as long as the application avoids
all “Common Problems” on page 282. One such problem is abandoned transactions,
so let’s avoid that by committing the original transaction:

COMMIT;

MVCC and the Undo Logs | 279

3 In storage/innobase/trx/trx0purge.cc of the MySQL 8.0 source code, a debug block logs a warning when HLL is
greater than 2,000,000.

Goodbye, consistent snapshot. Goodbye, undo logs. Hello, history list length…

History List Length
History list length (HLL) gauges the amount of old row versions not purged or
flushed.

Historically (no pun intended), HLL has been difficult to define because the full
structure of undo logging is complex:

Rollback segments
└── Undo slots
 └── Undo log segments
 └── Undo logs
 └── Undo log records

That complexity obscures any simple relationship between undo logging and HLL,
including the unit of measurement. The simplest functional (although not technically
correct) unit of HLL is changes. If the HLL value is 10,000, you can read that as 10,000
changes. By understanding “MVCC and the Undo Logs” on page 276, you know that
changes are kept (not purged) in memory (not flushed) in order to reconstruct old
row versions. Therefore, it’s accurate enough to say that HLL gauges the amount of
old row versions not purged or flushed.

HLL greater than 100,000 is a problem—do not ignore it. Even though the true tech‐
nical nature of HLL is elusive—even for MySQL experts—its usefulness is clear and
undeniable: HLL is the harbinger of transaction-related problems. Always monitor
HLL (see “History list length (metric)” on page 205), alert when it’s too high (greater
than 100,000), and fix the problem, which is undoubtedly one of the common
problems discussed in the next section.

Although I caution against alerting on thresholds in “Wild Goose Chase (Thresh‐
olds)” on page 225, HLL is an exception: alerting when HLL is greater than 100,000 is
reliable and actionable.

Alert on HLL greater than 100,000.

In theory, HLL has a maximum value, but MySQL performance is sure to crumble
long before that value.3 For example, just a few weeks ago as I write this, an instance

280 | Chapter 8: Transactions

of MySQL in the cloud crashed at HLL 200,000, which took a long-running transac‐
tion four hours to amass before crashing MySQL and causing a two-hour outage.

Since undo logging is incredibly efficient, there is huge leeway in HLL with respect
to the value at which MySQL performance will degrade or—worst case—crash. I
have seen MySQL crash at 200,000, but I have also seen it run just fine well beyond
200,000. One thing is certain: if HLL increases unchecked, it will cause a problem:
either noticeably slow performance, or MySQL will crash.

I want you to be the first engineer in history to use MySQL and never have a HLL
problem. That’s a lofty goal, but I encourage you to shoot for the stars. To that end,
I intentionally flooded a MySQL instance with UPDATE statements to drive up the
HLL—to amass thousands of old row versions. Table 8-2 shows the effect of HLL on
query response time for a single row point-select: SELECT * FROM elem WHERE id=5
in an active REPEATABLE READ transaction.

Table 8-2. Effect of HLL on query response time

HLL Response time (ms) Baseline increase (%)
0 0.200 ms

495 0.612 ms 206%

1,089 1.012 ms 406%

2,079 1.841 ms 821%

5,056 3.673 ms 1,737%

11,546 8.527 ms 4,164%

This example does not mean that HLL will increase query response time as shown;
it only proves that HLL can increase query response time. From “MVCC and the
Undo Logs” on page 276 and this section you know why: the SELECT in the active
REPEATABLE READ transaction has a consistent snapshot on row 5 (id=5), but the
UPDATE statements on that row generate new row versions. Each time the SELECT is
executed, it slogs through the undo logs to reconstruct the original row version for
the consistent snapshot, and that slog increases query response time.

Increasing query response time is proof enough, but we’re professionals, so let’s prove
it irrefutably. At the end of “MVCC and the Undo Logs” on page 276, I mention that
undo logs are stored as pages in the InnoDB buffer pool. As a result, the SELECT
should access an inordinate number of pages. To prove this, I use Percona Server
because its enhanced slow query log prints the number of distinct pages accessed
when configured with log_slow_verbosity = innodb:

Query_time: 0.008527
InnoDB_pages_distinct: 366

History List Length | 281

Normally, the SELECT in this example accesses a single page to look up one row by
primary key. But when the consistent snapshot for the SELECT is old (and HLL is
large), InnoDB slogs through hundreds of undo log pages to reconstruct the old row.

MVCC, undo logs, and HLL are all normal and good trade-offs: a little performance
for a lot of concurrency. It’s only when HLL is inordinately large—greater than
100,000–that you should take action to fix the cause, which is almost universally one
of the following common problems.

Common Problems
Transaction problems arise from the queries that constitute the transaction, how
quickly the application executes those queries, and how quickly the application com‐
mits the transaction. Although a single query with autocommit enabled is technically
a transaction that can cause the following problems (except for “Abandoned Transac‐
tions” on page 285), the main focus is multistatement transactions that begin with
BEGIN (or START TRANSACTION), execute several queries, and end with COMMIT (or
ROLLBACK). The performance impact of a multistatement transaction can be greater
than the sum of its parts—the queries that constitute the transaction—because locks
and undo logs are held until the transaction commits (or rolls back). Remember:
MySQL is very patient—almost too patient. If the application does not commit a
transaction, MySQL will wait even until the consequences of that active transaction
ring its death knell.

Fortunately, none of these problems are difficult to detect or fix. HLL is the harbinger
of most transaction problems, which is why you should always monitor it: see “His‐
tory list length (metric)” on page 205 and “History List Length” on page 280. To keep
the details of each problem uncluttered, I explain how to find and report problematic
transactions in “Reporting” on page 286.

Large Transactions (Transaction Size)
A large transaction modifies an inordinate number of rows. How many rows is
inordinate? That is relative, but engineers always know when they see it. For example,
if you see that a transaction has modified 250,000 rows and you know that there are
only 500,000 rows in the whole database, that’s inordinate. (Or at the very least, it’s a
suspicious access pattern: see “Result Set” on page 139.)

Generally, transaction size refers to the number of rows modified:
the more rows modified, the larger the transaction. For MySQL
Group Replication, transaction size has a slightly different meaning:
see “Group Replication Limitations” in the MySQL manual.

282 | Chapter 8: Transactions

If the transaction is running in the default isolation level, REPEATABLE READ, then it’s
safe to presume that it has locked a greater number of records than modified rows
because of gap locking—as detailed in “Row Locking” on page 260. If the transaction
is running in READ COMMITTED isolation level, then it’s only acquiring record locks for
each modified row. Either way, a large transaction is a large source of lock contention
that can severely degrade write throughput and response time.

Don’t forget replication (see Chapter 7): large transactions are a main cause of
replication lag (see “Transaction Throughput” on page 240) and decrease the effec‐
tiveness of multithreaded replication (see “Reducing Lag: Multithreaded Replication”
on page 246).

Large transactions can be noticeably slow to commit (or roll back) as previously
addressed in “MVCC and the Undo Logs” on page 276, “Binary Log Events” on page
237, and Figure 6-7. It’s quick and easy to modify rows because the data changes
happen in memory, but commit is the reckoning when MySQL does significant work
to persist and replicate the data changes.

Smaller transactions are better. How small? That, too, is relative and complicated to
calibrate because, as I just noted, transactions cause a reckoning on commit, which
means you have to calibrate several subsystems. (It’s even more complicated when
you factor in the cloud, which tends to limit and tweak little details, like IOPS.)
Except for bulk operations which require calibrating a batch size (see “Batch Size”
on page 115), calibrating transaction size is not commonly needed because, although
the problem is common, it’s typically a one-off problem: found, fixed, and doesn’t
reoccur (for awhile, at least). “Reporting” on page 286 shows you how to find large
transactions.

The fix is to find the query (or queries) in the transaction that modify too many
rows, and change them to modify fewer rows. But that depends entirely on the query,
its purpose in the application, and why it’s modifying too many rows. Whatever the
reason, Chapters 1–4 equip you to understand and fix the query.

Finally, if you closely follow the principle of least data (see “Principle of Least Data”
on page 97), transaction size may never be a problem.

Long-Running Transactions
A long-running transaction takes too long to complete (commit or roll back). How
long is too long? That depends:

• Longer than acceptable for the application or users•
• Long enough to cause problems (likely contention) with other transactions•
• Long enough to cause a history list length alert•

Common Problems | 283

Unless you’re proactively addressing performance, the second and third points are
more likely to bring a long-running transaction to your attention.

Presuming that the application isn’t waiting between queries (which is the next
problem: “Stalled Transactions” on page 284), long-running transactions have two
causes:

• The queries that constitute the transaction are too slow.•
• The application executes too many queries in the transaction.•

You fix the first cause with the techniques from Chapters 1–5. Remember: undo logs
and row locks for all queries in a transaction are held until the transaction commits.
On the upside, this means that optimizing slow queries to fix a long-running transac‐
tion has collateral benefits: the individual queries are faster and the transaction as a
whole is faster, which can increase overall transaction throughput. The downside is
that a long-running transaction might be quick enough for the application but too
long for other transactions. For example, let’s say that a transaction takes one second
to execute, which is fine for the application, but during that second it holds row locks
needed by another, faster transaction. This creates a tricky problem to debug because
the fast transaction might run slowly in production but quickly in isolation when
analyzed in the laboratory (on your laptop, for example). The difference, of course,
is that the concurrency and contention of transactions in production is largely or
completely absent in the lab. In this case, you must debug data lock contention, which
is not easy for several reasons, the least of which is that data locks are fleeting. See the
note following Table 8-1, and talk with your DBA or a MySQL expert.

You fix the second cause by modifying the application to execute fewer queries
in the transaction. This occurs when the application attempts a bulk operation or
programmatically generates queries inside a transaction without limiting the number
of queries. Either way, the fix is to reduce or limit the number of queries in the
transaction. Even if the transaction isn’t long-running, this is a best practice to
ensure that it won’t accidentally become long-running. For example, maybe when the
application is new it only inserts 5 rows per transaction; but years later, when the
application has millions of users, it’s inserting 500 rows per transaction because a
limit wasn’t built in from the beginning.

“Reporting” on page 286 shows you how to find long-running transactions.

Stalled Transactions
A stalled transaction is waiting too long after BEGIN, between queries, or before
COMMIT. Stalled transactions are likely to be long-running transactions, but the causes
are different: time waiting between queries (stalled) rather than time waiting for
queries (long-running).

284 | Chapter 8: Transactions

In practice, a stalled transaction appears as a long-running transac‐
tion because the end result is the same: slow transaction response
time. Analyzing the transaction is required to determine if the
response time is due to stalls or slow queries. Absent that analysis,
engineers (and MySQL experts) often refer to any slow transaction
as long-running.

Granted, there’s always some wait time between queries (at least due to network
latency required to send queries and receive result sets), but as in the previous two
problems, you’ll know a stalled transaction when you see it. To put it figuratively: the
whole is much greater than the sum of its parts. To put it technically: the transaction
response time from BEGIN to COMMIT is much greater than the sum of the query
response times.

Since stalled transactions are waiting between queries (including after BEGIN and
before COMMIT), MySQL is not culpable: the waits are caused by the application, and
the reasons are limitless. A common reason is doing time-consuming application
logic while a transaction is active, instead of before or after the transaction. But
sometimes this can’t be avoided; consider the following example:

BEGIN;
SELECT <row>
--
-- Time-consuming application logic based on the row
--
UPDATE <row>
COMMIT;

The solution in this case depends on the application logic. I’d begin by asking the
most fundamental question: do these queries need to be a transaction? Can the row
change after reading and before updating? If the row changes, does that break the
logic? If nothing else, can the READ COMMITTED isolation level be used to disable gap
locking? Engineers are clever and find ways to fix cases like this; the first step is
finding them, which is covered in “Reporting” on page 286.

Abandoned Transactions
An abandoned transaction is an active transaction without an active client connec‐
tion. There are two main causes of abandoned transactions:

• Application connection leaks•
• Half-closed connections•

An application bug can leak database connections (like leaking memory or threads):
the code-level connection object goes out of scope, so it’s no longer used, but it’s
still referenced by other code, so it’s neither closed nor freed (probably resulting

Common Problems | 285

in a small memory leak, too). Apart from application-level profiling, debugging, or
leak detection to verify this bug directly, you can verify it indirectly if restarting
the application fixes (closes) the abandoned transactions. In MySQL, you can see
what are likely to be abandoned transactions (as shown in “Reporting” on page 286),
but you cannot verify this bug in MySQL because MySQL doesn’t know that the
connection has been abandoned.

Half-closed connections do not happen under normal circumstances because MySQL
rolls back a transaction when the client connection closes for any reason detectable
by MySQL or the operating system. But problems outside MySQL and the operating
system can cause the client side of the connection to close without closing the
MySQL side—that’s why it’s called a half-closed connection. MySQL is especially
prone to half-closed connections because its network protocol is almost entirely
command and response: the client sends commands, and MySQL sends a response.
(If you’re curious, clients send a query to MySQL with a COM_QUERY packet.) Between
command and response, the client and MySQL observe total silence—not a single
byte is transmitted. As peaceful as that sounds, it means that half-closed connections
go unnoticed until wait_timeout seconds have passed, which defaults to 28,800 (8
hours).

Whether an application bug causing connection leaks or a half-closed connection
mistaken for meditative network silence, the end result is the same if either occurs
while a transaction is active (not committed): the transaction stays active. Any consis‐
tent snapshot or data locks stay active, too, because MySQL doesn’t know that the
transaction has been abandoned.

Truth be told, MySQL likes the silence; as do I. But we’re paid to work, so let’s
examine how to find and report all four transaction problems.

Reporting
The MySQL Performance Schema makes detailed transaction reporting possible; but
at the time of this writing, there are no tools that make it easy. I wish I could
tell you to use existing open source tools, but there are none. The following SQL
statements are the state of the art. When new art is developed, I’ll let you know at
MySQL Transaction Reporting. Until then, let’s get the job done the old-fashioned
way: copy-paste.

Active Transactions: Latest
The SQL statement in Example 8-2 reports the latest query for all transactions active
longer than 1 second. This report answers the question: which transactions are
long-running and what are they doing right now?

286 | Chapter 8: Transactions

Example 8-2. Report latest query for transactions active longer than 1 second

SELECT
 ROUND(trx.timer_wait/1000000000000,3) AS trx_runtime,
 trx.thread_id AS thread_id,
 trx.event_id AS trx_event_id,
 trx.isolation_level,
 trx.autocommit,
 stm.current_schema AS db,
 stm.sql_text AS query,
 stm.rows_examined AS rows_examined,
 stm.rows_affected AS rows_affected,
 stm.rows_sent AS rows_sent,
 IF(stm.end_event_id IS NULL, 'running', 'done') AS exec_state,
 ROUND(stm.timer_wait/1000000000000,3) AS exec_time
FROM
 performance_schema.events_transactions_current trx
 JOIN performance_schema.events_statements_current stm USING (thread_id)
WHERE
 trx.state = 'ACTIVE'
 AND trx.timer_wait > 1000000000000 * 1\G

To increase the time, change the 1 before \G. Performance Schema timers use picosec‐
onds, so 1000000000000 * 1 is one second.

The output of Example 8-2 resembles the following:

*************************** 1. row ***************************
 trx_runtime: 20729.094
 thread_id: 60
 trx_event_id: 1137
isolation_level: REPEATABLE READ
 autocommit: NO
 db: test
 query: SELECT * FROM elem
 rows_examined: 10
 rows_affected: 0
 rows_sent: 10
 exec_state: done
 exec_time: 0.038

The following is a bit more information about the fields (columns) of Example 8-2:

trx_runtime

How long the transaction has been running (active) in seconds with millisecond
precision. (I forgot about this transaction, which is why it’s been active for almost
six hours in the example.)

thread_id

The thread ID of the client connection that is executing the transaction. This is
used in “Active Transaction: History” on page 291. Performance Schema events

Reporting | 287

use thread IDs and event IDs to link data to client connections and events,
respectively. Thread IDs are different than process IDs common to other parts of
MySQL.

trx_event_id

The transaction event ID. This is used in “Active Transaction: History” on page
291.

isolation_level

Transaction isolation level: READ REPEATABLE or READ COMMITTED. (The other
isolation levels, SERIALIZABLE and READ UNCOMMITTED, are rarely used; if you see
them, it might be an application bug.) Recall “Row Locking” on page 260: the
transaction isolation level affects row locking and whether or not SELECT uses a
consistent snapshot.

autocommit

If YES, then autocommit is enabled and it’s a single-statement transaction. If NO,
then the transaction was started with BEGIN (or START TRANSACTION) and it’s
most likely a multistatement transaction.

db

Current database of query. The current database means USE db. The query can
access other databases with database-qualified table names, such as db.table.

query

The latest query either executed by or executing in the transaction. If exec_state
= running, then query is currently executing in the transaction. If exec_state =
done, then query is the last query that the transaction executed. In both cases the
transaction is active (not committed), but in the latter case it’s idle with respect to
executing a query.

rows_examined

Total number of rows examined by query. This does not include past queries
executed in the transaction.

rows_examined

Total number of rows modified by query. This does not include past queries
executed in the transaction.

rows_sent

Total number of rows sent (result set) by query. This does not include past
queries executed in the transaction.

288 | Chapter 8: Transactions

exec_state

If done, then the transaction is idle with respect to executing a query, and query
was the last query that it executed. If running, then transaction is currently
executing query. In both cases, the transaction is active (not committed).

exec_time

Execution time of query in seconds (with millisecond precision).

The Performance Schema tables events_transactions_current and events_state
ments_current contain more fields, but this report selects only the essential fields.

This report is a true workhorse because it can reveal all four “Common Problems” on
page 282:

Large transactions
Look at rows_affected (row modified) and rows_sent to see the transaction size
(in terms of rows). Experiment with adding a condition like trx.rows_affected
> 1000.

Long-running transactions
Adjust the 1 at the end of condition trx.timer_wait > 1000000000000 * 1 to
filter for longer-running queries.

Stalled transactions
If exec_state = done and stays that way for a while, the transaction is stalled.
Since this report only lists the latest query of active transactions, the query
should change quickly—exec_state = done should be fleeting.

Abandoned transactions
If exec_state = done remains for a long time, it’s possible the transaction is
abandoned because it stops being reported after commit.

The output of this report should be volatile because active transactions should be
fleeting. If it reports a transaction long enough for you to see it multiple times, then
the transaction is probably exhibiting one of the “Common Problems” on page 282.
In this case, use its thread_id and statement_event_id (as in “Active Transaction:
History” on page 291) to report its history—past queries—which helps reveal why the
transaction is a problem.

Reporting | 289

Information Schema INNODB_TRX
Using the MySQL Performance Schema is the best practice and the future
of MySQL performance reporting. But the MySQL Information Schema is still
widely used and it can report long-running transactions by querying table inform
ation_schema.innodb_trx:

SELECT
 trx_mysql_thread_id AS process_id,
 trx_isolation_level,
 TIMEDIFF(NOW(), trx_started) AS trx_runtime,
 trx_state,
 trx_rows_locked,
 trx_rows_modified,
 trx_query AS query
FROM
 information_schema.innodb_trx
WHERE
 trx_started < CURRENT_TIME - INTERVAL 1 SECOND\G

*************************** 1. row ***************************
 process_id: 13
trx_isolation_level: REPEATABLE READ
 trx_runtime: 06:43:33
 trx_state: RUNNING
 trx_rows_locked: 4
 trx_rows_modified: 1
 query: NULL

In this example, query is NULL because the transaction is not executing any query. If it
were, this field would contain the query.

I advise using the Performance Schema because it contains significantly more detail—
essentially everything there is to know about what happens inside MySQL. All the
examples in this book use the Performance Schema when possible; in rare cases, some
information is still only available in the Information Schema.

To learn more about table information_schema.innodb_trx, read “The INFORMA‐
TION_SCHEMA INNODB_TRX Table” in the MySQL manual.

Active Transactions: Summary
The SQL statement in Example 8-3 reports the summary of queries executed for all
transactions active longer than 1 second. This report answers the question: which
transactions are long-running and how much work have they been doing?

290 | Chapter 8: Transactions

Example 8-3. Report transaction summary

SELECT
 trx.thread_id AS thread_id,
 MAX(trx.event_id) AS trx_event_id,
 MAX(ROUND(trx.timer_wait/1000000000000,3)) AS trx_runtime,
 SUM(ROUND(stm.timer_wait/1000000000000,3)) AS exec_time,
 SUM(stm.rows_examined) AS rows_examined,
 SUM(stm.rows_affected) AS rows_affected,
 SUM(stm.rows_sent) AS rows_sent
FROM
 performance_schema.events_transactions_current trx
 JOIN performance_schema.events_statements_history stm
 ON stm.thread_id = trx.thread_id AND stm.nesting_event_id = trx.event_id
WHERE
 stm.event_name LIKE 'statement/sql/%'
 AND trx.state = 'ACTIVE'
 AND trx.timer_wait > 1000000000000 * 1
GROUP BY trx.thread_id\G

To increase the time, change the 1 before \G. The fields are the same as in “Active
Transactions: Latest” on page 286 but this report aggregates past queries for each
transaction. A stalled transaction (not currently executing a query) might have done a
lot of work in the past, which this report reveals.

When a query finishes executing, it’s logged in table perfor
mance_schema.events_statements_history but also remains in
table performance_schema.events_statements_current. There‐
fore, the report only includes completed queries and should not
be joined to the latter table unless active queries are filtered out.

This report is better to find large transactions—“Large Transactions (Transaction
Size)” on page 282—since it includes past queries.

Active Transaction: History
The SQL statement in Example 8-4 reports the history of queries executed for a
single transaction. This report answers the question: how much work did each query
transaction do? You must replace the zeros with thread_id and trx_event_id values
from the output of Example 8-2.

Example 8-4. Report transaction history

SELECT
 stm.rows_examined AS rows_examined,
 stm.rows_affected AS rows_affected,
 stm.rows_sent AS rows_sent,

Reporting | 291

 ROUND(stm.timer_wait/1000000000000,3) AS exec_time,
 stm.sql_text AS query
FROM
 performance_schema.events_statements_history stm
WHERE
 stm.thread_id = 0
 AND stm.nesting_event_id = 0
ORDER BY stm.event_id;

Replace the zeros with values from the output of Example 8-2:

• Replace the zero in stm.thread_id = 0 with thread_id.•
• Replace the zero in stm.nesting_event_id = 0 with trx_event_id.•

The output of Example 8-4 looks like:

+---------------+---------------+-----------+-----------+---------------------+
| rows_examined | rows_affected | rows_sent | exec_time | query |
+---------------+---------------+-----------+-----------+---------------------+
10	0	10	0.000	SELECT * FROM elem
2	1	0	0.003	UPDATE elem SET ...
0	0	0	0.002	COMMIT
+---------------+---------------+-----------+-----------+---------------------+

Apart from the BEGIN that started the transactions, this transaction executed two
queries, then COMMIT. The SELECT was the first query, and the UPDATE was the second
query. It’s not a riveting example, but it demonstrates the query execution history
of a transaction, plus basic query metrics. History is invaluable when debugging
problematic transactions because you can see which queries are slow (exec_time) or
large (in terms of rows), as well as the point at which the application stalls (when you
know that the transaction will execute more queries).

Committed Transactions: Summary
The previous three reports are for active transactions, but committed transactions
are also revealing. The SQL statement in Example 8-5 reports basic metrics for
committed (completed) transactions. It’s like a slow query log for transactions.

Example 8-5. Report basic metrics for committed transactions

SELECT
 ROUND(MAX(trx.timer_wait)/1000000000,3) AS trx_time,
 ROUND(SUM(stm.timer_end-stm.timer_start)/1000000000,3) AS query_time,
 ROUND((MAX(trx.timer_wait)-SUM(stm.timer_end-stm.timer_start))/1000000000, 3)
 AS idle_time,
 COUNT(stm.event_id)-1 AS query_count,
 SUM(stm.rows_examined) AS rows_examined,
 SUM(stm.rows_affected) AS rows_affected,

292 | Chapter 8: Transactions

 SUM(stm.rows_sent) AS rows_sent
FROM
 performance_schema.events_transactions_history trx
 JOIN performance_schema.events_statements_history stm
 ON stm.nesting_event_id = trx.event_id
WHERE
 trx.state = 'COMMITTED'
 AND trx.nesting_event_id IS NOT NULL
GROUP BY
 trx.thread_id, trx.event_id;

The fields of Example 8-5 are:

trx_time

Total transaction time, in milliseconds with microsecond precision.

query_time

Total query execution time, in milliseconds with microsecond precision.

idle_time

Transaction time minus query time, in milliseconds with microsecond precision.
Idle time indicates how much the application stalled while executing the queries
in the transaction.

query_count

Number of queries executed in the transaction.

rows_*

Total number of rows examined, affected, and sent (respectively) by all queries
executed in the transaction.

The output of Example 8-5 looks like the following:

+----------+----------+-----------+---------+-----------+-----------+-----------+
| trx_time | qry_time | idle_time | qry_cnt | rows_exam | rows_affe | rows_sent |
+----------+----------+-----------+---------+-----------+-----------+-----------+
| 5647.892 | 1.922 | 5645.970 | 2 | 10 | 0 | 10 |
| 0.585 | 0.403 | 0.182 | 2 | 10 | 0 | 10 |
+----------+----------+-----------+---------+-----------+-----------+-----------+

For this example, I executed the same transaction twice: first manually, then copy-
pasted. The manual execution took 5.6 seconds (5647.892) and was mostly idle time
due to typing. But a transaction programmatically executed should be mostly query
execution time, as shown in the second row: 403 microseconds of execution time,
and only 182 microseconds of idle time.

Reporting | 293

Summary
This chapter examined MySQL transactions with respect to avoiding common prob‐
lems. The major takeaway points are:

• Transaction isolation levels affect row locking (data locks).•
• The fundamental InnoDB data locks are: record lock (locks a single index record),•

next-key lock (locks a single index record plus the record gap before it), gap lock
(locks the range [gap] between two records), and insert intention lock (allows
INSERT into a gap; more like a wait condition than a lock).

• The default transaction isolation level, REPEATABLE READ, uses gap locking to•
isolate the range of rows accessed.

• The READ COMMITTED transaction isolation level disables gap locking.•
• InnoDB uses consistent snapshots in REPEATABLE READ transactions to make•

reads (SELECT) return the same rows despite changes to those rows by other
transactions.

• Consistent snapshots require InnoDB to save row changes in undo logs to recon‐•
struct old row versions.

• History list length (HLL) gauges the amount of old row versions not purged or•
flushed.

• HLL is a harbinger of doom: always monitor and alert on HLL greater than•
100,000.

• Data locks and undo logs are released when a transaction ends, with COMMIT or•
ROLLBACK.

• Four common problems beset transactions: large transactions (modify too many•
rows), long-running transactions (slow response time from BEGIN to COMMIT),
stalled transactions (superfluous waits between queries), and abandoned transac‐
tions (client connection vanished during active transaction).

• The MySQL Performance Schema makes detailed transaction reporting possible.•
• Transaction performance is as important as query performance.•

The next chapter enumerates common MySQL challenges and how to mitigate them.

294 | Chapter 8: Transactions

Practice: Alert on History List Length
The goal of this practice is to alert on history list length (HLL) greater than 100,000.
(Recall “History List Length” on page 280.) This depends on your systems for mon‐
itoring (collecting metrics) and alerting, but fundamentally it’s no different than
alerting on other metrics. Therefore, the needed work is twofold:

• Collect and report the HLL value.•
• Create an alert on HLL greater than 100,000.•

All MySQL monitors should be able to collect and report HLL. If your current mon‐
itoring cannot, seriously consider a better monitor because HLL is a fundamental
metric. Read the documentation for your monitor to learn how to make it collect and
report HLL. HLL can change quickly, but there’s leeway before MySQL is at risk due
to high HLL. Therefore, you can report HLL slowly: every minute.

Once your monitor is collecting and reporting HLL, set an alert on HLL greater than
100,000 for 20 minutes. But recall “Wild Goose Chase (Thresholds)” on page 225: you
might need to adjust the 20 minute threshold, but note that HLL greater than 100,000
for longer than 20 minutes is quite abnormal.

In case you need to query the HLL value manually:

SELECT name, count
FROM information_schema.innodb_metrics
WHERE name = 'trx_rseg_history_len';

Historically, HLL was parsed from the output of SHOW ENGINE INNODB STATUS: look
for “History list length” under section header “TRANSACTIONS” in MySQL.

I hope that you’re never alerted for HLL, but having the alert is a best practice, and it
has saved many applications from an outage. An HLL alert is a friend.

Practice: Alert on History List Length | 295

Practice: Examine Row Locks
The goal of this practice is to examine row locks for real queries from your applica‐
tion and, if possible, understand why the query acquires each lock. If possible is a
necessary disclaimer given that InnoDB row locking can be inscrutable.

Use a development or staging instance of MySQL; do not use production. Also, use
MySQL 8.0.16 or newer because it has the best data lock reporting using the Perfor‐
mance Schema table data_locks, as shown in “Row Locking” on page 260. If you
can only use MySQL 5.7, then you’ll need to examine data locks using SHOW ENGINE
INNODB STATUS: refer to MySQL Data Locks for an illustrated guide to mapping data
lock output from MySQL 5.7 to MySQL 8.0.

Use real table definitions and as much real data (rows) as possible. If possible, dump
data from production and load into your development or staging MySQL instances.

If there are particular queries or transactions that you’re curious about, begin by
examining their data locks. Otherwise, begin with slow queries—recall “Query pro‐
file” on page 9.

Since locks are released when a transaction completes, you need to use explicit
transactions, as shown in “Row Locking” on page 260:

BEGIN;

--
-- Execute one or several queries
--

SELECT index_name, lock_type, lock_mode, lock_status, lock_data
FROM performance_schema.data_locks
WHERE object_name = 'elem';

Replace elem with your table name, and remember to COMMIT or ROLLBACK to release
the locks.

To change the transaction isolation level for the next (and only the next) transaction,
execute SET TRANSACTION ISOLATION LEVEL READ COMMITTED before BEGIN.

This is expert-level practice, so any effort and understanding is an achievement.
Congratulations.

296 | Chapter 8: Transactions

CHAPTER 9

Other Challenges

This chapter is a short but important laundry list of common MySQL challenges and
how to mitigate them. These challenges don’t fit into other chapters because most
are not directly related to performance. But don’t underestimate them: the first two
challenges, for example, can ruin a database. More importantly, these challenges are
not special cases that only happen when the stars align and The Fates conspire to
ruin your day. These are common challenges. Take them seriously, and expect to face
them.

Split-Brain Is the Greatest Risk
Split-brain requires two conditions to occur at the same time, in the same replication
topology:

• More than one MySQL instance is writable (read_only=0)•
• Writes occur on more than one MySQL instance•

Neither of those should ever happen—especially not at the same time—but life is full
of surprises, and you cannot avoid bugs or accidents forever. When it happens, it’s
called split-brain: instead of all MySQL instances having the same data, they’re figura‐
tively split because data is no longer identical (consistent) on every instance. Not only
is inconsistent data fundamentally wrong, it can break replication or—worse—have
a ripple effect that causes more data to become inconsistent, which causes the next
challenge: data drift.

297

Split-brain does not apply to MySQL replication topologies inten‐
tionally designed to have multiple writable instances.

If split-brain occurs, you must detect and stop it immediately. Why? Because a single
write can affect any number of rows. Mere seconds of split-brain can produce an
avalanche of inconsistent data, resulting in weeks of data forensics and reconciliation.

To stop split-brain, disable writes on all instances: SET GLOBAL read_only=1. Do not
leave one instance writable; that will make the problem worse. If you cannot disable
writes, then kill MySQL or the server—seriously. Data integrity is more important
than data availability.

Data integrity is more important than data availability.

Ideally, you should take the entire database offline until all inconsistent data is found
and reconciled. But realistically, if a prolonged database outage will kill the business
and you’re absolutely certain that reading potentially incorrect data will not cause
further damage, then you can run MySQL in read-only mode (read_only=1) while
you fix data using super_read_only mode.

There are only two ways to find inconsistent rows: run pt-table-sync, or check
manually. Manually entails whatever you can do to compare and verify rows given
your understanding of the application, the data, and what changes were likely to have
occurred during the split-brain. pt-table-sync is an open source tool that can find,
print, and synchronize data differences between two MySQL instances, but use it with
caution because any tool that changes data is inherently risky.

pt-table-sync is a dangerous tool unless you wield it carefully.
Do not use its --execute option: only use --print, and reads its
manual thoroughly.

Reconciling rows is the difficult part, and you should work with a MySQL expert
to ensure that it’s done correctly. If you’re lucky, you’ll determine that one MySQL
instance is authoritative—all rows have the correct data—and you can rebuild rather
than reconcile: rebuild all replicas from the authoritative instance. If you’re not lucky,
then work with a MySQL expert to determine your options.

298 | Chapter 9: Other Challenges

Data Drift Is Real but Invisible
Data drift refers to inconsistent data: one or more rows have different values on
different MySQL instances in the same replication topology. (Drift is figurative for
the values drifting further apart as changes to the inconsistent data cause further
inconsistencies.) Whereas inconsistent data from a split-brain scenario is expected,
inconsistent data from data drift is unexpected: you don’t know or have any reason
to suspect that there is inconsistent data. Although data drift is invisible in the sense
that it does not seem to cause a problem, it is nevertheless a real problem because the
application could return wrong values.

Fortunately, data drift is easy to detect: run pt-table-checksum. This tool is safe:
it only reads and compares data. Unfortunately, data drift is no easier to reconcile
than inconsistent data due to split-brain. But that probably won’t be an issue because
data drift tends to be limited and isolated in scope—not an avalanche of inconsistent
data—because it’s not caused by a serious failure like split-brain.

The fascinating aspect of data drift is that, to my knowledge, no one has ever found
or proven the root cause of data drift in the wild (in a real production database).
In theory, it’s caused by nondeterministic queries and statement-based replication, or
writes on replicas. In a laboratory, those two would surely cause data drift, but they
never seem to be the cause in the wild. Instead, engineers and DBAs alike are certain
that nothing was done to cause or permit data drift. And yet, it exists.

Check for data drift every few months (or once a year at the very
least) by running pt-table-checksum. If you find data drift once,
don’t worry about it: reconcile the rows, and check again in a
month. If data keeps drifting (which is very unlikely), then you
have an exotic problem worth a detailed investigation to find and
fix the root cause.

Don’t Trust ORM
The purpose of object-relational mapping (ORM) is to aid programmers by abstract‐
ing data access into programming terms and objects. ORM is not inherently bad or
inefficient, but you should verify queries generated by an ORM library because per‐
formance is not its purpose. For example, since ORM treats rows as objects, an ORM
library might select all columns, which is contrary to what you saw in the efficient
data access checklist (Table 3-2). Another example: some ORM libraries execute other
queries (SHOW WARNINGS, for example) before or after the actual application query.
When striving for maximum performance, every query is important; other queries
are unacceptable waste.

Data Drift Is Real but Invisible | 299

There are high-performance applications that use ORM, but the engineers are careful
not to trust ORM: they verify ORM-generated queries in the query profile and query
report (see “Query profile” on page 9 and “Query report” on page 10, respectively). If
an ORM-generated query is too inefficient, read the ORM library documentation to
learn how to configure it to generate a more efficient query.

Schemas Always Change
You probably already know this challenge, but in case you’re brand new to life with
any relational database: schemas always change. (More specifically, table definitions
always change, but tables constitute a schema.) The challenge is doing an online
schema change (OSC): changing a schema while it’s in use, without affecting the
application. As mentioned in previous chapters, there are three great solutions for
MySQL:

• pt-online-schema-change•
• gh-ost•
• ALTER TABLE•

Each solution works very differently, but all of them can alter a table definition online
without affecting the application. Read the documentation for each to decide which
one works best for you.

There’s another aspect to this challenge: integrating schema changes into the software
development process. You can run an OSC manually, but engineering teams don’t
do that because, like other code changes, schema changes need to be a part of the
development process so they are reviewed, approved, tested in staging, and so forth.
Since development processes are team-specific, your team will have to create its own
solution. But there is currently one open source solution: Skeema. For a thorough
read on how renowned MySQL expert Shlomi Noach solved this challenge at GitHub,
read his blog post “Automating MySQL Schema Migrations with GitHub Actions and
More”.

300 | Chapter 9: Other Challenges

MySQL Extends Standard SQL
If you use only MySQL, then perhaps you can skip this challenge. But if you’re
coming from (or going to) another relational database, then be aware that MySQL
has many extensions to standard SQL enumerated in “MySQL Extensions to Standard
SQL” in the MySQL manual. And MySQL does not support some standard SQL
features, like full outer joins. There are other restrictions and limitations cataloged
in the aptly named excerpt “MySQL Restrictions and Limitations”, and you will find
other mentions and oddities throughout the MySQL manual.

Any database with a history as long and storied as MySQL is bound to be equally
eclectic. What’s uniquely MySQL about MySQL is something that experts have come
to know and trust so naturally that it’s rarely pointed out: the MySQL Manual is
comprehensive and authoritative. Software documentation can be sparse, out of date,
or nonexistent, but not the MySQL manual. There are arcane bits of information
about MySQL not in the manual, but those aside, MySQL experts rely heavily on the
MySQL manual—and so should you.

Noisy Neighbors
On a physical server, a noisy neighbor is a program that degrades performance for
other programs by using inordinately more system resources. For example, if a server
is running 20 separate MySQL instances, but one of them uses all the CPU and
disk I/O, then it’s a noisy neighbor. This is a common challenge because a shared
server (or multitenancy) is the norm: running multiple virtualized environments on a
single physical server. (The opposite, a dedicated server [or single-tenancy], is rare and
expensive, especially in the cloud.) A noisy neighbor is a perplexing challenge because
the performance impact is not your fault, but it is your problem.

If your company runs its own hardware, then the problem is tractable: measure the
resource usage of each program or virtual environment on the shared server where
you suspect a noisy neighbor. Noisy neighbors are easy to spot because they’re noisy.
Then move the noisy neighbor (or your database) to another, quieter server. If that’s
not possible, then buy another copy of this book for the noisy neighbor so they can
learn how to optimize MySQL performance.

In the cloud, you cannot see or prove the existence of a noisy neighbor. For security,
cloud providers maintain strict separation of tenants (customers like you) on shared
servers. And they are unlikely to admit the existence of a noisy neighbor because it
would imply that they are not balancing the server load, which should be included
in the cost. Consequently, the standard practice is to reprovision a cloud database
when you suspect a noisy neighbor. Some companies benchmark a cloud resource
before using it and only keep it if performance meets a baseline; else, the resource is

MySQL Extends Standard SQL | 301

destroyed, another one is provisioned, and the process repeats until—by chance—the
resource is provisioned on a quiet server.

Applications Do Not Fail Gracefully
Netflix originated chaos engineering: intentionally introducing problems and failures
into a system to test its resiliency and necessitate that engineers design for failure.
This philosophy and practice is bold because it truly tests the mettle of an application.
Writing software that works correctly when everything around it also works correctly
is an expectation so basic and obvious that it counts for nothing. The challenge is
to write software that works—in some capacity—even when everything around it
is failing. As engineers, we often think that we have accounted for failure in our
software, but how do we know until something fails for real? Plus, not all failures
are binary: working or not working. The most insidious problems are not outright
failures but, rather, edge cases and outliers: the kind of problem that requires a story
to explain it, not a simple failure statement like “the hard drive died.”

The same is true for applications with respect to MySQL. However, chaos engineering
is not standard practice in the MySQL industry because trifling with a database is
risky and few engineers are so bold. But fortune favors the bold, so here are 12
database chaos scenarios to test the mettle of your application:

• MySQL is offline•
• MySQL is very slow to respond•
• MySQL is read-only•
• MySQL has just started (cold buffer pool)•
• Read replicas are offline or very slow•
• Failover in the same region•
• Failover to a different region•
• Database backup is running•
• DNS resolution is very slow•
• Network is slow (high latency) or saturated•
• One hard drive in a RAID array is degraded•
• Free disk space on an SSD is less than 5%•

Some of those 12 database chaos scenarios might not apply to your infrastructure, but
most are standard and yield interesting results depending on the application. If you
have never engineered chaos, then I encourage you to start because chaos doesn’t wait
until you’re ready.

302 | Chapter 9: Other Challenges

High Performance MySQL Is Difficult
If you earnestly apply all the best practices and techniques in this book, I am con‐
fident that you will achieve remarkable performance with MySQL. But that does
not mean it’ll be quick or easy. High-performance MySQL requires practice because
resources—books, blogs, videos, conferences, and so on—teach you theory, which is
different than reality. Consequently, when you begin to apply what you’ve learned
from this book to your application, you might run into the following two challenges.

The first challenge is that real application queries can be—and usually are—more
complex than the pithy little examples strewn throughout these pages. Add to that
the additional challenge of remembering and applying so much knowledge at once:
query metrics, indexes and indexing, EXPLAIN output, query optimizations, table
definitions, and so forth. It can be overwhelming at first, but take it one query at
a time, and remember “North Star” on page 3 and “Indexing: How to Think Like
MySQL” on page 80. Even experts need time to unravel and understand the full story
of a query.

The second challenge is that real application performance rarely depends on a single
aspect of the workload. Fixing slow queries will undoubtedly help, but it might
not help enough. The more performance you need from MySQL, the more you
have to optimize the entire workload: each query, all data, and every access pattern.
Eventually you will need to apply knowledge from every chapter of this book. (Except
Chapter 10 if you’re not using MySQL in the cloud.) Start small (Chapters 1–4), but
commit to learning and applying everything in this book because you will need it.

There is more to MySQL performance than I present in this book, but I assure you:
the knowledge imparted in these chapters is comprehensive and effective. Moreover,
there are no secrets known only to experts that unlock amazing MySQL performance.
I know that from my own experience and also from having worked with many of the
best MySQL experts in the world. Plus, open source software is terrible at keeping
secrets.

Practice: Identify the Guardrails that Prevent Split-Brain
The goal of this practice is to identify the guardrails that prevent split-brain. There
are two parts: detailing the guardrails so that every engineer understands what they
are, where they are (probably in tools), and how they work, and then carefully
reviewing tools that manage or change MySQL instances, especially failover tools.

If you do not manage MySQL, then schedule time with the engineers who manage
MySQL to have them detail how they prevent split-brain during operations, especially
failover. This should be an easy request because preventing split-brain is fundamental
to managing MySQL.

High Performance MySQL Is Difficult | 303

If you use MySQL in the cloud, the details vary. Cloud providers have undisclosed
methods to prevent split-brain depending on the internal setup and management of
MySQL. For example, split-brain is theoretically not possible with a standard multi-
AZ instance of Amazon RDS for MySQL because, although it’s multi-AZ, multiple
instances of MySQL do not run at the same time. (It’s a single running instance
of MySQL in one availability zone [AZ]. If that instance fails, another instance is
started in another AZ.) But if you add read replicas, then you have multiple running
instances of MySQL in the same replication topology, and Amazon does not make
any guarantees about split-brain with respect to read replicas. In the cloud, presume
that you are responsible for the guardrails that prevent split-brain, but also know
when the cloud provider does and does not prevent split-brain.

If you manage MySQL on your own hardware, then I advise you to contract a MySQL
expert to help you identify the guardrails that prevent split-brain. (It shouldn’t take
long, so it should be a short and affordable contract.) There is one foundational
guardrail that you must implement: configure MySQL (in its my.cnf file) to start
in read-only mode: read_only=1. Always start MySQL in read-only mode. From
this foundation, other guardrails detail how read-only mode is toggled such that it’s
guaranteed to be off (MySQL is writable) on only one instance at a time.

Always start MySQL in read-only mode (read_only=1).

Once the guardrails are understood by engineers, the second part is to carefully
review tools that manage or change MySQL instances, especially failover tools, to
ensure that the guardrails are implemented and working as expected. Of course, all
code should be unit tested, but preventing split-brain is so important that it warrants
manual code review, too. There are issues in code that might not surface when iden‐
tifying the guardrails; for example: race conditions, retries, and error handling. The
last—error handling—is especially important: can (or should) a tool roll back changes
on error? Remember: data integrity is more important than data availability. When
toggling MySQL read-only, tools should err on the side of caution: if an operation has
a nonzero chance of causing split-brain, don’t do it; leave MySQL in read-only mode,
fail, and let a human figure it out.

Bottom line: be 100% clear on the guardrails that prevent split-brain.

304 | Chapter 9: Other Challenges

Practice: Check for Data Drift
The goal of this practice is to check for data drift using pt-table-checksum. You’re in
luck: this tool was purposely written to be easy and automatic. Simply download and
run the tool, and it automates the rest in most cases. If not, a quick read through its
documentation will answer any questions.

Most MySQL tools need special configuration to work with MySQL
in the cloud.

pt-table-checksum does only one thing: check for and report data drift. It can run
for hours or days depending on data size and access load. By default, it’s slow to avoid
interfering with production access. Therefore, be sure to run it in a screen or tmux
session.

When pt-table-checksum finishes checking a table, it prints a one-line result for the
table. The output looks like this:

 TS ERRORS DIFFS ROWS DIFF_ROWS CHUNKS SKIPPED TIME TABLE
10-21T08:36:55 0 0 200 0 1 0 0.005 db1.tbl1
10-21T08:37:00 0 0 603 0 7 0 0.035 db1.tbl2
10-21T08:37:10 0 2 1600 3 21 0 1.003 db2.tbl3

The last line of the output reveals a table with data drift because column DIFFS has
a nonzero value. If any table has data drift, rerun with the --replicate-check-only
option to print the replicas and chunks that are different than the source. (A chunk is
a range of rows delineated by upper and lower boundary values for an index [usually
the primary key]. pt-table-checksum verifies rows in chunks because checking
individual rows is too slow and inefficient.) You will need to devise a plan to isolate
and reconcile inconsistent rows. If there are very few, you might be able to isolate and
reconcile them manually. If not, then I advise you to work with a MySQL expert to
ensure it’s done correctly.

Practice: Check for Data Drift | 305

Practice: Chaos
The goal of this practice is to test the mettle of your application. Chaos engineering is
not for the faint of heart, so start with your staging database.

This practice will cause outages.

For the following chaos, MySQL and the application should be running normally
with some load, and you should have good metrics and observability into both to
record and analyze how they respond.

I propose the following chaos, but pick and choose based on your level of risk:

Restart MySQL
Restarting MySQL tests how the application responds when MySQL is offline,
and how it responds when MySQL buffers are cold (specifically, the InnoDB
buffer pool). Cold buffers require disk I/O to read data into memory, which
causes slower than usual response time. It also teaches you three things: how long
it takes MySQL to shutdown, how long it takes MySQL to start up, and how long
it takes the buffers to warm up.

Enable read-only mode
SET GLOBAL read_only=1 on the source instance to enable read-only mode
and test how the application responds to being able to read data but not write
data. Engineers often think that the application will continue working for reads
and gracefully fail for writes, but chaos is full of surprises. This also effectively
simulates a failed failover, which should never happen (because it would mean a
failure of high availability), but “should never happen” is within the purview of
chaos.

Stop MySQL for 1 hour
Most applications can weather a storm for seconds or minutes—maybe even tens
of minutes—but at some point, queues fill up, retires are exhausted, exponential
backoffs become very long, rate limits reset, and users give up and go to a
competitor. MySQL should never be offline more than a few seconds—if properly
managed—but again: chaos.

Back in 2004 when I worked in a data center, moments before I started my 2 p.m. to
midnight shift, an engineer accidentally hit the emergency power off button—to the
data center. Calm is the only answer to chaos, so I got a cup of coffee before sitting
down to help reboot the data center.

306 | Chapter 9: Other Challenges

CHAPTER 10

MySQL in the Cloud

MySQL in the cloud is fundamentally the same MySQL that you know and love (or
know and tolerate). In the cloud, the best practices and techniques detailed in the
previous nine chapters are not only true but eminently true because cloud providers
charge for every byte and millisecond of work. Performance is money in the cloud. To
recap the previous nine chapters:

• Performance is query response time (Chapter 1).•
• Indexes are the key to performance (Chapter 2).•
• Less data is better—for both storing and accessing (Chapter 3).•
• Access patterns allow or inhibit performance (Chapter 4).•
• Sharding is necessary to scale out writes and storage (Chapter 5).•
• Server metrics reveal how the workload affects MySQL (Chapter 6).•
• Replication lag is data loss and must be avoided (Chapter 7).•
• Transactions affect row locking and undo logging (Chapter 8).•
• Other challenges exist—even in the cloud (Chapter 9).•

If you embrace and apply all those details, MySQL will execute the application work‐
load with remarkable performance regardless of location: in the cloud, on premise, or
anywhere.

For the sake of saving you time, I wish it were that simple—optimize the workload
and you’re done—but MySQL in the cloud raises unique considerations. The goal is
to know and mitigate these cloud considerations so that you can focus on MySQL,
not the cloud. After all, the cloud is nothing special: behind the proverbial curtain, it’s
physical servers in a data center running programs like MySQL.

307

This chapter highlights what to know when using MySQL in the cloud. There are four
major sections. The first cautions against compatibility: when MySQL is not MySQL.
The second is a quick discussion about varying levels of MySQL administration in
the cloud. The third discusses network latency and its relationship to storage I/O. The
fourth is about performance and money.

Compatibility
MySQL in the cloud might not be MySQL, or it might be a highly modified (and
proprietary) version of MySQL. Compatibility of MySQL in the cloud has two sides:
code compatibility and feature compatibility.

By MySQL, I mean MySQL published by Oracle: the official, open
source MySQL source code. I also mean Percona Server published
by Percona, and MariaDB Server published by the MariaDB Foun‐
dation: both are widely used, safe and stable, and considered to be
MySQL in general.

Code compatibility is whether or not MySQL is the same open source code pub‐
lished by Oracle, Percona, or MariaDB. The following nine words and phrases are
commonly used in product descriptions and documentation to allude to the fact
that MySQL is not code-compatible but, rather, something slightly (or significantly)
different:

• Built on•
• Emulates•
• Compatible•
• Client compatible•
• Protocol compatible•
• Wire compatible•
• Replacement•
• Drop-in replacement•
• Works with existing•

Code compatibility is important because MySQL is complex and subtle, and we
entrust it to store invaluable data. In this book, I focus discussions to narrow the
scope of MySQL complexity, but sections like “Page flushing” on page 212 and “Row
Locking” on page 260 hint at how deep the rabbit hole goes. When any company
alters MySQL source code, the risks are fourfold: data loss, performance regressions,
bugs, and incompatibilities. The greater the alterations, the greater the risks. I have

308 | Chapter 10: MySQL in the Cloud

seen the latter three in the cloud; fortunately, I have not seen a cloud provider lose
data.

If you have any doubts whether or not MySQL in the cloud is code-
compatible, ask the cloud provider, “Is it the same open source
MySQL published by Oracle?”

To present the whole argument, not just the negatives (the risks), cloud providers
alter MySQL to provide additional value: improve performance, fix bugs, and add
features that customers need. Some alterations are valuable and worth the risks. But if
you use MySQL in the cloud that is not code-compatible, you need to understand the
extent of the alterations. This is basic due diligence for professional engineers using
MySQL in the cloud.

Given enough eyeballs, all bugs are shallow.
—Eric S. Raymond

Feature compatibility is whether or not MySQL includes features not available outside
the cloud provider or the distribution of MySQL. For example, Oracle publishes two
distributions: MySQL Community Server and MySQL Enterprise Edition. The former
is open source; the latter includes proprietary features. Oracle Cloud Infrastructure
(OCI) uses the latter, which is good: more value for the cloud money. But it also
means that if you rely on features specific to MySQL Enterprise Edition, you cannot
directly migrate to another cloud provider or distribution of MySQL. The same is
true for Percona Server and MariaDB Server: these distributions of MySQL have
unique features, which is good, but it complicates migration to another cloud pro‐
vider or distribution of MySQL.

Feature compatibility is important for the same reason open source software is
important: freedom to change. Software—MySQL included—should empower engi‐
neers and users, not lock us into specific cloud providers or vendors. That reasoning
is more philosophical than technical, which is why I’ll present the whole argument
again: some features are valuable and worth not changing to keep. But if you choose
to use a feature that’s not available outside the cloud provider or the distribution
of MySQL, you need to document why, so that future engineers can understand
what’s at stake (and what needs to be replaced) if they use another cloud provider
or distribution of MySQL. This, too, is basic due diligence for professional engineers
using MySQL in the cloud.

Compatibility | 309

Management (DBA)
We have successfully dodged MySQL administration (DBA work) from the very first
pages of this book, so we’re not about to fail now, but MySQL in the cloud raises
an issue that you need to know and address: who manages MySQL? Ostensibly, the
cloud provider manages MySQL, but it’s not that simple because managing MySQL
entails many operations. Brace yourself: I’m going steer this book dangerously close
to DBA work in order to explain.

Table 10-1 is a partial list of DBA operations and who manages them: you or the
cloud.

Table 10-1. DBA operations

Operation You Cloud
Provision ✓
Configure ✓
MySQL users ✓
Server metrics ✓
Query metrics ✓
Online schema change (OSC) ✓
Failure recovery ✓
Disaster recovery (DR) ✓
High availability (HA) ✓ †a

Upgrading ✓
Backup and recovery ✓
Change data capture (CDC) ✓
Security ✓
Help ✓
Cost ✓
a Indicates some management.

Let me breeze through the 15 operations in Table 10-1 because being aware of the full
scope—even at a high level—helps you avoid gaps in MySQL management that will
become an issue if not addressed. Also known as CYA: cover your administration.

Provisioning MySQL is, of course, what a cloud provider must provide: the lowest
level operation of running MySQL on a computer. Cloud providers use a decent
MySQL configuration, but double check because no default configuration can suit
every customer. Apart from a root user necessary to give you initial control of the
MySQL server, cloud providers do not manage MySQL users. Server and query met‐
rics are also your responsibility to collect and report. Granted, some cloud providers

310 | Chapter 10: MySQL in the Cloud

expose basic sever metrics, but none are even remotely close to the full spectra of
metrics detailed in Chapter 6. OSCs—running ALTER statements without affecting
the workload—are entirely your responsibility, and they tend to be a little more
difficult in the cloud for various technical reasons outside the scope of this book.
Cloud providers do handle failover: when hardware or MySQL dies, the cloud pro‐
vider will failover to restore availability. But cloud providers do not handle disaster
recovery: when an entire region fails and availability must be restored by running
MySQL from a different geographic location. Given the previous two operations, high
availability (HA) has mixed management (hence † in the cloud column). The full
discussion of MySQL high availability in the cloud is too nuanced to cover here; let’s
just say that the cloud provides some amount of high availability. Cloud providers
upgrade MySQL, which is really nice because this operation is tedious at scale. Cloud
providers backup MySQL, provide long-term backup retention, and provide methods
to restore backups—all of which are incredibly important. You are responsible for
change data capture (CDC), which usually involves another tool or service acting like
a replica to dump (or stream) binary logs from MySQL to another data store (often
a big data store or data lake). Security of MySQL in the cloud is your responsibility—
the cloud is not inherently secure. Cloud providers help with running MySQL in
general, but don’t expect much (or any) help with MySQL performance unless your
company pays for that level of support. And finally, you must manage costs: the cloud
is notorious for costing more than engineers anticipate.

The three major cloud providers—Amazon, Google, and Micro‐
soft—have a 99.95% or 99.99% availability SLA for MySQL (as a
managed service), but read the fine print—the full legal details.
For example, maintenance windows usually do not count against
the SLA. Or, the SLA might be voided if MySQL is not properly
configured by you. There are always details and caveats to cloud
provider high availability and SLAs.

Table 10-1 is descriptive, not prescriptive, because different cloud providers and
third-party companies provide different levels of MySQL management in the cloud.
For example, some companies fully manage MySQL in the cloud (or on-premise).
As an engineer using MySQL, not managing it, you only need to know that all the
operations are managed—all the boxes are checked—so that none of them interfere
with your work. Once you know that, please forget everything you read in this
section, else you’ll wind up a MySQL DBA before you know it, twenty years will
pass, and the next engineer to join your team will have been a newborn infant when
—lo, the many years past—you were dealing with an inexplicable multi-range read
performance regression after an innocuous point release upgrade.

Management (DBA) | 311

1 Technically, all networks are equally fast: the speed of light. The problem is physical distance and intermediate
routing over long distances.

2 See Amazon EBS features, block storage performance on Google, and premium storage with Microsoft Azure.

Network and Storage…Latency
When running MySQL on-premise (in data center space that your company leases),
the local network should never be a consideration or concern for you, presuming
it was designed and wired by competent professional network engineers. Local net‐
works are blazing fast and stable with submillisecond latency. The local network
should be more boring than the database (recall “Normal and Stable: The Best
Database Is a Boring Database” on page 180).

But the cloud is global, and wide-area networks have higher latency and lower
stability (greater fluctuations in latency and throughput). For example, the network
round-trip time (RTT) between San Francisco and New York City is approximately
60 milliseconds, plus or minus 10 milliseconds. If you run MySQL in San Francisco
(or anywhere on the U.S. west coast) and the application is in New York City (or
anywhere on the U.S. east cost), the minimum query response time is approximately
60 milliseconds. That is 60 times slower than a local network.1 You will notice
that slowness, but it will not show up in query response time because the delay is
outside MySQL. For example, a query profile (see “Query profile” on page 9) shows
that a query takes 800 microseconds to execute, but your application performance
monitoring (APM) shows that the query takes 60.8 milliseconds to execute: 800 µs for
MySQL, and 60 ms for network latency from sea to shining sea.

Network latency over long distances is physically limited by the speed of light
and exacerbated by intermediate routing. Consequently, you cannot overcome this
latency; you can only work around it. For example, refer to “Enqueue Writes” on page
145: enqueue locally, write remotely—where remotely is any process that incurs high
network latency.

Switching back to local networks, it’s a good thing they’re blazing fast and stable
because cloud providers typically store MySQL data on network-attached storage:
hard drives connected to the server through a local network. By contrast, locally-
attached storage (or local storage) is hard drives connected directly to the server.
Cloud providers use network-attached storage for various reasons beyond the scope
of this book. What’s important to know is that network-attached storage is much
slower and less stable than local storage. All three major cloud providers—Ama‐
zon, Google, and Microsoft—publish “single-digit millisecond latency” for network-
attached storage (using SSD),2 with one exception: Amazon io2 Block Express has
submillisecond latency. The bottom line is, when using MySQL in the cloud, expect

312 | Chapter 10: MySQL in the Cloud

3 Due to nondisclosure agreements, I cannot cite the source.

the storage to have single-digit millisecond latency, which is equivalent to a spinning
disk.

Network-attached storage is an order of magnitude slower than local storage (with
SSD; don’t use spinning disks), but is it a problem that you should address? If you’re
migrating MySQL to the cloud from bare metal hardware with high-end local storage
and the application heavily and consistently utilizes the local storage IOPS (see
“IOPS” on page 208), then yes: verify that the increased latency of network-attached
storage does not cause a ripple effect of performance degradation (because IOPS
incur the latency). (Heavy and consistent utilization of IOPS is a hallmark of a
write-heavy workload: see “Read/Write” on page 133.) But if you’re already in the
cloud, or starting a new application in the cloud, then no: don’t worry or think
about storage latency in the cloud. Instead, lay a foundation of highly optimized
queries (indexes), data, and access patterns—as covered in Chapters 2, 3, and 4,
respectively—and storage latency in the cloud may never be an issue.

If storage latency in the cloud is a problem, then you need to optimize the work‐
load further, shard (Chapter 5), or purchase better (more expensive) cloud storage.
Remember: Netflix runs in the cloud, as do other very large and successful compa‐
nies. The performance potential for MySQL in the cloud is virtually unlimited. The
question is: can you afford it?

Performance Is Money
Fittingly, the beginning of this book—“A True Story of False Performance” on page
2—mirrors the end. But in the cloud, customers sell themselves more RAM to “fix”
MySQL performance. An engineer at one of the three major cloud providers told me
that most MySQL instances are over-provisioned: customers pay for more capacity
than the application needs or utilizes.3

Has the industry come full circle and now, with the ease of scalability in the cloud,
performance is simply a larger instance? No, definitely not: performance is query
response time; and in the cloud, every byte and millisecond of performance is billed
hourly, which makes all the best practices and techniques in this book more impor‐
tant than ever.

If you have used any services in the cloud, then the following information probably
won’t surprise you. But if you’re new to the cloud, then let me be the first to tell you:
cloud pricing is complex, nearly intractable, and frequently underestimated (which
means over budget). That’s true when engineers make a concerted effort to estimate
and control cloud costs; when they don’t, I have seen six-figure surprises: more than

Performance Is Money | 313

$100,000 over budget. Following are the three most important things to know to
avoid billing surprises when using MySQL in the cloud.

The first thing to know is that the price doubles for each level of the underlying
compute (the virtual server that runs MySQL) because the resources (vCPU count
and memory size) at each level double. For example, if the minimum level of compute
is 2 vCPU and 8 GB RAM, the next level up is 4 vCPU and 16 GB RAM—and the
price doubles, too. There are a few exceptions, but expect doubling. As a result, you
cannot gradually increase costs; you double costs for each level of compute that you
scale up. From an engineering point of view, scaling up from 2 vCPU to 8 vCPU
is still a very small compute, but the price quadruples. To put this in perspective,
imagine if your monthly mortgage or rent payment doubled, or your car payment
doubled, or your student loan payment doubled. You would probably be upset—and
rightly so.

The second thing to know is that everything in the cloud costs money. Compute costs
are just the beginning. The following list includes common charges for MySQL in the
cloud in addition to compute costs:

• Storage type (IOPS)•
• Data storage (size)•
• Backups (size and retention)•
• Logs (size and retention)•
• High availability (replicas)•
• Cross-region data transfer (size)•
• Encryption keys (to encrypt data)•
• Secrets (to store passwords)•

Moreover, those charges are per-instance. For example, if you create five read repli‐
cas, each replica is billed for data store, backups, and so forth. I wish it were simpler,
but this is the reality: you need to investigate, understand, and estimate all costs when
using MySQL in the cloud.

Some proprietary versions of MySQL in the cloud (see “Compati‐
bility” on page 308) have additional costs, or a completely different
pricing model.

The third and final thing to know is that cloud providers offer discounts. Don’t pay
full price. At at minimum, costs can be significantly reduced with a one or three year
commitment, rather than paying month to month. Other discounts vary by cloud

314 | Chapter 10: MySQL in the Cloud

provider: look for (or ask about) reserved instances, committed usage, and volume
discounts. If your company relies on the cloud, then it has most likely negotiated
a contract with the cloud provider. Find out if that’s the case and whether any of
the contract pricing details affect costs for MySQL in the cloud. If you’re lucky, the
contract might reduce and simplify costs, which allows you to focus on the fun details
of using MySQL.

Summary
This chapter highlighted what to know when using MySQL in the cloud. The sub‐
stantial takeaway points are:

• Code and feature compatibility of MySQL varies in the cloud.•
• Your due diligence is to know any code or feature incompatibilities compared to•

open source MySQL.
• MySQL can be partially or fully managed, depending on cloud provider or•

third-party company.
• Network latency over wide-area networks increases query response time by tens•

or hundreds of milliseconds.
• Data for MySQL in the cloud is usually stored on network-attached storage.•
• Network-attached storage has single-digit millisecond latency, which is equiva‐•

lent to a spinning disk.
• The cloud charges for everything, and costs can (and often do) go over budget.•
• Cloud providers offer discounts; don’t pay full price.•
• Performance is query response time in the cloud.•

This is the last chapter, but don’t \q yet: there’s one more practice.

Practice: Try MySQL in the Cloud
The goal of this practice is to try MySQL in the cloud—just to see how it works, no
DBA work required. On the one hand, I don’t want to provide any of the following
five cloud providers free marketing—this book is strictly technical. But on the other
hand, using MySQL in the cloud is increasingly common, so I want you to be pre‐
pared and successful. Plus, this is a free trial: the following five cloud providers have a
free tier or an initial account credit. Don’t pay for anything yet: cloud providers must
earn your business and money by proving the value of their services to you.

Summary | 315

Try creating and using MySQL with any one (or several) of these cloud providers:

• MySQL Database Service by Oracle•
• SkySQL by MariaDB•
• Relational Database Service (RDS) by Amazon•
• Azure Database for MySQL by Microsoft•
• Cloud SQL by Google•

If you find that one is easy to use and potentially valuable, investigate its pricing
model and additional costs. I specifically use the verb investigate because, as I men‐
tion in “Performance Is Money” on page 313: cloud pricing is complex, nearly
intractable, and frequently underestimated (which means over budget).

Don’t forget to destroy your MySQL instance in the cloud before
the free trial ends or the initial account credit reaches zero.

This is the last practice in this book, but I encourage you to keep learning and
practicing because MySQL continues to evolve—so does the cloud. For this reason,
even MySQL experts must continue to learn and practice, and that reminds me of a
Zen proverb on which I end this book:

Chop wood. Carry water.

316 | Chapter 10: MySQL in the Cloud

Index

A
abandoned transactions, 285, 289
access pattern metrics, 186
access patterns, 131-133

application changes, 140-148
application design, 130-131
concurrency, 138
data age, 134-136
data model, 136
performance destabilization, 125-130
read consistency, 137-138
read/write, 133
result set, 139
row access, 139
throughput, 133
transaction isolation, 136-137

ACID (atomicity, consistency, isolation, and
durability) properties, 136, 137, 156, 170,
259, 265, 276

active transactions: history, 291-292
active transactions: latest, 286-290
active transactions: summary, 290-291
adaptive flushing, 217, 220
admin metrics, 195
aggregation (query metrics), 6-8
alerting, 223-230
application changes, 140-148
application workload, 152-155
applier threads, 246
asynchronous replication, 242-244
audit query data access, 121
autocommit, 288
average (statistic), 25

B
backfill (data), 115
bad SELECT, 201
batch size, 115-117
benchmarks, 155-156
binary log events, 237-238
binary log paradox, 119-120
block nested-loop, 88
Bordenhave, Francisco, 209
boring database, 180
boulders, 91-92, 149, 159, 160
bounded data set, 160
bounded rates, 183
B-tree index (InnoDB table), 42-45
buffer pool efficiency, 209-211
bulk (load) data, 116, 118, 119

C
cache server, 144-144
cardinality, 86-87, 94
chaos engineering, 302, 306
checkpoint age, 220
checkpointing, 220
cloud, 307-308, 315-316

compatibility, 308-309
costs, 313-315
management (DBA), 310-311
network and storage latency, 312-313
performance, 313-315

cobbles, 91-92, 123, 149
CockroachDB, 171
code audits, 140-141
coherency, 126-127, 129, 130
cold buffer pool, 210

317

committed transactions: summary, 292-293
compact column, 105-107
compact value, 107-112
concurrency, 126, 130, 138, 178
configuring MySQL, 39
connections, 196-198
consistent snapshot, 266, 267, 277-280,

281-282, 286, 288
constant row, 55
contention, 126-127, 129, 130, 178
covering indexes, 71
created tmp disk tables, 23
cross-shard queries, 167-168

D
data

access, 97-104
delete or archive, 115-120
indexes may not help, 92-95
less data is better, 96
less QPS is better, 96-97
principle of least data, 97-115
storage, 104-115

data age, 134-136
data drift, 299, 305
data locks, 261
data model, 136
data pages, 212-214
data size, 159, 203-204
data throughput, 207
dead weight, 104, 146
deadlock, 205
deduplicated value, 110-112
denormalization, 112
Descamps, Frédéric, 242
digest, 7
digest hash, 7
digest text, 7
direct query optimization, 27, 82-83
dirty pages, 212, 214, 215-217
duplicate indexes, 85, 90
durability, 156

E
encoded value, 109-110
enqueue writes, 145-146
error metrics, 185-186
errors, 181, 190-191
eventual consistency, 138

exec_state, 289
exec_time, 289
EXPLAIN, 81-82
EXPLAIN ANALYZE, 69, 70
EXPLAIN: query execution plan, 51, 54
explicit locks, 275
extra field, 53
extreme selectivity, 86

F
feature combatibility, 309
field of metrics, 182-187
flush list, 216
four-year fit, 160, 161, 173-174
free page target, 212-214, 218
free pages, 118, 212-214
fulcrum, MySQL as a, 35-37
full index scan, 46-48
full join, 78-79

G
gap (index records), 260-261
gap locks, 266-269
ghosts in the machine, 124
GROUP BY, 60-65
Group Replication, 234

H
hardware upgrade, 37-38, 148-149
hash sharding, 162-164, 169
high cardinality, 161
high concurrency, 138
history list length (HLL), 205, 280-282, 295-295

I
idle flushing, 218
implicit locks, 275-276
index condition pushdown, 68
index lookup, 46
index records, 260-261
index scan, 46-48, 93
index selectivity, 94
index statistics, 87
index-only scan, 48
indexes, 35-37

covering indexes, 71
EXPLAIN: query execution plan, 51, 54
GROUP BY, 60-65

318 | Index

join tables, 71-79
leftmost prefix requirement, 49-51
ORDER BY, 65-70
possibility indexes may not help, 92-95
reasons for decreased performance, 84-87
red herrings of performance, 37-40
secondary, 269-273
table access methods, 45-49
table join algorithms, 87-89
WHERE, 54-60

indexing, 80
deploying and verifying changes, 83-84
direct query optimization, 82-83
know the query, 80-81
understanding with EXPLAIN, 81-82

indirect query optimization, 28
InnoDB, 205

buffer pool efficiency, 209-211
data throughput, 207
deadlock, 205
default storage engine for MySQL, 14
explicit locks, 275
history list length (HLL), 205
implicit locks, 275-276
IOPS, 208-209
metrics, 194
page flushing, 215-219
pages, 212-214
row locking, 206-207
tables, 41-45
transaction log, 219-222

insert intention locks, 273-276
internal metrics, 186-187
IOPS, 208-209

J
Jean-François Gangé, 247, 249
Jeremy Cole, 43
join algorithms, 87-89
join buffer, 88
join tables, indexing for, 71-79
joins, 167

K
Karwin, Bill, 140
key field, 53
key performance indicators (KPIs), 181-182,

231
Kinoshita, Yasufumi, 217

L
lag, 203
large transactions, 282-283, 289
leftmost prefix requirement, 49-51
legacy flushing, 218
leverage (indexes), 35-37
LIMIT clause, 99-101
linear scaling, 125
load, 126-127
lock time, 13-17
locking, 156
locking records, 260
log buffer, 221
log file, 221
lone gap lock, 267
long-running transactions, 283-284, 289
lookup sharding, 165-166, 169
Łopuszański, Jakub, 275
LRU flushing, 217-218
LRU list, 216

M
management (DBA), 310-311
MariaDB, 5-6, 189, 215
matching rows, 56
maximum (statistic), 26
metadata and the application, 24
microservices, 172
middleware (sharding), 171-172
minimized value, 108-109
misc pages, 212
monitoring, 223-230
multithreaded replication, 246-250
multiversion concurrency control (MVCC),

276-280
MySQL extensions to SQL standard, 301

N
nested-loop join, 87
network issues, 241
network throughput, 202
NewSQL, 170-171
next-key lock, 263-266
Noach, Shlomi, 227, 245, 300
noisy neighbors, 301-302
North Star, 3

Index | 319

O
object-relational mapping (ORM), 299-300
objective limits alerts, 226-228, 232
offload reads, 141-144
online schema changes (OSC), 300
operations, 158
ORDER BY, 65-70

P
page cleaner threads, 217, 218
page flushing, 156, 215-219
pages (InnoDB), 212-214
partition data, 146-147
pebbles, 91-92, 149, 159
percentage execution time, 9
percentiles, 25-26
Percona Server

code compatibility, 308, 309
enqueue writes, 146
page flushing, 215
query analysis, 12, 14
query reporting, 5, 7
query response time, 189
replication, 234
slow queries, 33-34

performance regressions, 179
Performance Schema, 4-6
phantom rows, 265
possible keys field, 53
post-failure rebuild, 241
practical column, 105-107
practical value, 107-112
predicates, 54
prepared statements, 200-201
principle of least data, 97-115
prism, MySQL as a, 176, 179
ProxySQL, 171
pseudo-records, 260

Q
queries per second, 181, 192-193
query

definition, 288
indexing, 80-81
optimization, 39
spectra (MySQL server metrics), 191-196
term synonymous with "digest text", 7

query abstract, 7-8

query analysis, 11
query complexity, 99
query count, 23
query load, 10
query metrics, 11

created tmp disk tables, 23
lock time, 13-17
query count, 23
query time, 12-13
rows affected, 20
rows examined, 18-19
rows sent, 19-20
select full join, 21-23
select scan, 20-21

query profile, 9-10
query report, 10-11
query reporting, 4-11
query response time, 1-2, 27-29, 32, 188-189

identifying slow queries, 33-34
increasing speed, 30-31
as meaningful and actionable, 3
query analysis, 11
query reporting, 4-11
when to optimize queries, 29-30

query samples, 7

R
range scan, 56
range sharding, 164-165, 169
rate metrics, 183
read consistency, 137-138
read-heavy access patterns, 149
read/write, 133, 194-195
rebalancing (sharding), 169
record lock, 263-266
redo log (InnoDB), 219-221
ref field, 53
reference application entities, 162
relative values, 24
replicas, 143-144
replication, 157, 203
replication lag, 116, 233-234, 238-240, 254-255

causes, 240-241
data loss risk, 241-246
foundation, 234-240
monitoring, 250-252
multithreaded replication, 246
recovery time, 252-253
subsecond, 255-257

320 | Index

replication terminology changes, 235
resharding, 168-169
resolution (metrics), 223-224
response time, 181
response time metrics, 182-183
result set, 139
retrograde performance, 127
rocks, 91-92, 123
row access, 139
row lock contention, 118
row locking, 206-207, 260-276
rows affected, 20
rows examined, 18-19, 93-94
rows field, 53
rows sent, 19-20
rows_examined, 288
rows_sent, 288

S
scatter queries, 168
schema changes, 157-158
Schwartz, Baron, 127, 130
secondary indexes, 112-114, 269-273
Seconds_Behind_Source, 250-252
select full join, 21-23
select scan, 20-21
selectivity, 86
semisynchronous replication, 244-246
server metrics, 175-177

field of metrics, 182-187
key performance indicators (KPIs), 181-182
monitoring and alerting, 223-230
normal and stable, 180

server performance, 177-179
shard key, 161-162
shard split, 168-169
sharding, 151

alternatives to, 170-172
application workload, 152-155
benchmarks, 155-156
challenges, 167-169
data size, 159
design for, 160
four-year fit, 173-174
migration to, 160-161
operations, 158
schema changes, 157-158
shard key, 161-162
strategies, 162-166

writes, 156-157
SHOW metrics, 196
SHOW WARNINGS, 75
single writable (source) instance, 156
slow query log, 4-6
source (query metrics), 4-6
source to replica replication, 235-236
spectra (MySQL server metrics), 187-188

bad SELECT, 201
data size, 203-204
errors, 190-191
InnoDB, 205-222
network throughput, 202
prepared statements, 200-201
query, 191-196
query response time, 188-189
replication, 203
temporary objects, 199
threads and connections, 196-198

spectrometry, 176
split-brain, 297-298, 303-304
stages, 12
stalled transactions, 284, 289
statement-based replication (SBR), 233
statements, 12
storage engines, 14
subsecond replication lag, 255-257
sys Schema, 85

T
table access, 81
table access methods, 45-49
table condition, 54
table elem, 41-42
table field, 52
table join, 94-95, 101
table join algorithms, 87-89
table lock, 263
table scan, 48-49
temporary objects, 199
threads, 196-198
threads running, 181
thread_id, 287
thresholds, 225-226
throttling, 116
throughput, 126-127, 133
TiDB, 171
Tkachenko, Vadim, 39, 179
total query time, 9

Index | 321

transaction dependency tracking, 246
transaction isolation, 136-137, 288
transaction log, 219-222
transaction log utilization, 221-221
transaction throughput, 240
transactions, 12, 156, 167, 259-260, 294

common problems, 282-286
history list length (HLL), 280, 295-295
multiversion concurrency control (MVCC)

and undo logs, 276-280
reporting, 286-293
row locking, 260-276, 296
size, 282-283

transactions per second (TPS), 193-194
Trudeau, Yves, 209
trx_event_id, 288
trx_runtime, 287
tuning MySQL, 39, 178
type field, 53

U
unbounded data set, 160
unbounded rates, 183
undo logs, 276-280
Universal Scalability Law (USL), 126-127

unused indexes, 85
user experience alerts, 226-228, 232
utilization metrics, 183-184

V
variation (QPS), 134
Vitess, 172

W
waits

event, 12, 13
field of metrics, 184-185
free page, 213
query response time, 1
row lock, 15

WHERE, 54-60
working set size, 95
workload, 38
write amplification, 157
write-heavy access patterns, 149
writes, 156-157

Z
zero concurrency, 138

322 | Index

About the Author
Daniel Nichter is a DBA with over 15 years of experience with MySQL. He started
optimizing MySQL performance in 2004 while working in a data center. Soon after,
he created https://hackmysql.com to share information and tools about MySQL. Dan‐
iel is most known for the tools he published during his eight-year tenure at Percona,
several of which remain the de facto standard and in use at the largest tech companies
in the world. He is also a MySQL Community Award winner, conference speaker, and
wide-ranging open source contributor. Daniel currently works as a DBA and software
engineer at Square, a fintech company with thousands of MySQL servers.

Colophon
The bird on the cover of Efficient MySQL Performance is a crested barbet (Trachypho‐
nus vaillantii), commonly known as “fruit salad” for their colorful plumage and fruit-
based diet. Mostly native to Southern Africa, they are usually found in woodland
areas, suburban gardens and orchards, and along riverbeds and are nonmigratory.

The adult crested barbet’s coloration makes it easily identifiable. It has a red and
yellow head, a large, stout, pale greenish-yellow bill, and a gray-black dot on its
cheek. Its mantle, wings, tail, and thick breast band are black with white crescents or
dots. The crested barbet’s lower back is yellow with red upper tail coverts. There is
more yellow and red on its underside, and its legs and feet are gray.

Crested barbets are highly vocal birds that have a shrill, drumming-like song that
can last several minutes. They are territorial and aggressive, especially during the
breeding season. Although small and clumsy in flight, they are strong and known to
harass and even attack other birds, mammals, and reptiles that approach their nests.
They are monogamous and usually seen in pairs. The pairs work together to dig
cavity nests in rotted trees and breed year-round if conditions are right.

Because they eat small insects and snails, residential areas welcome the crested barbet,
but on commercial farms, they seriously damage crops. Crested barbets face capture
for this damage and for the pet trade but are not yet endangered. Many of the animals
on O’Reilly’s covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from English Cyclopaedia. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

